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Abstract A connected graph G = (V,E) is said to be arbitrarily partitionable
(AP for short) if for any partition (τ1, ..., τk) of |V | there exists a partitioning
(V1, ..., Vk) of V such that each Vi induces a connected subgraph of G on τi
vertices. Some stronger versions of this property were introduced, namely the
ones of being online arbitrarily partitionable and recursively arbitrarily parti-
tionable (OL-AP and R-AP for short, respectively), in which the subgraphs
induced by a partitioning must not only be connected but also fulfil some
additional conditions. A balloon is a 2-connected graph obtained by connect-
ing two distinct vertices by means of several branches, i.e. by vertex-disjoint
paths. Through many investigations, it appeared that AP balloons are inter-
esting since some of their properties can be easily generalized to 2-connected
AP graphs. In this paper, we first show that OL-AP balloons cannot have
more than five branches, this bound meeting the equivalent known one for
R-AP balloons. We then investigate the cases of OL-AP and R-AP balloons
having this many branches. In particular, we prove that there exists an infi-
nite number of them and give a first upper bound to the size of their smallest
branch. We then use the latter result to show that a 2-connected OL-AP or
R-AP graph must contain some small components.
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1 Introduction

Let G = (V,E) be a graph with order n. A sequence τ = (τ1, ..., τk) of positive
integers is said to be admissible for G if it performs a partition of n, that is
if
∑k
i=1 τi = n. When, for such an admissible sequence for G, we can find a

partition (V1, ..., Vk) of V such that each Vi induces a connected subgraph of
G on τi vertices, then τ is called realizable in G. If any admissible sequence
for G is also realizable in it, this graph is said to be arbitrarily partitionable
(AP for short).

The notion of AP graphs was recently introduced in [1] to deal with the
following computer science problem. Suppose that we want to share a network
of n computing resources between k users, where the ith one needs τi resources.
Of course, for the sake of performance, we do not want the sharing to be
performed arbitrarily, but in such a way that the following two conditions are
met:

– a resource must be allocated to exactly one user,
– the subnetwork attributed to a user must be connected1.

We can use the previously introduced notions to deduce an optimal sharing
of our resources. Indeed, let G be the graph modelling our network; then we can
satisfy our users with this specific resource demand if the sequence (τ1, ..., τk) is
realizable in G. Moreover, observe that, regarding this allocation problem, the
networks which are of most interest are those which can be shared between an
arbitrary number of users no matter how many resources they need. Clearly,
these networks are the ones having an AP graph topology.

It appears that the structure of AP graphs is not obvious in general, al-
though we still do not know if the problem of determining whether a graph is
AP is complete. The interested reader can refer to [1], [2] or [10] for a review
of some of the most important results about AP graphs. An older interest-
ing result proved independently by Györi and Lovász on the partitioning of
a k-connected graph can be found in [7] and [9], illustrating the fact that
partitioning graphs into connected subgraphs was studied long before the in-
troduction of AP graphs.

Observe that the above definition of AP graphs is quite static and thus not
representative of the difficulties we can encounter while actually partitioning
a network; notably, one could point out the following two issues:

1. In our definition, a graph is fully partitioned at once; from the network
sharing point of view, this constraint is like waiting for every single resource
of our network to be needed before eventually satisfying our users. This
is, of course, not satisfying since we would like to satisfy them as soon as
possible (immediately, ideally).

2. When a sequence is realized in a graph, the induced subgraphs must only
meet the connectivity constraint. But according to our network analogy,
it would be more convenient to make sure that the allocated subnetworks

1 In the sense that two resources of a subnetwork must be able to communicate within it.
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themselves have the property of being shareable at will. This can be quite
useful if, for some reasons, a user wants himself to share his subnetwork
between several other users or if he wants to delimit it to accomplish many
different tasks simultaneously.

Of course, more arguments could be pointed out to show that the definition
of AP graph does not fit so well with the above problem; but these two are
enough to justify the introduction of the two upcoming stronger versions of
the definition.

Firstly, a graph G is said to be online arbitrarily partitionable (OL-AP for
short) if it is either isomorphic to K1, or if for any integer λ ∈ [1, n] we can
find a subset Sλ ⊆ V of λ vertices such that G[Sλ] is connected and G[V \Sλ]
is OL-AP. Secondly, G is said to be recursively arbitrarily partitionable (R-AP
for short) if it is either an isolated vertex or if for any sequence τ = (τ1, ..., τk)
admissible for G we can partition V into k parts (V1, ..., Vk) such that each Vi
induces an R-AP subgraph of G on τi vertices. Observe that OL-AP graphs
(resp. R-AP graphs) can be used to deal with our network sharing problem
taking issue 1 (resp. issue 2) pointed out above into account.

It appears that the properties of being OL-AP and R-AP are quite similar,
previous investigations having shown that every R-AP graph is also OL-AP
and that, in the context of some fully characterized classes of graphs (like trees
and so-called suns), there only exists a few OL-AP graphs being not R-AP
[4].

Theorem 1 [4] Every R-AP is also OL-AP, but the contrary does not neces-
sarily holds.

The similarity between OL-AP and R-AP graphs apart, we still do not
know much about the structure of these graphs though. However, since some
previous studies, we feel that the property of being R-AP is even more closely
related to traceability2 than is the one of being just AP; indeed, we think that
a graph should be ”nearly traceable” in order to be R-AP.

Question 1 Does there exist a small constant c such that if a graph is R-AP
then it necessarily contains an elementary path of size at most n− c?

In [4] was also introduced and studied the class of balloon graphs. Let
b1, ..., bk be k ≥ 3 positive integers; the balloon with k branches B(b1, ..., bk)
(sometimes called k-balloon for short) is the 2-connected graph obtained by
linking two distinct vertices r1 and r2 by means of k vertex-disjoint paths of
orders b1, ..., bk respectively. By ”linking” we mean that for each of these paths
we add an edge between one of its degree-one vertices and r1, and similarly for
its other degree-one vertex and r2. Observe that the structure of 2-connected
AP graphs is closely related to the one of AP balloons:

Observation 1 Let G be a 2-connected graph, u and v be two vertices forming
an articulation pair of G, and n1, ..., nk be the orders of the k ≥ 2 connected
components of G[V \ {u, v}]. If G is AP, then B(n1, ..., nk) is AP.

2 A graph is traceable if it admits a spanning path.
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A similar observation can be deduced about OL-AP or R-AP graphs, al-
though it has some more important consequences in the latter context. Indeed,
it was proved in [4] that R-AP balloons cannot have too many branches.

Theorem 2 [4] An R-AP balloon cannot have more than five branches.

This result, combined with an R-AP version of Observation 1, gives us a
property of 2-connected R-AP graphs. Indeed, the graph resulting from the
deletion of an articulation pair of a 2-connected R-AP graph should not be
composed of too many components (at most five) since otherwise we could find
a counterexample to Theorem 2. Thus, the study of R-AP balloons is a good
way to deduce general properties of 2-connected R-AP graphs; of course, this
observation also holds for OL-AP balloons and 2-connected OL-AP graphs.

This paper is organized as follows. We first begin by providing, in Section 2,
some definitions and tools necessary to understand our results. Then, we show
in Section 3 that the bound exhibited in Theorem 2 on the maximum degree
of a R-AP balloon also holds for OL-AP graphs. We afterwards prove, in
Section 4, that there exists an unbounded number of R-AP 5-balloons, and,
thus, of OL-AP 5-balloons according to Theorem 1. Finally, we give a first
upper bound on the size of the smallest branch of an OL-AP or R-AP 5-balloon
in Section 5. With this result, we also exhibit a property of 2-connected OL-AP
and 2-connected R-AP graphs.

2 Terminology and preliminary results

Let x ≥ 1 be an integer. In what follows, the set {1, ..., x} is denoted by [1, x],
while x+ denotes an arbitrary integer y such that y ≥ x.

We deal with connected, non-oriented and simple graphs, using mainly the
terminology of [6]. The vertex and edges sets of a graph G are respectively
denoted by V (G) and E(G) (or simply by V and E when no ambiguity is
possible). The order of G, commonly denoted by n, is its number of vertices,
i.e. |V |. Given a subset of vertices S ⊆ V , we denote by G[S] the subgraph of
G induced by the vertices of S. If F ⊆ E is a subset of edge of G, we denote
by G \F the partial graph of G obtained by removing all the edges of F from
G.

We denote by Pn the path of size n. Given k positive integers a1, ..., ak,
the k-pode P (a1, ..., ak) is the tree obtained by linking one central node to one
extremity of each one of k disjoint paths of size a1, ..., ak, respectively. Since
previous investigations [4] [5], a 3-pode P (1, a2, a3) is often referenced as a
caterpillar and is also denoted by Cat(a2 + 1, a3 + 1) for convenience3. The
next two theorems give a complete characterization of OL-AP and R-AP trees
[8] [4].

Theorem 3 [8] A tree is OL-AP iff it is either isomorphic to a path, to a
caterpillar Cat(a, b) with a and b given in Table 1, or to the 3-pode P (2, 4, 6).
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a b

2, 4 ≡ 1 mod 2
3 ≡ 1, 2 mod 3
5 6, 7, 9, 11, 14, 19
6 ≡ 1, 5 mod 6
7 8, 9, 11, 13, 15
8 11, 19

9, 10 11
11 12

Table 1 Values a and b, b ≥ a, such that Cat(a, b) is OL-AP.

Theorem 4 [4] A tree is R-AP iff it is either isomorphic to a path, to a
caterpillar Cat(a, b) with a and b given in Table 2, or to the 3-pode P (2, 4, 6).

a b

2, 4 ≡ 1 mod 2
3 ≡ 1, 2 mod 3
5 6, 7, 9, 11, 14, 19
6 7
7 8, 9, 11, 13, 15

Table 2 Values a and b, b ≥ a, such that Cat(a, b) is R-AP.

These results were proved using the following two observations, which pro-
vide two alternative methods to check whether a graph is OL-AP or R-AP
(which will be widely used later on).

Observation 2 A graph G is R-AP iff for any λ ∈ [1, bn2 c] we can partition
V into two parts Sλ and Sn−λ such that G[Sλ] and G[Sn−λ] are R-AP on λ
and n− λ vertices respectively.

Observation 3 The property of being OL-AP (resp. R-AP) is closed under
edge additions, i.e. a graph having an OL-AP spanning subgraph (resp. an
R-AP spanning subgraph) is OL-AP (resp. R-AP).

We now give some more notations associated with the notion of balloon
graphs. Let B = B(b1, ..., bk) be a k-balloon. The vertices r1 and r2 of degree
k in B are called the roots of B, while the path of size bi connecting them
is said to be the ith branch of B. For any i ∈ [1, k], the vertices of the ith

branch of B are denoted by vi1, ..., v
i
bi

where vi1r1 ∈ E, vibir2 ∈ E, and for any

j ∈ [1, bi − 1], vijv
i
j+1 ∈ E. Finally, for any i ∈ [1, k], we denote by bi(B) the

number of vertices composing the ith branch of B.
We denote by PB(b1, ..., bx, bx+1, ..., bx+y, bx+y+1, ..., bx+y+z) the graph

B(b1, ..., bx+y+z)\(
⋃x+y
i=x+1{vibir2},

⋃x+y+z
i=x+y+1{r1vi1}) obtained by removing y+

3 Observe that Cat(a, b) has order a + b.
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z edges to a (x+ y + z)-balloon. Such a graph is called a partial balloon with
(x + y + z) branches, or partial (x + y + z)-balloon for short. In this paper,
the notations introduced above for balloons are used in an analogous way for
partial balloons. For convenience, the vertices of an hanging branch of size
bi of a partial balloon B (that is, a branch linked to only one root of B)
are successively denoted by vi1, ..., v

i
bi

where vi1 is the degree-one vertex of the

branch and vibi is the one adjacent to one root of B.
We now give the following two properties of AP balloons which were found

during previous investigations.

Observation 4 [4] Let B be an AP balloon. If n is odd, then B has at most
three branches of odd orders. Otherwise, B has at most two branches of odd
orders.

Lemma 1 [3] Let B(b1, ..., bk) be an AP balloon with b1 ≤ ... ≤ bk. Then for
any i ≤ k we have 2bi ≥

∑
j<i bj.

3 An OL-AP 5-balloon cannot have more than five branches

In this section, we prove that the bound of Theorem 2 also holds for OL-AP
balloons, which is not surprising since the properties of being OL-AP and
R-AP showed to be closely related in previous investigations.

Theorem 5 An OL-AP balloon can not have more than five branches.

Proof The proof is by contradiction. Let us suppose that there exist OL-AP
k-balloons with k ≥ 6, and let B denote one of those having the least order.

By definition, we know that B is OL-AP iff for any λ ∈ [1, n] we can
partition V into two parts Sλ and Sn−λ with size λ and n − λ respectively
and such that B[Sλ] is connected and B[Sn−λ] is OL-AP. Observe that, by
the minimality of B, B[Sn−λ] cannot be a partial k-balloon since otherwise we
could find an OL-AP k-balloon with order strictly less than B (Observation 3).
Hence, for each λ, one of the following statement must be true (Theorem 3):

1. B[Sn−λ] is an OL-AP (k − 1)-balloon, i.e. Sλ contains all the vertices
composing one branch of B, or

2. B[Sn−λ] is a path, i.e. Sλ contains all the vertices ofB but some consecutive
ones from one branch, or

3. B[Sn−λ] is an OL-AP caterpillar, i.e. Sλ contains one root r1 of B and all
the vertices of k− 2 branches of it but one linked to the root of B different
from r1, or

4. B[Sn−λ] is the 3-pode P (2, 4, 6), i.e. Sλ contains one root r1 of B and all
the vertices of k − 2 branches of it but two adjacent vertices, one of them
being adjacent to the root of B different from r1.

We claim that B has branches with orders 1, 2, 3, 4, 5 and 6; indeed, let
λ ∈ [1, 6] and suppose that B does not have a branch with order λ. For any
value of λ, it is not possible to partition V into two subsets of size λ and n−λ
satisfying the above conditions:
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– λ ∈ [1, 3]: for any choice of Sλ, B[Sn−λ] is either a partial k-balloon having
less vertices than B, or a tree with maximum degree at least 4 since Sλ can
only contain all the vertices of at most two branches of B. In both cases,
B[Sn−λ] is not OL-AP.

– λ = 4: so far, notice that B must have branches of sizes 1, 2 and 3. Similarly
as in the previous case, observe that for any choice of Sλ, B[Sn−λ] is either
a partial k-balloon having less vertices than B, which can not be OL-AP by
the minimality of B, or a tree having maximum degree at least 3. For the
latter case, the only correct possibility is to make B[Sn−λ] being isomorphic
to Cat(3, 4), which is only possible when k = 6 and B = B(1, 1, 1, 1, 2, 3).
But then we know that B is not AP by Lemma 1, and thus not OL-AP.

– λ = 5: by the previous cases we know that B has branches composed by
respectively 1, 2, 3 and 4 vertices. Notice that B[Sn−λ] cannot be a path
since five vertices cannot cover four branches plus a root of B. If B[Sn−λ] is
isomorphic to an OL-AP caterpillar, then necessarily k = 6 and B[Sn−λ] is
isomorphic to Cat(4, 5). In this case, we would have B = B(1, 1, 1, 2, 3, 4)
which is not AP according to Observation 4 and thus is not OL-AP. Finally,
observe that we cannot take Sλ in such a way that B[Sn−λ] is P (2, 4, 6).
Indeed, since k ≥ 6, then Sλ should contain one root of B, cover all of
its branches of size 1, and then contain at least three vertices from its
branches of size 3 and 2; thus, we need to cover at least six vertices, which
is impossible since we want Sλ to contain only five vertices.

– λ = 6: by the previous cases, we know that B has branches of sizes 1,
2, 3, 4 and 5. Since k ≥ 6, B has one additional branch of size bi. Let
us first suppose that bi ≤ 5; by Lemma 1, we must have bi = 1. Thus
B = B(1, 1, 2, 3, 4, 5, ...). But now the only potential choice for Sλ would be
to cover the three smallest branches of B, one of its roots and one additional
vertex from another branch; observe that this choice would not be a correct
one since B[Sn−λ] would be either isomorphic to a 3-pode different from
an R-AP caterpillar or from P (2, 4, 6), or to a tree with maximum degree
at least 4. Thus, bi ≥ 7; but, again, we cannot find a correct subset Sλ for
the same reasons as above or because it would contradict the minimality
of B. Hence B is not OL-AP.

Finally, B must be B(1, 2, 3, 4, 5, 6, ...) which is not AP following Lemma 1;
it thus cannot be OL-AP.

4 An infinite family of OL-AP and R-AP 5-balloons

The number of branches of OL-AP and R-AP balloons being upper bounded
(Theorems 2 and 5), one could think that we could step forward a complete
characterization of them (as it was done for trees). In what follows, we prove
that, for any k ≥ 1, the 5-balloon B(1, 1, 2, 3, 2k) is R-AP, providing us an
infinite family of R-AP 5-balloons (and of OL-AP 5-balloons according to
Theorem 1). We use the following two lemmas for this purpose.
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Lemma 2 The partial balloon PB(1, 1, 2, k) is R-AP for any k ≥ 1.

Proof Observe that this fact is true whenever k = 1, k = 2 or k = 3 since,
in these cases, the corresponding partial balloons are spanned by Cat(2, 5),
Cat(3, 5) and Cat(4, 5) respectively.

Suppose now that this claim holds for any i ≤ k−1 and consider the partial
balloon B = PB(1, 1, 2, k). By Observation 2, we know that B is R-AP if it
can be partitioned, for any λ ∈ [1, bn2 c], into two R-AP subgraphs having size
λ and n − λ respectively. For λ ≤ 4, B can be easily partitioned into two
traceable subgraphs. When λ = 5, it can be partitioned into Cat(2, 3) and
Pk+1, while for λ = 6 we can obtain B(1, 1, 2), which is traceable, and Pk.
Finally, for λ ≥ 7, we can partition B into PB(1, 1, 2, λ− 6) and Pk−λ+6, the
first one of these two being R-AP by induction. ut

Lemma 3 The partial balloon PB(1, 2, 3, k) is R-AP for any k ≥ 1.

Proof The proof is by induction on k. If we first suppose that k = 1, k = 2, or
k = 3, then observe that the corresponding partial 4-balloons are R-AP since
they are spanned by the R-AP caterpillars Cat(2, 7), Cat(3, 7) and Cat(3, 8),
respectively.

Let us secondly suppose that the lemma holds for any i ≤ k − 1, and
consider the partial balloon B = PB(1, 2, 3, k); once again, by Observation 2,
it is sufficient, to prove that B is R-AP, to show that we can partition it into
two R-AP subgraphs on λ and n − λ vertices respectively, and this for every
λ ∈ [1, bn2 c]. For any such λ ≤ 6, observe that we can easily partitionB into two
traceable graphs. When λ = 7, it can be partitioned into Cat(3, 4) and Pk+1,
while for k = 8 we can find a partition of its vertices inducing B(1, 2, 3) and
Pk. Finally, for any λ ≥ 9, there exists a partition of B into PB(1, 2, 3, λ− 8)
and Pn−λ, the first one being R-AP by the induction hypothesis. ut

We are now ready to prove the main result of this section:

Proposition 1 The partial balloon PB(1, 1, 2, 3, 2k) is R-AP for any k ≥ 1.

Proof Let B = PB(1, 1, 2, 3, 2k) be a partial balloon, where k ≥ 1; by Observa-
tion 2, recall that B is R-AP iff we can partition it into two R-AP subgraphs
B[Sλ] and B[Sn−λ] having size λ and n − λ respectively, and this for any
λ ∈ [1, bn2 c]. Here are some partitions we can consider for the first values of λ:

– λ = 1: P1 and B(1, 2, 3, 2k) (R-AP by Lemma 3),
– λ = 2: P2 and B(1, 1, 3, 2k) (spanned by Cat(2, 5 + 2k)),
– λ = 3: P3 and B(1, 1, 2, 2k) (R-AP by Lemma 2),
– λ = 4: P4 and Cat(4, 2k + 1),
– λ = 5: Cat(2, 3) and P2k+4,
– λ = 6: P6 and Cat(2, 2k + 1),
– λ = 7: Cat(3, 4) and P2k+2.
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By now, it should be clear that the proposition holds for any partial balloon
PB(1, 1, 2, 3, 2k) such that n ≤ 15 (i.e. whenever k ≤ 3). Let us suppose, as
an induction hypothesis, that the claim is true for any i ≤ k − 1; we now
consider the partitioning of B = PB(1, 1, 2, 3, 2k) into two R-AP subgraphs
for the remaining values of λ, that is for any λ ∈ [8, bn2 c].

– When λ ≥ 9 is odd, then B can be partitioned into PB(1, 1, 2, 3, λ− 9),
which is R-AP by induction since λ− 9 is even and positive, and Pn−λ.

– When λ ≥ 8 is even, observe that λ ≤ 2k since λ ≤ bn2 c and we handled the
cases where k ≤ 3. We can thus partition B into Pλ, and either B(1, 1, 2, 3)
when k = 4 or PB(1, 1, 2, 3, 2k − λ) otherwise, which are respectively R-AP
according to Lemma 3 and by induction since 2k − λ is even.

ut

By Observation 3, we can deduce the following corollary ensuring that
there exists arbitrary many R-AP 5-balloons; this result also holds for OL-AP
5-balloons since any R-AP graph is also OL-AP (Theorem 1).

Corollary 1 The 5-balloon B(1, 1, 2, 3, 2k) is OL-AP and R-AP for any k ≥ 1.

5 OL-AP and R-AP 5-balloons have their smallest branch of
bounded size

In this section, we mainly deal with R-AP 5-balloons, but our result can be
easily derived for OL-AP ones. Since, by Corollary 1, we know that there exists
arbitrarily many R-AP 5-balloons, one can next wonder about the repartition
of the vertices of a such one along its branches. Observe that any member
of the exhibited family has its longest path of size n − 2, and thus does not
compromise Question 1. Although, this family is not representative enough of
the entirety of R-AP 5-balloons; hence, it would be interesting to show that
5-balloons in general cannot counter our intuition. In what follows, we make
a first step towards this goal by giving a first upper bound on the size of the
smallest branch of an R-AP 5-balloon.

Before giving the main result of this section, we introduce some lemmas
showing that some particular graphs can never be R-AP.

Lemma 4 The partial balloon PB(8+, 8+, x, y) cannot be R-AP for any x, y ≥ 1.

Proof We prove this claim by induction on x + y. Let us first suppose that
x = y = 1; if B = PB(8+, 8+, 1, 1) were R-AP then, by Observation 2, for
any λ ∈ [1, bn2 c] we should be able to find a subset Sλ ⊂ V with λ such that
B[Sλ] and B[V \ Sλ] are both R-AP. Let us consider a part with size λ = 2;
obviously, every possible choice for S2 does not fulfil these conditions:

– S2 = {v31 , r1}: B[V \ S2] is isomorphic to Cat(9+, 9+).
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– S2 = {v11 , v12}: B[V \S2] is isomorphic to Cat(7+, 11+) which is R-AP only
when the first branch of B has size 8 while its second one has size belong-
ing in {8, 10, 12}. But observe that the corresponding graphs PB(8, 8, 1, 1),
PB(8, 10, 1, 1) and PB(8, 12, 1, 1) are not R-AP since they cannot be par-
titioned into two parts inducing R-AP subgraphs with size 3 and n− 3.

– S2 = {v12 , v13}: B[V \ S2] is a tree having two degree-three vertices.
– For any other choice of S2, B[V \S2] is either not R-AP for a reason similar

to one of those above or because it is not connected.

Let us now suppose that x + y = 3; without loss of generality, we can
consider that x = 2 and y = 1. We claim that it is not possible to partition
B = PB(8+, 8+, 2, 1) into two parts with size 3 and n − 3 inducing R-AP
subgraphs: indeed, for any possible choice S3 of three vertices, the remaining
graph B[V \ S3] cannot be R-AP:

– S3 = {r1, v32 , v31}: B[V \ S3] is isomorphic to Cat(9+, 9+).
– S3 = {v41 , r2, v1b1(B)}: B[V \ S3] is isomorphic to a non-caterpillar 3-pode

different from P (2, 4, 6).
– S3 = {v11 , v12 , v13}: B[V \ S3] is isomorphic to Cat(6+, 12+) which is R-

AP only when the first branch of B has size 9 while its second one has
size 9 or 11. But observe that the corresponding graphs PB(8, 9, 2, 1) and
PB(8, 11, 2, 1) are not R-AP since they cannot be partitioned into two
parts with size 4 and n− 4 inducing R-AP subgraphs.

– S3 = {v12 , v13 , v14}: B[V \ S3] is a tree with two degree-three vertices.
– For any other choice of S3, B[V \S3] is either not R-AP for a reason similar

to one of those above or because it is not connected.

Consider now that the claim holds for any graph PB(8+, 8+, x, y) such
that x + y ≤ k with k > 3. We now prove that this is also the case when
x+ y = k + 1. There are two cases to consider:

– x > 1 and y > 1: B = PB(8+, 8+, x, y) is not R-AP since we cannot par-
tition its vertices into two parts S1 and Sn−1 inducing R-AP subgraphs
with size 1 and n−1 respectively. Observe that, indeed, S1 cannot contain
one vertex different from the degree-one ones belonging to the two hanging
branches of B: otherwise, B[V \S1] would be either disconnected or isomor-
phic to a big caterpillar or a tree with two degree-three vertices, and thus
would not be R-AP. We must thus consider S1 = {v31} or S1 = {v41} but in
both cases the remaining graph B[Sn−1] is isomorphic to PB(8+, 8+, x′, y′),
where x′ ≤ x, y′ ≤ y and x′ + y′ = x + y − 1 ≤ k, which is not R-AP by
induction.

– x = 1 and y > 2: consider we want to partition B into two R-AP subgraphs
B[S2] and B[Sn−2] of size 2 and n − 2 respectively. For the same reasons
as previously, we have to consider S2 = {v41 , v42}. But obviously this parti-
tioning is not correct since B[Sn−2] is isomorphic to PB(8+, 8+, x, y − 2)
which is not R-AP by induction. These arguments hold analogously when
x > 2 and y = 1. ut
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Lemma 5 The partial balloon PB(8+, 8+, x, y, z) cannot be R-AP for any
x, y, z ≥ 1.

Proof We prove this claim by induction on x + y + z in an analogous way
as what we did for Lemma 4. Let us first suppose that x = y = z = 1 and
consider the associated graph B = PB(8+, 8+, 1, 1, 1). Once again, B is not
R-AP since its vertex set cannot be partitioned into two parts S2 and Sn−2
inducing R-AP subgraphs with size 2 and n− 2 respectively:

– S2 = {v51 , r2}: B[V \ S2] is a tree with maximum degree 4.
– S2 = {v11 , v12}: B[V \ S2] is a tree with two degree-three vertices.
– S2 = {v12 , v13}: B[V \ S2] is a tree having maximum degree 4.
– For any other choice of S2, B[V \S2] is either not R-AP for a reason similar

to one of those above or because it is not connected.

Let us now suppose that x+ y+ z = 4; in this case, B is either isomorphic
to PB(8+, 8+, 2, 1, 1) or PB(8+, 8+, 1, 1, 2) and thus, straightforwardly, is not
R-AP. Indeed, on the one hand, if B = PB(8+, 8+, 2, 1, 1) then it cannot be
partitioned into two R-AP graphs B[S2] and B[Sn−2] with size 2 and n − 2
respectively:

– S2 = {v31 , v32}: B[V \ S2] is isomorphic to PB(8+, 8+, 1, 1), which is not
R-AP according to Lemma 4.

– S2 = {v51 , r2}: B[V \ S2] is a tree with maximum degree 4.
– S2 = {v11 , v12}: B[V \ S2] is a tree with two degree-three vertices.
– S2 = {v12 , v13}: B[V \ S2] is a tree having maximum degree 4.
– For any other choice of S2, B[V \S2] is either not R-AP for a reason similar

to one of those above or because it is not connected.

On the other hand, if B = PB(8+, 8+, 1, 1, 2) then it cannot be divided
into two R-AP subgraphs with size 1 and n− 1 respectively:

– S1 = {v31}: B[V \S1] is isomorphic to PB(8+, 8+, 1, 2), which is not R-AP
according to Lemma 4.

– S1 = {v51}: B[V \ S1] is isomorphic to PB(8+, 8+, 1, 1, 1), which is not
R-AP by induction.

– S1 = {v11}: B[V \ S1] is a tree with two degree-three vertices.
– S1 = {v12}: B[V \ S1] is a tree having maximum degree 4.
– For any other choice of S1, B[V \S1] is either not R-AP for a reason similar

to one of those above or because it is not connected.

Suppose now that this claim holds whenever x+ y+ z ≤ k for some k > 4,
and consider the associated graph B = PB(8+, 8+, x, y, z) where x+ y + z =
k + 1. Once again, we consider two main cases:

– z > 1: if B were R-AP, then it would be possible to partition its vertex set
into two parts S1 and Sn−1 with size 1 and n − 1 respectively such that
B[S1] and B[Sn−1] are R-AP. Notice that we must consider S1 = {v31}
(resp. S1 = {v41}) or S1 = {v51} since any other choice of S1 would make
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B[Sn−1] being disconnected or isomorphic to a non R-AP tree (i.e. to a
tree having several degree-three vertices, or one degree-four one). But, in
both cases, B[Sn−1] is either not R-AP according to Lemma 4 (notably
when x = 1 (resp. y = 1)) or by induction. Hence, B cannot be R-AP
when z > 1.

– z = 1: once again, B cannot be R-AP under this condition since it cannot
be partitioned into two R-AP subgraphs B[S2] and B[Sn−2] with size 2
and n − 2 respectively. For the same reasons as above, one must consider
S2 = {v31 , v32} (or S2 = {v41 , v42}); but the remaining graph B[Sn−2] can
never be R-AP, either by induction when x > 2 (resp. y = 2) or according
to Lemma 4 otherwise. ut

Lemma 6 The partial balloon PB(8+, 8+, 8+, x, y) cannot be R-AP for any
x, y ≥ 1.

Proof Once more, let us prove this claim by induction on x+ y. Consider first
that x = y = 1 and the associated partial balloon B = PB(8+, 8+, 8+, 1, 1).
Obviously, this graph cannot be R-AP: it is indeed not possible to partition
it into two subgraphs B[S2] and B[Sn−2] with size 2 and n − 2 respectively.
Here are all the possibilities for S2:

– S2 = {v41 , r1}: B[V \ S2] is a tree with maximum degree 4.
– S2 = {v11 , v12}: B[V \S2] is isomorphic to PB(8+, 8+, 1, 6+, 1), which is not

R-AP according to Lemma 5.
– S2 = {v12 , v13}: B[V \ S2] is isomorphic to PB(8+, 8+, 1, 1, 5+, 1), which

cannot be R-AP since otherwise the 6-balloon B(8+, 8+, 5+, 1, 1, 1) would
be R-AP too.

– For any other choice of S2, B[V \S2] is either not R-AP for a reason similar
to one of those above or because it is not connected.

Let us now consider that x + y = 3, that is x = 2 and y = 1 without loss
of generality, and the partial balloon B = PB(8+, 8+, 8+, 2, 1). Once again, B
cannot be R-AP since its vertex set cannot be partitioned into two parts S3

and Sn−3 having size 3 and n− 3 respectively:

– S3 = {v42 , v41 , r1}: B[V \ S3] is a tree with maximum degree 4.
– S3 = {v51 , r2, v1b1(B)}: B[V \ S3] is a tree having maximum degree 4.

– S3 = {v11 , v12 , v13}: B[V \ S3] isomorphic to PB(8+, 8+, 1, 5+, 1), which is
not R-AP according to Lemma 5.

– S3 = {v12 , v13 , v14}: B[V \ S3] is isomorphic to PB(8+, 8+, 1, 1, 4+, 1), which
cannot be R-AP since otherwise the 6-balloon B(8+, 8+, 4+, 1, 1, 1) would
be R-AP too.

– For any other choice of S3, B[V \S3] is either not R-AP for a reason similar
to one of those above or because it is not connected.

We thus suppose that this claim holds for any x + y ≤ k, where k > 3,
and consider it regarding the partial balloon B = PB(8+, 8+, 8+, x, y) where
x+ y = k + 1. Let us take the following two cases in consideration:
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– x > 1 and y > 1: it is straightforward to notice that, in this situation, B
cannot be R-AP since it cannot be partitioned into two R-AP subgraphs
B[S1] and B[Sn−1] having size 1 and n − 1 respectively. Indeed, observe
that, for some similar reasons as the ones we used for the previous claims,
we have to consider S1 = {v41} or S1 = {v51} (if there exists another cor-
rect choice of S1, then it means that either an R-AP 6-balloon exists or
that Lemma 5 is wrong); but in both cases, B[Sn−1] cannot be R-AP by
induction since it is either isomorphic to PB(8+, 8+, 8+, x− 1, y) or to
PB(8+, 8+, 8+, x, y − 1).

– x = 1 and y > 2: once again, the graph B = PB(8+, 8+, 8+, 1, y) cannot
be R-AP: this time, we cannot find a partitioning of V into two parts S2

and Sn−2 such that B[S2] and B[Sn−2] are R-AP and with size 2 and
n − 2 respectively. Indeed, observe that we must consider S2 = {v51 , v52}
since otherwise there would exist an R-AP 6-balloon, an R-AP tree having
maximum degree 4, or a graph contradicting Lemma 5. But for this choice
of S2, we have B[Sn−2] = PB(8+, 8+, 8+, 1, y − 2) which is not R-AP by
induction. An analogous proof can be led when x > 2 and y = 1. ut

Lemma 7 The partial balloon PB(8+, 8+, x, y, z) cannot be R-AP for any
x, y, z ≥ 1.

Proof We prove this claim by induction on x + y + z. First, let us sup-
pose that x = y = z = 1 and consider the associated partial balloon B =
PB(8+, 8+, 1, 1, 1). It is straightforward to notice that B is not R-AP since it
cannot be partitioned into two R-AP subgraphs B[S2] and B[Sn−2] with size
2 and n−2 respectively: indeed, any choice of S2 makes B[V \S2] being either
disconnected or isomorphic to a tree with maximum degree at least 4.

Observe that this argument also holds to prove that PB(8+, 8+, x, y, z) is
not R-AP when x = 2 and y = z = 1 by considering a partitioning of it into
two R-AP parts with size 3 and n − 3 respectively. Such a reasoning is also
correct when x = y = 2 and z = 1.

Suppose now that this claim holds by induction whenever x+y+z ≤ k for
k > 5, and consider a partial balloon B = PB(8+, 8+, x, y, z) where x+y+z =
k+ 1. We distinguish the following two main cases depending on the size of x,
y and z:

– x > 1, y > 1 and z > 1: suppose we want to partition B into two parts
S1 and Sn−1 inducing R-AP graphs on, respectively, 1 and n− 1 vertices;
obviously, we must consider S1 = {v31}, S1 = {v41} or S1 = {v51} since, for
any other choice of S1, the remaining graph B[Sn−1] is either disconnected
or isomorphic to a tree having maximum degree at least 4. But in any of
these cases, the subgraph B[Sn−1] is not R-AP by induction; hence, B is
not R-AP under these conditions.

– z = 1: in this situation, B cannot be R-AP for the same reason as above
but for a partitioning of it into two parts Sα and Sn−α with size α and
n− α, where α = min({2, 3, 4} \ {x, y}). Indeed, for any choice of Sα, the
remaining graph B[Sn−α] is not R-AP either by induction or because it is
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isomorphic to a non-connected graph or a tree with maximum degree at
least 4. We can use a very similar argument when x = 1 or y = 1. ut

Lemma 8 The partial balloon PB(8+, 8+, 8+, x, y) cannot be R-AP for any
x, y ≥ 1.

Proof Once again, we prove this claim by induction on the value of x+ y. We
firstly suppose that x = y = 1 and consider the associated partial balloon
B = PB(8+, 8+, 8+, 1, 1); similarly as in the proof of the previous cases, B
cannot be R-AP. Indeed, it cannot be partitioned into two R-AP parts B[S2]
and B[Sn−2] having size 2 and n− 2 respectively. Below are described all the
possibilities for choosing S2.

– S2 = {v11 , v12}: B[V \S2] is isomorphic to PB(8+, 8+, 1, 1, 6+), which is not
R-AP according to Lemma 5.

– S2 = {v1b1(B), v
1
b1(B)−1}: B[V \ S2] is isomorphic to PB(8+, 8+, 6+, 1, 1),

which is not R-AP according to Lemma 7.
– S2 = {v12 , v13}: B[V \ S2] is isomorphic to PB(8+, 8+, 1, 1, 1, 5+), which

cannot be R-AP since otherwise the 6-balloon B(8+, 8+, 5+, 1, 1, 1) would
be R-AP too.

– S2 = {r2, v1b1(B)}: B[V \ S2] is a tree with maximum degree 5.

– For any other choice of S2, B[V \S2] is either not R-AP for a reason similar
to one of those above or because it is not connected.

We now suppose that x = 2 and y = 1 and consider the associated partial
balloon B = PB(8+, 8+, 8+, 2, 1). Once again, B cannot be R-AP since its
vertex set cannot be partitioned into two parts S3 and Sn−3 inducing R-AP
subgraphs of B and containing 3 and n− 3 vertices respectively:

– S3 = {v11 , v12 , v13}: B[V \ S3] is isomorphic to PB(8+, 8+, 1, 1, 5+), which is
not R-AP according to Lemma 5

– S3 = {v1b1(B), v
1
b1(B)−1, v

1
b1(B)−2}:B[V \S3] is isomorphic to PB(8+, 8+, 5+, 1, 1),

which is not R-AP according to Lemma 7.
– S3 = {v12 , v13 , v14}: B[V \ S3] is isomorphic to PB(8+, 8+, 1, 1, 1, 4+), which

cannot be R-AP since otherwise the 6-balloon B(8+, 8+, 4+, 1, 1, 1) would
be R-AP too.

– S3 = {r2, v1b1(B), v
1
b1(B)−1}: B[V \ S3] is a tree with maximum degree 5.

– For any other choice of S3, B[V \S3] is either not R-AP for a reason similar
to one of those above or because it is not connected.

We finally suppose that the induction is correct whenever x + y ≤ k for
some k > 3, and consider a partial balloon B = PB(8+, 8+, 8+, x, y) such that
x + y = k + 1. We distinguish two main cases, depending on the values of x
and y, to prove that B is not R-AP:

– x > 1 and y > 1: in this case, B cannot be R-AP since it cannot be
partitioned into two R-AP subgraphs B[S1] and B[Sn−1] having size 1 and
n−1 respectively. Indeed, one must consider S1 = {v41} or S1 = {v51} since
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any other choice for S1 would make B[Sn−1] being either disconnected, or
isomorphic to a tree with maximum degree 5 or to a graph that can never
be R-AP according to Lemmas 5 and 7. But observe that in both cases,
the graph B[Sn−1] is not R-AP by induction.

– x > 2 and y = 1: the above arguments hold when we consider two parts
S2 and Sn−2 with size 2 and n− 2. They can also be used analogously to
prove that B is not R-AP when x = 1 and y > 2. ut

Lemma 9 The partial balloon PB(8+, 8+, 8+, 8+, x) cannot be R-AP for any
x ≥ 1.

Proof Let us prove this claim by induction on x. We first suppose that x = 1
and consider the partitioning of B = PB(8+, 8+, 8+, 8+, 1) into two R-AP
parts B[S2] and B[Sn−2] with size 2 and n− 2 respectively. Obviously, such a
partitioning does not exist if we consider all the possibilities for S2:

– S2 = {v51 , r1}: B[V \ S2] is a tree with maximum degree 4.
– S2 = {v1b1(B), r2}: B[V \ S2] is a tree with maximum degree 5.

– S2 = {v11 , v12}: B[V \ S2] is isomorphic to PB(8+, 8+, 8+, 1, 6+), which is
not R-AP according to Lemma 6.

– S2 = {v1b1(B), v
1
b1(B)−1}: B[V \ S2] is isomorphic to PB(8+, 8+, 8+, 1, 6+),

which is not R-AP according to 8.
– S2 = {v12 , v13}: B[V \ S2] is isomorphic to PB(8+, 8+, 8+, 1, 1, 5+), which

cannot be R-AP since otherwise the 6-balloon B(8+, 8+, 8+, 5+, 1, 1) would
be R-AP too.

– For any other choice of S2, B[V \S2] is either not R-AP for a reason similar
to one of those above or because it is not connected.

Suppose now that PB(8+, 8+, 8+, 8+, x) is not R-AP for every x ≤ k where
k > 1, and consider the graph B = PB(8+, 8+, 8+, 8+, k + 1). If it were R-AP,
then it would be possible to partition it into two R-AP subgraphs B[S1] and
B[Sn−1] with size 1 and n − 1 respectively. But it is obviously not the case
regarding all the possibilities for S1:

– S1 = {v51}: B[V \ S1] is isomorphic to PB(8+, 8+, 8+, 8+, k), which is not
R-AP by induction.

– S1 = {r2}: B[V \ S1] is a tree with maximum degree 5.
– S1 = {v11}: B[V \ S1] is isomorphic to PB(8+, 8+, 8+, k + 1, 7+), which is

not R-AP according to Lemma 6.
– S1 = {v1b1(B)}: B[V \S1] is isomorphic to PB(8+, 8+, 8+, k + 1, 7+), which

is not R-AP according to Lemma 8.
– S1 = {v12}: B[V \ S1] is isomorphic to PB(8+, 8+, 8+, k + 1, 1, 6+), which

cannot be R-AP since otherwise the 6-balloon B(8+, 8+, 8+, 6+, k + 1, 1)
would be R-AP too.

– For any other choice of S1, B[V \S1] is either not R-AP for a reason similar
to one of those above or because it is not connected. ut

Thanks to Lemmas 4 to 9, we can now prove that the smallest branch of
an R-AP 5-balloon has size at most 7.
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Theorem 6 Let B = (b1, b2, b3, b4, b5) be a 5-balloon with b1 ≤ ... ≤ b5. If B
is R-AP, then b1 ≤ 7.

Proof Let B = B(8+, 8+, 8+, 8+, 8+) be a 5-balloon; we claim that it cannot
be R-AP since it is not possible to partition V into two parts S1 and Sn−1
inducing R-AP graphs with size 1 and n− 1 respectively:

– S1 = {r1}: B[V \ S1] is a tree with maximum degree 4.
– S1 = {v11}: B[V \ S1] is isomorphic to PB(8+, 8+, 8+, 8+, 7), which is not

R-AP according to Lemma 9.
– S1 = {v12}: B[V \ S1] is isomorphic to PB(8+, 8+, 8+, 8+1, 6), which is

not R-AP since otherwise the 6-balloon B(1, 6+, 8+, 8+, 8+, 8+) would be
R-AP too.

– For any other choice of S1, B[V \ S1] is not R-AP for a reason similar to
one of those above.

Finally, a 5-balloon cannot be R-AP when its smallest branch has size at
least 8, proving the claim. ut

The same arguments can be used to deduce analogously that OL-AP 5-
balloons have their smallest branch of size at most 11. Notice though that this
result might not be sharp since there is a gap between 7 and 2, the size of
the smallest branch of the R-AP 5-balloon known to have the biggest one4.
However, since the biggest elementary path of a 5-balloon B(b1, ..., b5) has
size n − (b1 + b2) when b1 ≤ ... ≤ b5, the bound of Theorem 6 concords with
Question 1 despite it does not ensure that 5-balloons cannot counter it since
we do not know if the second smallest branch of an R-AP 5-balloon can be
arbitrarily big or not. In a more general context, this result allows us to deduce,
according to an R-AP version of Observation 1, that 2-connected R-AP graphs
should have some small components in their structure:

Corollary 2 Let G be a 2-connected R-AP graph, and u and v be two vertices
forming an articulation pair of it. If the deletion of {u, v} from G disconnects
it into exactly five components, then one is of order at most seven.

Notice that, using the mentioned equivalent upper bound for OL-AP 5-
balloons, we could derive a similar result for 2-connected OL-AP graphs.
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