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HYPERKÄHLER MANIFOLDS AND NONABELIAN HODGE
THEORY OF (IRREGULAR) CURVES

PHILIP BOALCH

Abstract. Text of talk given at the Institut Henri Poincaré January 17th 2012,
during program on surface groups. The aim was to describe some background re-

sults before describing in detail (in subsequent talks) the results of arXiv:1111.6228

related to wild character varieties and irregular mapping class groups.

1. Big picture

Lets start by recalling the usual picture for nonabelian Hodge theory on curves,
due to Hitchin, Donaldson, Corlette and Simpson [29, 22, 21, 49]

Fix an integer n and let G = GLn(C). Let Σ be a smooth compact complex
algebraic curve. Given this data one may consider the nonabelian cohomology space

M = H1(Σ, G).

Ignoring stability conditions for the moment (until the next section), this space is
naturally a hyperkähler manifold, and there are three viewpoints on it:

1) (Dolbeault) as the moduli space MDol of Higgs bundles, consisting of pairs

(E,Φ) with E → Σ a rank n degree zero holomorphic vector bundle and Φ ∈
Γ(End(E)⊗ Ω1) a Higgs field,

2) (De Rham) as a moduli spaceMDR of connections on rank n holomorphic vector

bundles, consisting of pairs (V,∇) with ∇ : V → V ⊗ Ω1 a holomorphic connection,
and

3) (Betti) as the space MB = Hom(π1(Σ), G)/G of conjugacy classes of represen-
tation of the fundamental group of Σ.

This gives three different algebraic structures on the same underlying space M
(since Σ is compact, by GAGA, the holomorphic objects above are in fact algebraic,

and have algebraic moduli spaces). MDR and MB are complex analytically isomor-
phic via the Riemann–Hilbert correspondence, taking a connection to its monodromy
representation. MDR and MDol are naturally diffeomorphic as real manifolds via
the nonabelian Hodge correspondence, but are not complex analytically isomorphic.
Thus there is more than one natural complex structure on M; they form part of the
family of complex structures making M into a hyperkähler manifold.

To get an idea of this first consider the abelian case n = 1, so G = C
∗.

Then one finds:
1
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• MDol
∼= T ∗Jac(Σ) is the cotangent bundle of the Jacobian variety of Σ,

• MDR → Jac(Σ) is a twisted cotangent bundle of the Jacobian of Σ; it is an affine
bundle modelled on the cotangent bundle,

• MB
∼= (C∗)2g is isomorphic to 2g copies of C∗.

In this case one may compute explicitly the Riemann–Hilbert isomorphismMDR →
MB and see it involves exponentials and so is not algebraic. A slightly stronger
statement is also true:

Lemma 1. 1 There is no algebraic isomorphism MB → MDR.

On the other hand since MB is affine it has no compact holomorphic subvarieties,
and so neither does MDR. Thus it is clear there is no complex analytic isomorphism
MDR → MDol since the zero section Jac(Σ) → MDol is a compact holomorphic

subvariety. On the other hand using (abelian) Hodge theory and the Dolbeault iso-

morphisms it is easy to obtain a (non-holomorphic) isomorphism MDR → MDol.

In this abelian case the corresponding hyperkähler metric is flat, but in general it
is highly nontrivial, and difficult to make explicit.

Returning to the general picture, the three different viewpoints have different ap-
plications, and are of interest to different groups of people for different reasons. For
example:

1) The Dolbeault spaces are algebraically completely integrable Hamiltonain sys-

tems (the Hitchin systems): there is a proper map

MDol → H

to a vector space of half the dimension, the generic fibres of which are abelian varieties.
(In the abelian case the space was a product Cg × Jac(Σ), but in general the fibres

vary nontrivially and there are singular fibres),

2) The Betti spaces are the complex character varieties of Σ, and as such they admit

a natural (symplectic, algebraic) action of the mapping class group of Σ, coming from

the natural action of the mapping class group on the fundamental group π1(S),

3) When the curve Σ varies in a family over a base B the corresponding De Rham

spaces assemble in to a fibre bundle over B, which has a natural flat algebraic (Ehres-

mann) connection on it: the nonabelian Gauss–Manin connection. When written in
explicit coordinates this gives a natural class of nonlinear differential equations coming
from geometry, generalising both the classical Painlevé/isomonodromy equations, and

the usual (abelian) Gauss–Manin connections, abstracting the (linear) Picard–Fuchs
equations. Integrating this nonlinear connection around a loop in B gives a transcen-
dental automorphism of the fibre MDR: upon conjugating by the Riemann–Hilbert
map these give the algebraic automorphisms of the Betti spaces as in 2).

1Hint: use the valuative criterion for properness for the compositions C
∗ →֒ MB → MDR →

Jac(Σ).
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This is a very rich picture which many people like for many (usually different)
reasons. One natural extension is to replace the initial curve by a higher dimensional
projective variety: this has been done (mainly by Simpson) and has many important
applications. But the moduli spaces that arise are smaller than the spaces that occur
for a curve: in brief if one chooses a sufficiently generic curve in the variety the
restriction map (restricting say a flat connection to the curve) yields an injective map

embedding the moduli space into that for the curve (cf. Fujiki [25] p.3).

Remaining with curves then, the next generalisation is to consider punctured
curves, and to consider parabolic structures at the punctures. In essence one con-
siders connections/Higgs fields with simple poles and compatible with the parabolic
structures. In this context the nonabelian Hodge correspondence was established
by Simpson [48] and such hyperkähler metrics were constructed by Konno [33] and

Nakajima [37]. In this context the algebraic integrable systems and the isomonodromy
equations have a long history in the case when Σ is the Riemann sphere.

But one can obtain many more moduli spaces by considering meromorphic con-
nections with higher order poles: the “wisdom” (if one can call it that) garnered by

studying this case (and the corresponding isomonodromy equations and the Fourier–

Laplace transform) is that one should consider the extra parameters that control the

coefficients of the connections/Higgs fields which are more singular than the residue,
as being analogous to the moduli of the curve.

Indeed one obtains new discrete group actions extending the usual braid/mapping

class group actions in 2) above by varying these extra parameters. This motivates
the following definition.

1.1. Irregular curves. The basic aim is to replace the initial curve Σ in the above
story by an “irregular curve” defined as follows. Some more motivation and examples
will appear in the next section. Fix the group G and a maximal torus T ⊂ G, and
denote the Lie algebras t ⊂ g.

Definition 2. An “irregular curve” consists of

1) a smooth compact complex algebraic curve Σ,

2) distinct marked points a1, . . . , am ∈ Σ, and

3) an irregular type Qi at ai for i = 1, . . . , am.
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In turn an ‘irregular type’ is defined as follows. (We will give the coordinate inde-
pendent definition first, and then explain it in coordinates—the abstract viewpoint

will be useful later when we vary the curve.) Let Ôi denote the formal completion of

the ring of germs at ai of holomorphic functions on Σ, and let K̂i denote its field of
fractions.

Definition 3. An “irregular type” Qi at ai is an element

Qi ∈ t(K̂i)/t(Ôi).

One may think of an irregular type as a t-valued meromorphic function germ, well
defined modulo holomorphic terms. Explicitly, if we choose a local coordinate z on

Σ vanishing at ai, then Ôi = C[[z]], K̂i = C((z)), and Qi may be written in the form

Qi =
Ari

zri
+ · · ·+ A1

z

for elements Aj ∈ t for j = 1, . . . , ri, for some ri > 0.

Given an irregular type Qi as above there is a well defined subgroup Hi ⊂ G (the

centralizer of Qi) defined as Hi = {g ∈ G
∣∣ gAjg

−1 = Aj, j = 1, . . . , ri}; it is a

reductive subgroup of G again with maximal torus T , and we will write hi = Lie(Hi).

Now we wish to attach moduli spaces MDol and MDR to an irregular curve (the

Betti picture will be the focus of the subsequent three lectures). As in the punctured

case we also need to use parabolic structures, so will first discuss flags/filtrations.

1.2. Flags/filtrations. Let tR = X∗(T ) ⊗ R ⊂ t be the real cocharacters (the real

span of the lattice X∗(T ) of one parameter subgroups).

Given θ ∈ tR there is a canonically determined parabolic subgroup

(1) Pθ = {g ∈ G
∣∣ zθgz−θ has a limit as z → 0 along any ray}

with Lie algebra pθ = Lie(Pθ). Since we are working here with GLn(C) it is easy to
see what this means in terms of matrix entries. Moreover we can reinterpret it in
terms of real filtrations: For any α ∈ R let Eα ⊂ V := C

n be the α-eigenspace of
θ ∈ End(V ), and define a filtration Fθ of V as follows:

(Fθ)β =
⊕

α≥β

Eα ⊂ V

for any β ∈ R. Then Pθ is just the subgroup of G preserving the filtration Fθ. (Note
it will be important for us not to insist that we are working in a basis for which the
diagonal entries of θ are ordered.)

1.3. Irregular connections. Fix an irregular curve Σ = (Σ, {ai}, {Qi}) and a weight
θi ∈ tR at each marked point. We will assume that each diagonal entry of each weight
satisfies

(2) 0 ≤ (θi)jj < 1.
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Here, for G = GLn(C), this is no loss of generality and simplifies the presentation

(avoiding discussion of parahoric structures/filtered D-modules), but for other reduc-
tive groups one does not get the full picture without considering parahoric structures
(see [14]).

Let ki = ri + 1, where ri is the order of the pole of Qi, and define the divisor
D =

∑
ki(ai) on Σ. We will consider the moduli space of triples (V,∇,F) where

• V → Σ is a rank n holomorphic vector bundle,

• ∇ : V → V ⊗ Ω1(D) is a meromorphic connection on V with poles bounded by
D,

• F consists of a filtration Fi of the fibre Vai of V at ai for each i = 1, . . . ,m.

These data should be such that near each point ai there is a local trivialization of
V such that

1) ∇ = d− A where

A = dQi + Λi

dz

z
+ holomorphic terms

for some Λi ∈ hi in the Lie algebra of the centralizer ofQi, where z is a local coordinate
vanishing at ai,

2) the filtration Fi equals the standard filtration Fθi on C
n determined by the

weight θi (using the isomorphism Vai
∼= C

n coming from the trivialization),

3) the residue Λi preserves the filtration Fi (i.e. Λi ∈ pθi).

Finally in order to obtain complex symplectic rather than Poisson moduli spaces
(which is essential if we want to construct hyperkähler manifolds!) we need to fix a
certain adjoint orbit, as follows.

The conditions imply Λi is in the Lie subalgebra hi ∩ pθi ⊂ hi. This is just the

parabolic subalgebra of hi determined by θi (defined as in (1), replacing G by Hi).
Thus there is a projection

π : hi ∩ pθi → li

from this parabolic onto its Levi factor li (quotienting by the nilradical). Since we
have fixed θi we may identify li with the centralizer of θi in hi:

li = {X ∈ hi
∣∣ [θi, X] = 0}.

It is again a reductive Lie algebra with Cartan subalgebra t. The extra data to be
fixed is the adjoint orbit of

π(Λi) ∈ li.

Using the Jordan decomposition any such orbit contains an element of the form

τi + σi +Ni

where τi+σi ∈ t with (τi ∈ tR, σi ∈
√
−1tR) andNi ∈ li a nilpotent element commuting

with τi + σi.
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Given such a meromorphic connection V = (V,∇,F) its parabolic degree is:

pdeg(V ) = deg(V ) +
m∑

1

Tr(θi)

where deg(V ) ∈ Z denotes the degree of the underlying vector bundle V on Σ.

The notion of subconnection is defined in the usual way, as a subbundle U ⊂ V
preserved by ∇, with the induced connection and filtrations in the fibres over the
marked points.

A connection V is stable if for any subconnection U one has

pdeg(U)

rankU
<

pdeg(V )

rankV
.

It is semistable if the weaker condition (≤) holds.

Let MDR(Σ, θ, τ, σ,N) denote the moduli space of isomorphism classes of stable

meromorphic connections (V,∇,F) on the irregular curve Σ with parabolic degree

zero, weights θ = {θi} and orbits determined by τ = {τi}, σ = {σi} and N = {Ni}.

Remark 4. It is known that any meromorphic connection on a disc is meromorphically
isomorphic to one of the above form (with irregular part dQ diagonal), after possibly

passing to a finite cover (taking a root of the local coordinate z), so this restriction
is not as strong as it might seem. Moreover the methods used here extend directly
to the general case involving such ramifications.

On a curve a connection with a simple pole is the same thing as a logarithmic
connection; we will henceforth refer to the case when all Qi = 0, as the logarithmic
case. (Recall that a “regular singular connection” on Σ \ {ai} is a connection on

an algebraic vector bundle on Σ \ {ai}, that is isomorphic to the restriction of a

logarithmic connection on a vector bundle on Σ.)

1.4. Irregular Higgs bundles. Similarly one may consider Higgs bundles on irreg-
ular curves, as follows.

Fix an irregular curve Σ = (Σ, {ai}, {Qi}) as before and choose a weight θ′i ∈ tR at

each marked point with 0 ≤ (θ′i)jj < 1.

We will consider the moduli space of triples (E,Φ, E) where
• E → Σ is a rank n holomorphic vector bundle,

• Φ : E → E ⊗ Ω1(D) is a meromorphic Higgs field with poles bounded by D,

• E consists of a filtration Ei of the fibre Eai of E at ai for each i = 1, . . . ,m.

These data should be such that near each point ai there is a local trivialization of
E such that
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1) in this trivialisation the Higgs field takes the form

Φ = −dQi

2
+ Γi

dz

z
+ holomorphic terms

for some Γi ∈ hi,

2) the filtration Ei equals the standard filtration Ei = Fθ′
i
on C

n determined by the

weight θ′i,

3) the residue Γi preserves the filtration Ei.
Again we fix the adjoint orbit of Γi under the projection π : hi ∩ pθ → l′i where

l′i = {X ∈ hi
∣∣ [θ′i, X] = 0} is the centralizer in hi of θ

′
i. We parameterise such orbits

by choosing τ ′i +σ′
i+N ′

i ∈ l′i where τ
′
i +σ′

i ∈ t has real part τ ′i and N ′
i ∈ l′i is nilpotent

and commutes with τ ′i + σ′
i.

Given such a meromorphic Higgs bundle E = (E,Φ, E) its parabolic degree is:

pdeg(E) = deg(E) +
m∑

1

Tr(θ′i)

and the notion of sub-Higgs bundle is defined in the usual way, as a subbundle U ⊂ V
preserved by Φ, with the induced Higgs field and filtrations at the marked points. A
Higgs bundle E is stable if for any sub-Higgs bundle U one has pdeg(U)/rankU <

pdeg(E)/rankE.

Let MDol(Σ, θ
′, τ ′, σ′, N ′) denote the moduli space of isomorphism classes of stable

meromorphic Higgs bundles (E,Φ, E) on the irregular curve Σ with parabolic degree

zero, weights θ′ and orbits determined by τ ′, σ′ and N ′.

The main result of [8] can then be stated as

Theorem 5. The moduli space MDR(Σ, θ, τ, σ,N) of meromorphic connections is a
hyperkähler manifold and is naturally diffeomorphic to the moduli space
MDol(Σ, θ

′, τ ′, σ′, N ′) of meromorphic Higgs bundles if N = N ′ and the parameters
are related by:

θ′i = −τi − [−τi], τ ′i = −(τi + θi)/2, σ′
i = −σi/2

where [ · ] denotes the (component-wise) integer part. Moreover the hyperkähler met-
rics are complete if N = 0 and there are no strictly semistable objects, and this may
be ensured by taking the parameters to be off of some explicit hyperplanes.

If all the irregular types Qi are zero this correspondence reduces to the tame case
established by Simpson [48], and the ‘rotation’ of the parameters θ, τ, σ is essentially
the same. If there are no marked points m = 0 this reduces to the original case
of compact Riemann surfaces (of Hitchin, Donaldson, Corlette and Simpson). The
general correspondence is again established by passing through solutions to Hitchin’s
self-duality equations, and the map from meromorphic connections to such solutions
(i.e. constructing a harmonic metric for irregular connections) was established earlier
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by Sabbah [44]. Also the hyperkähler quotient of [8] is a strengthening of the complex

symplectic quotient description of MDR in the irregular case from [9, 10], generalising

the Atiyah–Bott approach [5].

As discussed in [8] spaces of meromorphic Higgs bundles have been shown to be al-

gebraically completely integrable Hamiltonian systems (generalised Hitchin systems)

by Bottacin and Markman in [18, 36], extending Hitchin [30] in the holomorphic case

and e.g. Adams et al [1] and Beauville [7] in genus zero. (The properness of the

Hitchin map for such meromorphic Higgs bundles was established by Nitsure [38].)
Thus Theorem 5 extends the class of algebraic integrable systems known to admit
natural hyperkähler metrics on their total space.

Exercise. Show Ni ∈ g commutes with θi, τi if and only if it commutes with θ′i, τ
′
i .

2. More motivation

The irregular connections will have fundamental solutions which, near a marked
point ai with irregular type Qi, involve essentially singular terms of the form exp(Qi).
We will give some basic examples of situations were such connections arise.

2.1. Fourier–Laplace. One often encounters the idea that irregular connections
should be viewed as “degenerations” of logarithmic connections, as singular points
coalesce. Whilst this viewpoint may be useful for some purposes, it is hard to relate
the moduli spaces which appear before and after the coalescence.

Rather, the first example of an irregular connection to have in mind should prob-
ably be that which arises by taking the Fourier–Laplace transform of a logarithmic
connection on the Riemann sphere. The basic fact that the function exp(z) satisfies
the differential equation

df = fdz

which has a pole of order two at z = ∞, implies that the Fourier–Laplace transform of
a solution of a logarithmic connection will be a solution of an irregular connection (see

[6] for a basic class of examples). And moreover by considering stability conditions
etc this can be shown to induce an algebraic isomorphism between the corresponding
De Rham moduli spaces (and between the corresponding Betti spaces). In such cases
the irregular connections that arise have only two poles on the Riemann sphere, a
pole of order one and a pole of order two. Thus the simplest irregular moduli spaces
are in fact isomorphic to the logarithmic case (so the moduli spaces are certainly not
more “degenerate” in the irregular case—this is also reflected in the fact that irregular
moduli spaces admit complete hyperkähler metrics.) In general of course there will

be many moduli spaces (even on the Riemann sphere), that are not isomorphic to a
logarithmic case.

Another aspect of this example of the Fourier–Laplace transform, that motivated
the definition of irregular curve, is the fact that on the logarithmic side the moduli
of the curve basically amounts to the positions of the poles (and we know that their

motion underlies many of the known braid group actions), whereas on the isomorphic
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irregular side there are only two poles (so have no moduli), but there is a nontrivial
irregular type at the pole of order two: the choice of the pole positions on the loga-
rithmic side matches up precisely with the choice of the irregular type on the irregular
side, i.e. the moduli of the (irregular) curves on each side matches up. (Moreover the

isomonodromy equations/braiding etc match up—this may be understood in terms

of Harnad’s duality [27] which can be shown to be equivalent to Fourier–Laplace (cf.

[11]§3, [13]§4.2, [50, 15]).

2.2. Baker functions. The Krichever construction [34] gives explicit algebro-geometric
solutions to many soliton equations, and the key ingredient is the Baker-Akhiezer
function: a function on an auxhiliary algebraic curve (the spectral curve) which is
meromorphic except at some marked points where it has a prescribed essential sin-

gularity of the form exp(x/z + t2/z
2 + t3/z

3 + · · · ) in terms of a local coordinate

z vanishing at the marked point (beware in soliton theory one often takes the local

coordinate to have a pole at the marked point, i.e. replaces z by z−1): such functions
are horizontal sections of an irregular connection on a line bundle on the spectral
curve (and the “times” t1 = x, t2, t3, . . . correspond to the choice of irregular type).

See also for example [46, 47]. Thus in the abelian case G = C
∗ the deformations of

the irregular curve correspond to the “times” appearing in integrable hierarchies.

2.3. Nonabelian Hodge theoretic invariants. A standard way to find invariants
of algebraic varieties is via Hodge theory. For example the map taking the ray through
the cohomology class of the holomorphic symplectic form on a marked K3 surface gives
a locally injective map to a period domain classifying such surfaces. More generally
there are examples where one attaches to a variety a Hodge structure of an associated
variety (cf. e.g. [2]).

The notion of Frobenius manifold was introduced [23] to axiomatize 2d topological

quantum field theories (TQFTs), extending Atiyah’s axioms [4] (which for dimension

two say that a TQFT is a Frobenius algebra) to include the natural deformations

as well (so a Frobenius manifold is a family of Frobenius algebras with certain extra

properties, encoding solutions of the WDVV equations of Witten et al). In any

case Dubrovin [23] gave a local classification of the class of semisimple Frobenius
manifolds: in essence one attaches a irregular differential system on the Riemann
sphere, now called the quantum differential equation, to the Frobenius manifold, and
takes the isomorphism class of that. In other words we take a point of a nonabelian

cohomology space of a variety (P1) attached to the Frobenius manifold. And this

gives a locally injective map on the moduli space. (Globally one needs to quotient

by the braid group action coming from isomonodromy.) Thus, whereas usual Hodge
theory may be used to classify classical objects such as algebraic varieites, nonabelian
Hodge theory may be used to classify more complicated objects such as TQFTs.
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3. Examples of moduli spaces

3.1. Additive approximations. Whilst in the usual case of holomorphic connec-
tions the moduli spaces attached to the Riemann sphere are trivial, in the mero-

morphic case there are many highly nontrivial moduli spaces with Σ = P
1. On the

Riemann sphere one can get a good idea of the moduli spaces by considering the open
subset

M∗ ⊂ MDR

consisting of connections on bundles which are globally holomorphically trivial. (Ig-

noring stability this is an open subset of a component of MDR.) One can describe

M∗ explicitly as a finite dimensional complex symplectic quotient as follows (here we

assume the weights θi = 0):

Recall ki = ri + 1, where ri is the pole order of Qi, for i = 1, . . . ,m and the
connections have poles D =

∑m

1 ki(ai). Consider the group Gk of k-jets of bundle

automorphisms:

Gk := GLn

(
C[z]/zk

)
.

The Lie algebra gk of Gk consists of elements

X = X0 +X1z + · · ·+Xk−1z
k−1

with Xi ∈ g = Lie(G), and the Lie bracket is given in the obvious way, truncating

terms of order zk or more. One can identify the dual g∗k with the set of elements

(3) A = Ak

dz

zk
+ · · ·+ A1

dz

z

with Ai ∈ g, where we pair such element A with X ∈ gk via the pairing

〈A,X〉 := Res0(Tr(A ·X)) =
k∑

i=1

Tr(AiXi−1).

Thus, being the dual of a Lie algebra, g∗k is naturally a Poisson manifold and its
symplectic leaves are the coadjoint orbits. On the other hand it is natural to identify
a point of g∗k with the polar part of a meromorphic connection having a pole of order
k, on the trivial bundle over a disc with local coordinate z. For each i = 1, . . . ,m let

Oi ⊂ g∗ki

be the coadjoint orbit through the point

dQi + Λi

dz

z
∈ g∗ki

taking z to be a local coordinate vanishing at ai, for Λi = τi + σi +Ni ∈ hi ⊂ g.

Proposition 6. (see [10] §2) Ignoring stability conditions, the moduli spaceM∗(Σ, 0, τ, σ,N)
is isomorphic to the complex symplectic quotient

(4) O1 × · · · × Om//G
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of the product of these coadjoint orbits Oi ⊂ g∗ki by the diagonal action of the constant

group G ⊂ Gki at the zero value of the moment map.

For example if all the irregular types are zero, so Gki = G for all i, andOi ⊂ g∗ ∼= g,
then M∗ is just

O1 × · · · × Om//G = {(A1, . . . , Am)
∣∣ Ai ∈ Oi,

∑
Ai = 0}/G

and a point of M∗ corresponds to the isomorphisms class of a Fuchsian system of the
form

d−
∑ Ai

z − ai
dz

so that M∗ is just the moduli space of Fuchsian systems (with fixed residue orbits).

Specialising further, if G = GL2(C) these spaces are much studied under the name
“hyperpolygon spaces”.

Note that many of the spaces M∗ also have complete hyperkähler metrics (for
example in the Fuchsian case since Kronheimer, Biquard and Kovalev showed that the
complex coadjoint orbits have invariant hyperkähler metrics, and one may interpret
the complex symplectic quotient above as a hyperkähler quotient by the unitary
subgroup of G—in fact here, for G = GLn(C), the Fuchsian moduli spaces also arise

as finite dimensional hyperkähler quotients via Nakajima’s work on quiver varieties).
But these metrics on M∗ are different to the restriction of the full metric on M: in
general both metrics are complete, but they are on different spaces (M is a partial
compactification of M∗: there really are stable connections on nontrivial degree zero
bundles, cf. [8] Lemma 8.3).

3.2. Low dimensional examples. One of the advantages of studying the general
meromorphic case is that there are nontrivial examples of moduli spaces of complex
dimension two, i.e. real dimension four: thus the moduli spaces are hyperkähler
four-manifolds, and as such are “gravitational instantons” in the physics terminology.
From a purely mathematical viewpoint Atiyah [3]§3 has emphasised that hyperkähler
four manifolds deserve special attention since they are the quaternionic analogues of
Riemann surfaces or algebraic curves.

Most examples of the spaces M of dimension two were first detected in the form
of nonlinear differential equations: when written in explicit coordinates the corre-
sponding irregular nonabelian Gauss–Manin connection amounts to a second order
nonlinear differential equation. The classical Painlevé equations arise in this way, and
so in effect one may now translate the list of Painlevé equations into a list of com-
plete hyperkähler manifolds, and in turn there are the corresponding algebraically
integrable (Hitchin) systems—which in this dimension are certain rational elliptic
fibrations.
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The list of known examples of dimension two is basically the following:

E8 E7 E6 D2 (D1) (D0)
D4 A3

A2 A1 (A0)

Table 1

The symbols represent the affine Weyl symmetry groups that arise (mainly through

work of Okamoto [40, 41, 42, 43] and Sakai [45] in the context of Painlevé equations);

the subscript (multiplied by three) is the real dimension of the space of parameters
θ, τ, σ that arises. All of the spaces to the right of and including D4 arise in the theory
of Painlevé differential equations, as follows:

Space D4 A3 A2 A1 A0 D2 D1 D0

Painlevé equation 6 5 4 2 1 3 3′ 3′′

where 3′ and 3′′ denote special cases of the third Painlevé equation [39].

A key point to understand is that each of these spaces arises as a moduli space
of connections in many different ways: use of the Fourier–Laplace transform for con-
nections on the Riemann sphere yields many isomorphisms between moduli spaces.
Nonetheless in the literature there are certain standard representations (where the

rank of the vector bundles is minimal)—this is usually expressed in terms of finding a
“Lax pair” for the nonlinear differential equations. For the cases corresponding to the
Painlevé equations the standard representations of these spaces are as follows: one
takes G = GL2(C) and considers connections on rank two bundles over the Riemann
sphere with the following pole orders:

Space D4 A3 A2 A1 (A0) D2 (D1) (D0)
Pole orders 1111 211 31 4 4 22 22 22

(The spaces in parentheses have some nilpotent leading terms and so require pass-

ing to a two-fold cover to diagonalise the irregular type.) Thus for example the

Painlevé VI case corresponds to connections on rank two bundles over P1 with four
first order poles, and the others may be viewed as “coalescences” of this case. (In
the context of parabolic Higgs bundles this case was pointed out as the simplest non-
trivial case much more recently by Boden–Yokogawa [17].) Most of these realisations

are well-known (at least to the Painlevé community), and appear as Lax pairs in

[32, 39] (classically they were written in terms of second order differential operators,

rather than connections on rank two vector bundles). In particular for the spaces

to the right of (and including) A3 the only known realisations are as moduli spaces

of irregular connections whereas the other four spaces (D4 and the Es) do arise as
spaces of logarithmic connections.

The spaces spaces E6, E7, E8 only admit higher rank realisations however, for exam-
ple as logarithmic connections having three poles on the Riemann sphere on bundles
of ranks 3, 4, or 6 respectively, and certain choices of residue orbits. They are related
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to Painlevé difference equations cf. [12] and references therein, but not to nonlinear
differential equations; the underlying curve has no nontrivial deformations: in the
other cases the irregular curve has a one dimensional space of nontrivial deforma-
tions, yielding the ‘time’ in the Painlevé equation. One can read off the Lax pairs
from the corresponding affine Dynkin graphs: for example for E8

2 64

3

5 4 3 2 1

Affine E8 Dynkin diagram

one may take logarithmic connections with three poles on rank 6 bundles, and gener-
ically the three orbits at the poles have respectively: 1) 6 distinct eigenvalues, 2)

3 eigenvalues each repeated twice, and 3) 2 eigenvalues each repeated three times

(corresponding to the three legs of the affine E8 graph).

My understanding is that the spaces Di, i = 0, 1, 2, 3, first appeared as hyperkähler
manifolds in the work of Cherkis–Kapustin [19, 20] (this includes A3 = D3), whereas
the logarithmic examples are essentially covered by the general construction of Konno
and Nakajima [33, 37], leaving the cases of A2, A1, corresponding to the second and
fourth Painlevé equations, as new four-dimensional examples covered by the general
construction of [8]. (A different approach to such hyperkähler four-manifolds has

been given recently by Hein [28].)

In all these cases, apart from Painlevé 3, the open subset M∗ ⊂ M is isomorphic
to the asymptotically locally Euclidean (ALE) hyperkähler manifold denoted by the

same symbol (cf. [12] exercise 3): The ALE spaces exist for any simply laced affine

Dynkin graph (i.e. of type An, Dn, E6, E7 or E8) and were constructed in general by

Kronheimer [35] (those of type A are due to Gibbons–Hawking [26], which specialises

to the Eguchi–Hanson space for A1). See e.g. Atiyah [3]§3 or Hitchin [31] for more
discussion of these ALE spaces; the underlying spaces are deformations of the mini-
mal resolution of the corresponding Kleinian surface singularity. (For Painlevé 3, the

space M∗ is isomorphic to the D2 asymptotically locally flat (ALF) space.) Thus
we see a picture where the spaces M appear as “more transcendental versions” of
some quite well-known hyperkähler manifolds: the ALE spaces arise as finite dimen-
sional hyperkähler quotients whereas we only know how to construct the hyperkähler
manifolds M as hyperkähler quotients of infinite dimensional spaces.

3.3. E8 examples. Finally we will describe the spaces corresponding to the case
of E8 in more detail (for generic parameters, ignoring the weights). See [12] and

references therein for more discussion of 1-3) and [24] for 4).

Let C ⊂ P
2 be a cuspidal cubic curve, and let C ⊂ C be its smooth locus (iso-

morphic to the affine line, hence the notation). Choose 9 points p1, . . . , p9 ∈ C, and

blow-up P
2 at these 9 points in order, and then remove the strict transform of C,

leaving a noncompact complex surface S.
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1) If the 9 points add up to zero (in the group law on C, which can be taken to

coincide with that from the cubic—zero should be the unique point of inflection) then

S ∼= MDol(E8) is isomorphic to one of the Dolbeault spaces of type E8. The 9 points

are then basepoints of a pencil of cubics, and so S is fibred by elliptic curves (the

Hitchin fibration in this context). In particular if all pi = 0 then one is repeatedly
blowing up the inflection point and the tangent line decouples on the third blow up,
leaving an affine E8 arrangement of (−2) curves in the interior of S.

2) If the 9 points do not add up to zero, e.g. if the points in 1) are perturbed a

little bit, then S ∼= MDR(E8) is isomorphic to one of the De Rham moduli spaces (by

scaling, the nonzero value of the sum is irrelevant and can be set to be 1 ∈ C).

3) If one repeats the story but with only 8 points, one obtains one of the corre-

sponding additive spaces M∗(E8) (in this case if all the points are zero one obtains an

E8 arrangement of (−2) curves in the interior, as one would expect on the resolution

of an E8 Kleinian singularity),

4) Finally the Betti space looks completely different and one would probably not
have guessed they were analytically isomorphic to the De Rham spaces without being
told: here one repeats the above story but with eight points on the smooth locus
∼= C

∗ of a nodal cubic in P
2 (see [24]).

4. Conclusion

Thus we have shown that it is possible to replace the curve in the diagram on p.3
with an “irregular curve” and still obtain associated hyperkähler manifolds, which we
have described from the Dolbeault and De Rham points of view, as moduli spaces of
meromorphic Higgs bundles and connections respectively. It seems clear that most
deformation classes of complete hyperkähler manifolds of any given dimension arising
from Higgs bundles on curves, arise only in the irregular case (as we saw in Table 1 in

the case of real dimension 4). To obtain a more explicit description of the underlying
differentiable manifolds we will describe the Betti approach in the following three
talks, and its extension to arbitrary complex reductive groups G (following [16]).
In this description, for generic parameters, the moduli spaces arise as smooth affine
algebraic varieties, defined by explicit equations. Further we will describe an algebraic
way to obtain their holomorphic symplectic structures, and discuss the notion of
admissible deformations of an irregular curve, which leads to a generalisation of the
well-known mapping class group actions on the character varieties.
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