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. These equations, called "Poincaré-Chetayev equations", are today known to be the foundation of the Lagrangian reduction theory. Starting with the extension of these equations to a Cosserat medium, we show that the two basic sets of equations used in flexible multi-body dynamics. The generalized Newton-Euler model of flexible multi-body systems in the floating frame approach and the partial differential equations of the nonlinear geometrically exact theory in the Galilean approach, are Poincaré-Chetayev equations.

Introduction

The dynamic modeling of flexible multi-body systems aroused a great interest during the last few years [START_REF] Simo | On the dynamics in space of rods undergoing large motions -A geometrically exact approach[END_REF][START_REF] Cardona | A beam finite element non-linear theory with finite rotations[END_REF][START_REF] Ibrahimbegovic | Finite rotations in dynamics of beams and implicit tipe-stepping schemes[END_REF][START_REF] Hughes | Dynamics of elastic multibody chains: part A-Body motion equations[END_REF][START_REF] Meirovitch | Hybrid state equations of motion for flexible bodies in terms of quasi-coordinates[END_REF][START_REF] Bremer | Fast moving flexible robot dynamics[END_REF][8][START_REF] Boyer | Generalisation of Newton-Euler model for flexible manipulators[END_REF][START_REF] Book | Recursive lagrangian dynamics of flexible manipulators arms[END_REF]. Two types of systems are susceptible of requiring such a theory: the fast light industrial manipulators and the large space structures. To model these systems, two theories can be used depending on the type of reference of links deformation they use. The first theory, called "floating frame approach" [START_REF] Hughes | Dynamics of elastic multibody chains: part A-Body motion equations[END_REF][START_REF] Meirovitch | Hybrid state equations of motion for flexible bodies in terms of quasi-coordinates[END_REF][START_REF] Bremer | Fast moving flexible robot dynamics[END_REF][8][START_REF] Boyer | Generalisation of Newton-Euler model for flexible manipulators[END_REF][START_REF] Book | Recursive lagrangian dynamics of flexible manipulators arms[END_REF], is often restricted to the field of linear elasticity since it considers the link deformations as modal perturbations of the overall motions of some moving floating frames. In this approach, the most efficient simulation and control algorithms are based on the model said of "Newton-Euler" [START_REF] Hughes | Dynamics of elastic multibody chains: part A-Body motion equations[END_REF][START_REF] Meirovitch | Hybrid state equations of motion for flexible bodies in terms of quasi-coordinates[END_REF][START_REF] Bremer | Fast moving flexible robot dynamics[END_REF][8][START_REF] Boyer | Generalisation of Newton-Euler model for flexible manipulators[END_REF] and opposed to the Lagrangian one [START_REF] Book | Recursive lagrangian dynamics of flexible manipulators arms[END_REF]. To obtain the generalized Newton-Euler model of a flexible multi-body system, several methods have been proposed. This model appeared for the first time in [START_REF] Hughes | Dynamics of elastic multibody chains: part A-Body motion equations[END_REF] where the authors used the Newton and Euler laws joined to modal projections. Alternatively, Meirovitch [START_REF] Meirovitch | Hybrid state equations of motion for flexible bodies in terms of quasi-coordinates[END_REF] proposed to proceed from Lagrange's equations with quasi coordinates. Invoking the corresponding non-holonomic velocities Bremer [START_REF] Bremer | Fast moving flexible robot dynamics[END_REF], used the Hamel's equations. Finally, such a model can be obtained by applying the virtual power principle [8] and invoking the notion of Eulerian and Lagrangian description of motions as classified in [START_REF] Germain | Cours de mécanique de l'Ecole Polytechnique[END_REF]. In the floating frame context, the Newton-Euler formulation of the dynamics presents many advantages on the Lagrangian one. First it requires few computational efforts since only the dynamics of single links have to be written and to be joined with a recursive kinematic model of the chain. Second, and for the same reason, the dynamic contributions have a simple physical insight contrary to the Lagrangian approach where they appear via complex symbolic kinetic energies. This advantage is crucial when we search to add some non-linear improvements as the dynamic stiffening effect [START_REF] Boyer | Flexible multibody dynamics based on non-linear Euler Bernoulli kinematics[END_REF]. Finally thanks to its recursive character, this model can be used in a second time to achieve fast direct [START_REF] D'eleuterio | Dynamics of an elastic multibody chain. Part C-recusive dynamics[END_REF] and inverse o(n) (with n the number of links) algorithms [START_REF] Boyer | An efficient calculation of flexible manipulator inverse dynamics[END_REF]. The second theory (called Galilean one) was originally developed for the large space structures submitted to finite deformations and small strains [START_REF] Simo | On the dynamics in space of rods undergoing large motions -A geometrically exact approach[END_REF][START_REF] Cardona | A beam finite element non-linear theory with finite rotations[END_REF][START_REF] Ibrahimbegovic | Finite rotations in dynamics of beams and implicit tipe-stepping schemes[END_REF]. It is based on the following basic remark: when the elastic motions are of the same order of magnitude as the rigid ones, it becomes artificial and too much involved to separate them. Thus in this theory the link deformations references are Galilean and the fields of the links are global. Most of the time, this approach is premised on the Reissner beam theory [START_REF] Reissner | On a one-dimensional large displacement finite-strain beam theory[END_REF]. In this framework, each constitutive cross section remaining rigid (Cosserat medium [START_REF] Cosserat | Théorie des corps déformables[END_REF]), its configuration space can be identified to maps applying the material line of the beam onto SO(3)× 3 R . The numerical procedure used in [START_REF] Simo | On the dynamics in space of rods undergoing large motions -A geometrically exact approach[END_REF][START_REF] Cardona | A beam finite element non-linear theory with finite rotations[END_REF][START_REF] Ibrahimbegovic | Finite rotations in dynamics of beams and implicit tipe-stepping schemes[END_REF] to solve the rotational dynamic weak form is essentially achieved on the group and not, as in a Lagrangian approach, on one of its parameter space. The method is based on a spatial finite element reduction and an implicit one step integration scheme (of the Newmark class). The standard predictor-corrector Newmark scheme must be geometrically revisited since the curvature of SO [START_REF] Cardona | A beam finite element non-linear theory with finite rotations[END_REF] prevents the standard linear operations of vector spaces. Once this obstacle is surrounded by a pullback operation of the dynamics on the reference configuration, the non-linear initial problem is replaced by a finite succession of linear ones via a Newton procedure. To solve the linear tangent dynamics, an exact intrinsic linearization of the weak form is achieved via an objective derivation. Since no approximation is done before the spatial and time discretizations, this approach is often qualified of "geometrically exact".

The purpose of this paper is to show that these equations, namely:

-the generalised Newton-Euler model of flexible multi-body system in the floating frame, -the geometrically exact model of a multi-beam system in the Galilean frame, can be deduced in a straight-forward manner of a set of equations discovered by Poincaré in [START_REF] Poincaré | Sur une forme nouvelle des équations de la mécanique[END_REF] and refined by chetayev [START_REF] Chetayev | Sur les équations de Poincaré[END_REF][START_REF] Chetaev | Theoretical Mechanics[END_REF]. These equations today known as Poincaré-Chetayev [START_REF] Rumyantsev | On the Poincaré-Chetayev equations[END_REF][START_REF] Rumyantsev | The General Equations of Analytical Dynamics[END_REF][START_REF] Chevallier | Dynamique du point de vue eulerien et lagrangien , Recherches sur les problèmes de stabilité et stabilisation du mouvement[END_REF] or Euler-Poincaré equations [START_REF] Marsden | Introduction to mechanics and symmetry[END_REF] are a generalization of Lagrange equations on a Lie group not forcibly commutative [START_REF] Arnold | Mathematical methods in classical mechanics, Appendix 2 "Geodesics of left invariant metrics on Lie groups[END_REF][START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF]. In flexible multibody dynamics, contrary to standard structural dynamics, the elastic bodies of the mechanism endure not only deformations but also rigid overall motions. It is this particular point which is directly concerned with the result of Poincaré. The article is structured as follows. After introducing our notations (section 2), we extend the Poincaré-Chetayev equations to the case of a continuum following the construction of Cosserat brothers [START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF] (section 3). Then, doing several remarks (section 4), we finally apply (section 5) these equations to a relevant case of flexible multi-body sytem: an open loop flexible manipulator.

Notations

In the subsequent developments we use some basic tools of differential geometry. We invite the reader to consult the appendix 4 of [START_REF] Arnold | Mathematical methods in classical mechanics, Appendix 2 "Geodesics of left invariant metrics on Lie groups[END_REF] for much detail about this aspect. We now quickly recall the definitions required by the article. In the following, G is a n dimensional Lie group of transformations of 3 3 → R R . Its identity element is denoted by e. The motion of a material system whose the configuration space is G is defined by a map : ()

g t g t G + ∈ → ∈ R
. In the action space 3 R , it is defined by the set of transformed configurations: Once endowed with the Poisson bracket of vector fields denoted [ , ], the vector space of left (respect. right) invariant vector fields on G realizes another definition of g . On the dual side, the vector space of left (respect. right) invariant 1 forms on G realizes another definition of * g . From the point of view of the action space, g ( ,[ , ]) e T G ≅ is identified to the space of infinitesimal transformations applied to the reference configuration o Σ ("right" or "material" transformations) or to the current configuration ( ) t Σ ("left" or "spatial" transformations). Alternatively the space of left (respect. right) invariant fields realizes another definition of the material (respect. spatial) infinitesimal transformations. To get the dynamic equations of the material system in terms of the infinitesimal material transformations (respect. spatial ones) corresponds to write the dynamics in the "material (respect spatial) setting". The following computations are achieved "in coordinates" as in the original works of Poincaré and Chetayev. The summation convention on repeated indexes is systematically adopted excepted for equations [START_REF] Cartan | La théorie des groupes finis et continus et la géométrie différentielle traitée par la méthode du repère mobile[END_REF][START_REF] Ostrowski | Computing reduced equations for robotic systems with constraints and symmetries[END_REF](29)(30). Finally, we will use sometimes the conventional notation: 1 ( ,... ) ( )

3 ( ( ) ( ). , o t g t Σ = Σ ⊂ R ) t + ∈ R where 3 o Σ ⊂ R
k i f x x f x = , 1,... i k =
; for any function f , vector x and integer k.

Poincaré-Chetayev equations of a Cosserat medium

A Cosserat medium is a continuum of micro-solids (for instance the cross sections of a beam, the transverse rigid material lines of a shell or the grains of a micro-polar continuum) [START_REF] Naghdi | Finite deformation of elastic rods and shells[END_REF].

Consequently the spatial configurations of the medium can be described by the action in each point of a sub-manifold D of the medium reference configuration (the reference line for a beam, the reference membrane for a shell), of an n dimensional group G (typically SE [START_REF] Cardona | A beam finite element non-linear theory with finite rotations[END_REF] or SO( 3)) onto an elementary rigid micro-solid. Hence, contrary to the finite dimensional case treated by Poincaré [START_REF] Poincaré | Sur une forme nouvelle des équations de la mécanique[END_REF], the group transformations are not only parameterized by the time, but also by the material coordinates ( I X , 

p P T D → ∧ L , ( ( ), ) , 0,.. . i x q x dV i p η = L (1)
Where L is the Lagrangian density on D, * T D is the cotangent bundle to D, ∧ is the exterior product, dV is the volume p form on D, q(x) is the vector of group parameters of the current transformation at X applied on the micro-solid. And ( ) i x η is the current infinitesimal transformation endured by the micro-solid: at X, in a basis of g , when we shift along the . th i coordinate line of P. In the following, we first concentrate our attention on the material setting since it is the most interesting for solid mechanics. In this setting, ( ) i x η has two interpretations depending on the definition of g we adopt. If we define it as ( ( ),[, ]) e T G , the i η 's are defined as: 

1 ( ) * ( ) ( ( )) ( ) , 0,.. . i i i g x x x L g x x e i p α α η η - = ∂ = = (2) 
i i i g x x x g x x X i p α α η η = ∂ = = , (3) 
where we introduced the basis of left invariant vectors on G:

, * ( : ( )

g g X g X L e α α α = , 1,.. ; ) n g G α =
∈ (the base point on G follows the basis index). In fact, by simple analysis of the variance of ( 2) and (3), we understand that the set of these vector fields on P realizes a unique field of 1-forms on P with values in the Lie algebra of the group:

* : P T P η → ⊗ g
, [START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF], ( ⊗ is the tensorial product). For instance, if we adopt ( ( ), [, ])

e T G
as definition of the Lie algebra, this field of 1-form is defined as:

1 * ( ) ( ( ))( ) ( ) i i i i g x x L g x dx x e dx α α η η - = ∂ = ⊗ , (4) 
and gives the infinitesimal transformation to apply on the left of g(x) when we shift from any point x to x dx + in P. Alternatively adopting the left invariant fields as definition of the Lie algebra, this field of 1-forms is:

, ( ) ( ) ( )( ) ( ) , i i i i gx x x g x dx x X dx α α η η = ∂ = ⊗ (5) 
and gives the change of g(x) in the field of left invariant basis covering G, when we shift from x to x dx + in P. In order to apply the Hamilton principle to a Lagragian density of the form (1), we have to establish a formula which plays a key role in the variation calculus on a non commutative Lie group. This relation is a consequence of the fact that the variation δ is achieved at fixed time and fixed material parameters. To establish this result, let us first remark that the variation of a

) (G C ∞ function f at g(x) is: , ( ) ( ( )) ( ). ( ) . g x f g x g x f x X f α α δ δ = =Ω , (6) 
Where the ( ) x α Ω 's are the components of the virtual infinitesimal transformations in the basis of left invariant fields. On the other hand, the derivative of any f, with respect to a parameter τ of a space-time curve :

( ) P γ τ γ τ ∈ ∈ R passing through x is: , ( ) , ( ) ( ( )) ( ) . ( ( ) 
).( , ) ( ) ( ) .

i i i gx x i gx df g x dg x f x X dx f x x X f d d α α α α η ξ η ξ τ τ = = ⊗ = , (7) 
where

( ) i i x x x ξ ξ =
∂ is the tangent vector to the curve γ at x. Moreover, note that in particular, when j x τ = , 

).( , ) ( ) .

j j j i i gx j gx x x x f g x g x f x X dx f x X f α α α α η η ∂ =∂ = ⊗ ∂ = (8)
Hence, the variation process being achieved at fixed time, and fixed material position (label), we have:

0 = - ) ( ) ( τ δ δ τ d df f d d , γ ∀ ∈ ∀ ∞ , ) (G C f passing through x. ( 9 
)
Inserting ( 6) and ( 7) into (9), we find (g is evaluated at x):

, ,

.( . ) .( . ) 0

i i i g g g i g d d f f X X f X X f d d α β β α α β β α δ δ η ξ η ξ τ τ - = Ω -Ω =
And since this last relation must be verified for any γ , i.e. for any set of i ξ 's, the "fixed parameters condition" can be rewritten: ) .( . ) ) .( . ) 0

, , , , ( . )( . 
i g g i g g X X f X X f α β α β α β α β η η Ω + Ω , , , , ( . )( . 
g i g i g g X X f X X f β α β α β α β α η η -Ω -Ω = , ) (G C f ∞ ∈ ∀ (10) 
Considering ( 6) and (8) we recognize in [START_REF] Book | Recursive lagrangian dynamics of flexible manipulators arms[END_REF] the terms: , ( . )

g i i X β α α β η δη Ω =
, and: , ( . )

j j g x X α β β α η Ω = ∂ Ω ,
as so as the Poisson bracket of the left invariant basis vectors:

[ , ] , , , 1,... X X c X n γ α β α β γ α β γ = =
with c γ αβ 's the structure constants of the Lie algebra g . Finally we obtain the following relations:

γ β α βγ α α η δη Ω + Ω ∂ = i x i c i , 0,1,.. ; 1,.. . i p n α = = (11) 
The equations ( 11) are a generalization of the one-parameter formulae of [START_REF] Poincaré | Sur une forme nouvelle des équations de la mécanique[END_REF]. In the same way, the "fixed parameters condition" expressed in the right invariant basis can be written:

i i i x c α α α β γ βγ δµ µ = ∂ Ω - Ω , 0,1,.. ; 1,.. . i p n α = = (12) 
Where the structure constants in the right invariant basis , * ( : ( )

g g Z g Z R e α α α = , 1,.. ; ) n g G α = ∈
are the opposites of those in the left invariant one [START_REF] Marsden | Introduction to mechanics and symmetry[END_REF]. Before applying the Hamilton principle, we have to model the fields of external efforts applied on the medium. Geometrically, the resultant of current efforts applied on the micro-solid at X in the configuration g(x), is an element of * g . Hence, we define the two fields of exterior forms with values in the dual of the Lie algebra:

The field of external efforts applied inside the medium: * :

( )

o o p F D T D + * × ⊗∧ R g , ( ) ( , ) ( , ( )) g x t X F x g x dV α α ω = ⊗ F . ( 13 
)
The field of current external efforts applied on the boundaries of the medium:

1 * : ( ) p F D T D + * - × ∂ ⊗ ∧ ∂ R g , ( ) ( , ) ( , ( )) g x t X F x g x dS α α ω = ⊗ F (14)
Where ( : ( , ) ,

g g α α ω ω , 1,.. ; ) n g G α = ∈ is the basis of left invariant 1 forms dual to ( X α , 1,... ) n α =
t t i ext t D t A q dVdt W dt g α β δ δ η δ δ = = ∀ ∫ ∫ ∫ L ( 15 
)
Where A denotes the action of the Lagrangian and where we introduced the virtual work of external efforts applied to the medium:

. ext D D W d V d S α α α α δ ∂ = Ω + Ω ∫ ∫ F F (16) 
Going over the variation of the action, we have:

2 2 1 1 ( , ) t t i i t D t D i A q dV dt q dV dt q α β α β α β δ δ η δη δ η   ∂ ∂ = = +   ∂ ∂   ∫ ∫ ∫ ∫ L L L
Then taking into account the constraints [START_REF] Germain | Cours de mécanique de l'Ecole Polytechnique[END_REF], gives: )

i t i x t D i A c q d V d t q α α β γ β βγ α β δ η δ η   ∂ ∂ = ∂ Ω + Ω +   ∂ ∂   ∫ ∫ L L (17) 
But we have:

i i i x x x i i i α α α α α α η η η     ∂ ∂ ∂ ∂ Ω = ∂ Ω -∂ Ω     ∂ ∂ ∂     L L L (18) 
Then let us rewrite the first term of the right hand side of (18) as:

2 2 1 1 i I t t t x X t D t D i o I dV dt dVdt α α α α α α η η η       ∂ ∂ ∂ ∂ Ω = ∂ Ω +∂ Ω       ∂ ∂ ∂       ∫ ∫ ∫ ∫ L L L
Integration by part of the time component followed by an application of the Stokes theorem to the spatial terms gives:

2 2 2 1 1 1 t t t i I t D D t D i o I t dV dt dV N dSdt α α α α α α η η η ∂         ∂ ∂ ∂ ∂ Ω = Ω + Ω         ∂ ∂ ∂         ∫ ∫ ∫ ∫ ∫ L L L Where I N is the . th I component of the unit normal to D ∂ . Moreover the variation , ( ) ( ) g x g x X α α δ
= Ω vanishing at the end times, we have more simply:

2 2 1 1 i t t I x t D t D i I dV dt N dS dt α α α α η η ∂     ∂ ∂ ∂ Ω = Ω     ∂ ∂     ∫ ∫ ∫ ∫ L L (19) 
Taking into account ( 18) and ( 19) in ( 17), we find:

2 1 i t I i x t D D I i i A N dS c q dV dt q α αγ β α β βα α α γ β δ η δ η η η ∂         ∂ ∂ ∂ ∂ = Ω + -∂ Ω + Ω +             ∂ ∂ ∂ ∂         ∫ ∫ ∫ L L L L
And since from (6):

, ( )

g q X q q q β α β α β β δ ∂ ∂ = Ω ∂ ∂ L L , ( 20 
)
we have : , ( )

i t I i g x t D D I i i A Nd S c X q d Vd t q α γ β β α βα α α α γ β δ η η η η ∂         ∂ ∂ ∂ ∂ = Ω + -∂ + + Ω             ∂ ∂ ∂ ∂         ∫ ∫ ∫ L L L L
And the modified Hamilton principle (15) becomes:

2 1 , 0 ( ) i t I i g x t D D I i i N dS c X q dV dt q α γ β β α α β α α α α α γ β η η η η ∂         ∂ ∂ ∂ ∂ = - Ω + -∂ + + - Ω             ∂ ∂ ∂ ∂         ∫ ∫ ∫ L L L L F F
This equation being verified for any variation, i.e. for any set of independent α Ω 's, we obtain:

The field equations in * g identified to the space of left invariant 1 forms:

, ( ) ( ) ( ) ( ) ( , ( )) =0 , o i g x g x i i i c x X q x g x x D x q γ β β α βα α α α γ β η ω η η +     ∂ ∂ ∂ ∂ - - - ∀ ∈ ×       ∂ ∂ ∂ ∂     L L L F R (21)
Boundary equations in the same space:

( ) ( ) ( , ( )) 0 , I g x I N x x g x x D α α α ω η +   ∂ - = ∀∈ × ∂   ∂   L F R (22) 
Let us notice that for evaluating the term [START_REF] Rumyantsev | The General Equations of Analytical Dynamics[END_REF], there is no need to introduce a chart of parameters on G. In fact, using the basis of infinitesimal material transformations x L e n q d

β α α β ε η ε α ε = ∂ = = ∂ L L . ( 23 
)
Where: exp : ( , [ ,])

e T G G →
is the natural map of the Lie algebra into the group [START_REF] Arnold | Mathematical methods in classical mechanics, Appendix 2 "Geodesics of left invariant metrics on Lie groups[END_REF] and where the Lagrangian density is now a function of the transformations, i.e.:

( , )

g η = L L
. Finally the terms (23) take charge of the symmetry defect of the Lagrangian in the material setting (cf. remark 4 below). Now if we seek for the equations of Poincaré-Chetayev in the spatial setting, the field of 1 form with value in the Lie algebra ( 5) is replaced by: , ( )

( ) ( )( ) ( ) , i i i i gx x x g x dx x Z dx α α µ µ = ∂ = ⊗
Applying the same computational process to the spatial Lagrangian density: ( , ) q dV µ L with (12) instead of [START_REF] Germain | Cours de mécanique de l'Ecole Polytechnique[END_REF] gives:

, ( ) ( ) ( ) ( ) ( , ( )) =0 , o i g x g x i i i c x Z q x g x x D x q λ β β α βα α α α λ β µ λ µ µ +     ∂ ∂ ∂ ∂ + - - ∀∈ ×       ∂ ∂ ∂ ∂     L L L E R (24) 
( ) ( ) ( , ( )) 0 ,

I g x I N x x g x x D α α α λ µ +   ∂ - = ∀∈ × ∂   ∂   L E R (25) 
Where ( : , 1,.. ; )

g g ng G α α λ λ α= ∈ is the basis of right invariant 1 forms dual to ( , 1,.. ) Z n α α =
, and α E and α E are the components of the form fields of external internal and boundary efforts in such a basis, generally dependent of x and g(x). Finally, the following terms take charge of the symmetry defect of the Lagrangian in the spatial setting:

, ( ) ( ) 0 ( ) ( ( ), (exp( ))) , 1,..

g x g x d Z q x R e n q d β α α β ε µ ε α ε = ∂ = = ∂ L L . ( 26 
)
where exp( ) e α ε is now applied on the left of g(x) so that n e ,.. 1

) ( = α α
is a basis of infinitesimal spatial transformations (transformations applied on spatial points). Finally, we recognize in ( 21) and [START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF] the components of the co-adjoint map * * * (.) : ad → g g in the dual of left and right invariant basis respectively [START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF]. Alternatively, applying to each sight of ( 21)-( 22) and ( 24)-( 25) the co-tangent maps * ( )

g x L and * ( ) g x R
respectively, we obtain the dynamics in the basis * ( ) ( ) ( ( )

g x g x f L α α ω = * ( ) ( ) ( ), 1,.. ) g x g x R n α λ α = = of *
g where g is now defined as ( , [ ,])

e T G : * ( ) 0 ( ) , i p o g x i i i i ad X x D x η η η + =       ∂ ∂ ∂ - - = ∀ ∈ ×         ∂ ∂ ∂       ∑ L L L F R (27) 1 , p 
I I I N x D η + =   ∂ = ∀ ∈ ×∂   ∂   ∑ L F R (28) 
Where we introduced the notations:

( ) ( ) 0 ( ) ( ( ), (exp( ))) g x g x d X xL e f d α α ε η ε ε = = L L , i i f α α η η ∂ ∂ = ∂ ∂ L L , I I f α α η η ∂ ∂ = ∂ ∂ L L , f α α = F F , f α α = F F .
In the same way we have in the spatial setting:

* ( ) 0 ( ) , i p o g x i i i i ad Z x D x µ µ µ + =       ∂ ∂ ∂ + - = ∀ ∈ ×         ∂ ∂ ∂       ∑ L L L E R (29) 1 ( ) , p I I I N x x D µ + =   ∂ = ∀ ∈ ×∂   ∂   ∑ L E R (30) 
Where:

( ) ( ) 0 ( ) ( ( ), (exp( ))) g x g x d Z xR e f d α α ε µ ε ε = = L L , i i f α α µ µ ∂ ∂ = ∂ ∂ L L , I I f α α µ µ ∂ ∂ = ∂ ∂ L L , f α α = E E , f α α = E E
. Finally let us remark that in ( 27)-(28) the base ( , 1,.. )

f n α α =
is the dual basis to infinitesimal material transformations while in (29)-(30) it is the dual basis to infinitesimal spatial transformations.

Remarks

1°) It is worth noting that even if the system is continuous and so, in a certain manner infinitedimensional, the group used in the above construction is finite but parameterized by the material manifold D (we say that the group is gauged over D, [START_REF] Pommaret | Partial Differential Equations and Group Theory[END_REF]). This is radically different from fluid mechanics, where the configuration space of an ideal fluid is a group actually infinite dimensional [START_REF] Arnold | Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits[END_REF]. In fact, the configuration space of our Cosserat medium is the set: : { :

} g D G = C . 2°
) Let us remark by comparison of ( 21)-( 22) and ( 27)-(28) (respect. ( 24)-( 25) and ( 29)-( 30)) that the Poincaré-Chetayev equations are in components in the left (respect. right) invariant dual basis the same as those in the dual basis to material (respect. spatial) infinitesimal transformations. Adopting the right and left invariant fields as definition of the Lie Algebra corresponds in fact to the well-known mobile frame method proposed by Cartan [START_REF] Cartan | La théorie des groupes finis et continus et la géométrie différentielle traitée par la méthode du repère mobile[END_REF] to study some problems of integrability. This point of view has also its counterpart in the action space of the group, where we know that the material formulation is in components the same as the spatial one in the mobile frame of the body. 3°) When the parameter space P reduces to the time axis + R , the partial differential equations ( 27)- ( 28) and ( 29)-(30) degenerate into the classical Poincaré-Chetayev ordinary differential equations [START_REF] Poincaré | Sur une forme nouvelle des équations de la mécanique[END_REF]:

Finite dimensional Poincaré-Chetayev equations in the material setting:

* ( ) ( ) , o g t o o d L L ad X L F t dt η η η +     ∂ ∂ - - = ∀∈     ∂ ∂     R (31) Where ( ) ( ) 0 ( ) ( , (exp( )) 
)

g t o g t d X L L L e f d α α ε η ε ε = = , ( , ) o L L g η =
is the Lagrangian of the system in the material setting,

o o L L f α η η ∂ ∂ = ∂ ∂ , and ( , ) F F t g f α α =
is the 1 form of external material efforts applied on the system.

Finite dimensional Poincaré-Chetayev equations in the spatial setting:

* ( ) ( ) , o g t o o d L L ad Z L E t dt µ µ µ +     ∂ ∂ + - = ∀∈     ∂ ∂     R (32) Where ( ) ( ) 0 ( ) ( , (exp( )) 
)

g t o g t d X L L R e f d α α ε µ ε ε = = , ( , ) o L L g µ =
is the Lagrangian of the system in the spatial setting,

o o L L f α µ µ ∂ ∂ = ∂ ∂ , and ( , ) E E t g f α α =
is the 1 form of external spatial efforts applied on the system. 4°) These equations have been extended (and connected to several sets of equations of analytical dynamics) by Rumyantsev [START_REF] Rumyantsev | The General Equations of Analytical Dynamics[END_REF] in the case where the Lie algebra of invariant fields is replaced by any closed system of infinitesimal linear operators ( , 1,.. ) X n α α = . In this case equations of the Poincaré-Chetayev type still occur, where the structure constants of the Lie algebra are replaced by variable coefficients c λ βα .

5°) These equations are specially interesting when the Lagrangian and the external forces densities do not depend on the configuration ( ) g x . This case has been widely studied by Arnold [START_REF] Arnold | Mathematical methods in classical mechanics, Appendix 2 "Geodesics of left invariant metrics on Lie groups[END_REF], and Marsden and his co-workers [START_REF] Marsden | Introduction to mechanics and symmetry[END_REF]. It is related to the Lagrangian reduction theory. In this context, if the Lagrangian (and in our case, the external forces) of the system is invariant by the left transformations (for the rigid body) or the right ones (for the incompressible fluid), then once expressed in its Lie algebra, it is configuration independent. The resulting dynamic equations are equations ( 27)-( 28) or ( 29)-(30) where: first, the symmetry defect terms (23) (respect. ( 26)) do not appear any more, and second: the components of forces ( 13) and ( 14) (and respectively, their spatial counterparts) are configuration independent. In the modern terminology the dynamics are reduced in the Lie algebra g of the system group symmetry. Therefore they are first order p.d.e. in terms of the velocities o η or o µ only (Eulerian formulation). Consequently, they can be integrated with respect to the time in a first place and in a second step, thanks to a reconstruction equation "

( )* ( ) ( ( )) t gx o g x L x η ∂ = or ( )* ( ) ( ( )) t gx o g x R x µ ∂ = "
, we recover the motion of the medium.

6°) When G is commutative, we have: X Z α α = , and:

[ , ] [ , ] 0 X X Z Z α β α β = = , , 1,..n α β ∀ = .
Consequently, the field of local basis ( , 1,.. )

X n α α =
derives from a set ( , 1,.. )

q n α α = of ( ) C G ∞ coordinate functions verifying: q X α α = ∂ , dq α α ω = , 1,..n α =
. As a result, we have:

q α α η = , 1,..n α =
, and the velocities are integrable (holonomic). In this latter case, the Poincaré-Chetayev equations ( 31) and (32) degenerate into the unique set of Lagrange equations:

( ) 0 d L L Q dq dt q q α α α α   ∂ ∂ - - =   ∂ ∂  

Application to flexible multi-body systems

In order to illustrate the application of Poincaré-Chetayev equations to flexible multi-body systems, we consider in the following the specific case of a flexible manipulator and show how these equations allow to recover: 1°) the geometrically exact equations in the Galilean frame, and 2°) the generalized Newton-Euler equations in the floating frame, of a flexible manipulator. The extension to other multi-body topologies is straightforward.

Partial differential equations of a flexible manipulator in the Galilean frame

Basic kinematics of a body

In this approach each body of the system is modeled by a nonlinear beam theory due to Reissner [START_REF] Reissner | On a one-dimensional large displacement finite-strain beam theory[END_REF]. Subsequently we consider the case of a straight beam of initial length L, with a constant cross section. o Σ is the reference configuration of the beam. Its points are material particles labeled by their position

I I X X E = in the material frame 1 2 3
( , , , ) O E E E attached to o Σ , and such that 1 E is the material axis of the beam. The spatial current position of the X particle is written: ( , ) ( , )

i I i x X t x t X e = .
Where

1 2 3 ( , , , )
O e e e is a spatial frame. The material and spatial frames are practically taken merged. In the Reissner theory the beam cross sections are supposed to be rigid. Hence, they realized the micro-solids of a one dimensional Cosserat medium. Thus, referring to the general construction of section 3, the space of parameters is here:

[0, ] P L + = × R
. Moreover, the current three-dimensional position field of the beam results of the action of the timeparameterized transformation 3 :

t o ϕ Σ → R defined by: 1 2 3 ( , , ) o X X X X ∀ = ∈Σ : 1 1 1 2 3 1 2 3 ( , ) ( ) ( , ) ( , ).( ) t x t X X X e d t X R t X X E X E ϕ = = + + + , (33) where 1 
( , ) d t X is the current translation applied to the gravity center of the 1 X cross section, and 1 ( , ) R t X is the rotation applied to that same cross-section. Moreover the transformation (33) can be rewritten under the homogeneous formalism as:

1 1 1 1 1 ( , ) ( , ) ( , ) . . (, ). 1 1 1 0 1 x t X r r R t X d t X X e g t X   +       = =                 (34) 
Where the 4 4 × homogeneous matrices g realize SE(3): the group of Euclidean displacements in 3 R . Thus the configuration space of the beam is realized by : { :[0, ]

(3)} g L SE = C (see remark 1). Moreover the field g acts on the subset of o Σ :

2 3 2 3 : { / } I I o r X E X E X E = = + ∈Σ V
which plays the role of the "generic" micro-solid. The Lie algebra of SE(3), denoted by se [START_REF] Cardona | A beam finite element non-linear theory with finite rotations[END_REF], is here identified to the space of twists 6 R endowed with the product " * " such that:

6 , η η′ ∀ ∈R : V V V V η η ′ ′ Ω Ω Ω×Ω       ′ * = * =       ′ ′ ′ Ω × -Ω ×       (35) 
In accordance to the material setting, se( 3) is here identified to the infinitesimal material rigid displacements provided with the basis:

1,..6 1,2, 3 1,2,3 0 , ( ) 0 I 
I I I E e E α α= = =       =               . ( 36 
)
And the field of 1-forms with values in the Lie algebra ( 4) is:

* : [0, ] (3) 
( [0, ]) L se T L η + + × ⊗ × R R 1 1 1 1 1 1 1 1 ( , ) ( , ) ( , ) ( , ) ( , ) o t X K t X t X dt dX dt dX V t X t X η η η     Ω = ⊗ + ⊗ = ⊗ + ⊗     Γ     (37) 
Where o η and 1 η are the twists associated by the isomorphism between se(3) and 6 R , to 1 . t g g -∂ and 1 1 .

X g g -∂
respectively. Intuitively, 1 ( , ) o t X η is the material infinitesimal transformation allowing passing from the mobile frame of the 1 X cross-section at t to its mobile frame at dt t + . And 1 1 ( , ) t X η is the infinitesimal transformation allowing at a fixed time t to pass from the mobile frame of the 1 X cross-section to that of the , is identified to the space of wrenches isomorphic to 6 R , the duality product of twists and wrenches reducing to the duality product in 6 R . Before to return to the Reissner theory, let us define the co-adjoint action of any vector η ∈ se(3) on any vector λ of its dual [START_REF] Marsden | Introduction to mechanics and symmetry[END_REF]:

* * ( ) V W V ad ad W W η λ Ω       Λ Λ×Ω+ ×     = =     × Ω     . ( 38 
)

Strain measures of a body

Now, let us define the strain measures adopted by the theory of Reissner. Following [START_REF] Simo | On the dynamics in space of rods undergoing large motions -A geometrically exact approach[END_REF], the two strain fields of the beam are:

1°) The field of material strain vector that we note ε and which is defined by:

1 1 1 1 1 1 ( , ) [0, ] ( , ) . ( , 0, 0) ( , ) T t X t X L t X R X E t X E ε ϕ + ∈ × = ∂ -= Γ - R , ( 39 
)
where let us remind that the component of this field along 1 E is a measure of the stretching of the beam whereas the two others are relative to the transverse shearing.

2) The field of material curvature:

1 1 1 ( , ) [0, ] . ( , ) T X t X L R R K t X + ∈ × ∂ = R , ( 40 
)
This field of material tensor has already been introduced in (37) through the field of pseudo-vector K associated to K by the natural isomorphism of 3

(3) so R (this notation is systematically adopted in the following).

Lagrangian of a body

Now, let us write the velocity field as: ( )

t t t t X d R.r ϕ ∂ =∂ +∂
As for the kinetic energy, we write it (the reference line of the beam passing through the gravity centers of the cross sections):

2 2 ( ) . o t t T d m ϕ Σ = ∂ ∫ 1 0 ( ) ( ) (( ) ) (( ) ) L T T t t t t A d . d R .r . R .r dX ρ = ∂ ∂ + ∂ ∂ ∫ ,
where A is the cross section area. Then, making appear the vector o η , we can rewrite the kinetic energy as:

1 1 0 0 3 0 1 ( , ) . ( ) 0 1 2 L L T T o J T V dX dX A V ρ η ρ Ω    = Ω =        ∫ ∫ T , ( 41 
)
where T is the kinetic energy density and J ρ is the material inertia tensor of the cross section:

2 3 1 1 2 2 3 3 ˆ. T p a a A J r r dX dX I E E I E E I E E ρ ρ ρ ρ ρ = = ⊗ + ⊗ + ⊗ ∫∫
with a I and p I the polar and axial inertia momentum of the generic cross section. Considering the case of an elastic material undergoing small strains, the strain energy can be approximated by a quadratic potential of the strain measures (39) and (40):

1 1 1 1 0 0 1 0 1 ( ,( ) ) . ( ) 0 2 L L r T T d H K U K E dX dX H E η    = Γ- =    Γ -     ∫ ∫ U ( 42 
)
where U is the strain energy density and d H and r H are the reduced Hooke's tensors of the beam in the material frame:

1 1 2 2 3 3 d H EA E E GA E E GA E E = ⊗ + ⊗ + ⊗ , 1 1 2 2 3 3 r p a a H GI E E EI E E EI E E = ⊗ + ⊗ + ⊗ ,
where E and G are the Young and twist moduli. Finally, the Lagrangian density takes the form:

1 1 ( , ) ( ) ( ) o o η η η η = - L T U , ( 43 
)
and does not depend anymore on the configuration of the beam, i.e. is left invariant. This is not surprisingly since the left invariance of the elastic potential corresponds to the concept of frame indifference (the right invariance being related to the isotropy of elastic properties of the medium).

On the other hand, the left invariance of the kinetic energy corresponds to the isotropy of space (the right invariance corresponding to the isotropy of inertial properties of the material).

Poincaré-Chetayev equations of a body

Fields equations

The link is submitted to a field of left invariant external (follower) wrenches:

1 1 1 1 1 1 ( , ) ( , ) ( , ) ( , ) t X t X F t X dX dX t X   = =     m F n , ( 44 
)
and to the left invariant (follower) wrenches at its two ends:

( ) ( ) ( ) M t t F t N t - - -   =     , at 1 0 X = and: ( ) ( ) ( ) M t t F t N t + + +   =     , at 1 X L = ( 45 
)
Considering equations ( 27)-( 28) with: o x t = and 1

x X 1 = , we deduce the Poincaré-Chetayev equations of a free mono-dimensional Cosserat medium with a Lagrangian density of the form (43):

1 ad ad t X η η η η η η ο 1 * * ο ο 1 1         ∂ ∂ ∂ ∂ ∂ ∂ - - + =         ∂ ∂ ∂ ∂ ∂ ∂         T T U U F (46) 
Applying the co-adjoint maps ad η ο * and ad η 1 * given by (38) to T and U respectively, gives:

1 1 1 1 ( ) . ( . ) ( , ) ]0, [ ( ) T t X X t X M K M R N J J t X L N K N A V V φ ρ ρ ρ +   ∂ + × + ∂ × + ∂ Ω + Ω× Ω   = ∀ ∈ ×       ∂ + × + ∂ +Ω×     m n R , ( 47 
)
where we introduced the position field of the reference line:

1 1 ( , 0, 0) ( , ) t X t X ϕ φ
= and the wrench of the internal forces applied on the 1 X cross section:

. , .

T T T r d H K M H N K ε       ∂ ∂     = =             ∂ ∂Γ           L L , ( 48 
)
where M is the moment of the field of internal forces applied to the cross section and evaluated in its gravity center, and N is its resultant.

Boundary equations

Applying the general equations ( 28) with 1 (0) 1 N =and 1 ( ) 1 N L = , gives:

1 ( ,0) ( ) t F t η - ∂ = - ∂ L , 1 ( , ) ( ) , t L F t t η + + ∂ = ∈ ∂ L R
Finally from (47):

( ) ( ,0) ( ) ( ,0) M t M t N t N t - -     =         , ( ) ( , ) , ( ) ( , ) M t M t L t N t N t L - + -     = - ∈         R (49) 
The equations ( 47)-(49) prove to be the partial differential equations of Reissner [START_REF] Reissner | On a one-dimensional large displacement finite-strain beam theory[END_REF]. These equations can be interpreted as tensorial equations in the material space or alternatively as equations in terms of components in the field of mobile frames

1 1 1 1 2 3 
( ( , ). , ( , ). , ( , ). ) R t X E R t X E R t X E . In order to integrate them we have to complete them with the Hooke's law, the reconstruction equations:

Ω = ∂ . R R t , . t R V φ ∂ =
, and the definitions of the strain measures. Before to close this subsection, let us remark that the equations given in [START_REF] Reissner | On a one-dimensional large displacement finite-strain beam theory[END_REF] are expressed in the spatial setting. These equations can be computed by applying the general Poincaré-Chetayev equations ( 29)-(30), to a spatial Lagrangian now depending of the configuration. In this case it is necessary to compute the symmetry defect term ( ) ( )

g x Z
L to get the good result.

Partial differential equations of a flexible manipulator

We now consider the specific case of a flexible manipulator out of gravity. The manipulator is constituted of p links denoted from the basis to the tip: , ,... p τ τ τ applied around 1 2 , ,... p a a a respectively. Moreover they are assumed to be concentrated at points. All the notations adopted in the model of a single link are kept but indexed with the link number. The vectors j a 's are spatial vectors. We define their material counterparts by: ( ) ( , ). ( )

T j j j j A t R t L a t = = 1 ( ,0). ( ) T j j R t a t + , 1,.. j p =
. From these material vectors, we define the operator j A ⊥ projecting any vector V onto the perpendicular space to j A :

3 2 1,.. : :

j j p A ⊥ = → R R , 1 0 0 . . ( ( . ) ) 0 1 0 j j j V A V V A V A ⊥   = -    
With these notations, the dynamics of the manipulator is realized by the set of equations:

Field equations ( 1,.. j p = ): 1 1 1 1 . ( . ) ( ) ]0, [: ( ) T j j t j j j j j j j j j j j X X j j j t j j j j j j X J J M K M R N X L A V V N K N ρ ρ φ ρ ∂ Ω + Ω × Ω   ∂ + × + ∂ ×   ∈ =       ∂ +Ω × ∂ + ×    ( 50 
)
Reconstruction equations of the links configurations ( 1,..

j p = ) For 1 [0, ] : j X L ∈ 1 1 1 ( , ) ( , ). ( , 
)

t j j j R t X R t X t X ∂ = Ω , 1 1 1 ( , ) ( , ). ( , 
) t j j j t X R t X V t X φ ∂ = (51) 
These equations are initialized in accordance with an arbitrary rigid reference configuration of the manipulator.

Reconstruction equations of the joints rotations

For 1,.. 1:

j p = - 1 1 ( ) ( , ). ( ,0) 
j T j j j j R t R t L R t + + =
, and: 0

1 1 ( ) ( ,0) R t R t = . ( 52 
)
Boundary conditions of the links ( 1,.. 1

j p = -) 1 ( , 0) ( ) , ( , ) ( ) 
j j j j j N t N t N t L N t + = - = - , 1 ( , 0) ( ) , ( , ) ( ) 
j j j j j M t M t M t L M t + = = - And: ( ,0) p p N t N = - , ( , ) 0 p p N t L = , ( ,0) ( ) 
p p M t M t = - , ( , ) 0 p p M t L = (53) 
Where, the tip of the manipulator is free, and j N and j M are the force and torque applied by

1 j B - onto j B
. Moreover, j N and . Connection conditions ( 1,.. 1

j p = -) 1 1 ( , ) ( ). 
( ,0)

j j j j j V t L R t V t + + = , 1 1 ( ). ( , ) ( ).( ( ). 
( ,0))

j j j j j j j A t t L A t R t t ⊥ ⊥ + + Ω = Ω And: 1 ( ,0) 0 V t = , 1 1 . ( ,0) 0 A t ⊥ Ω = (54)

Equations of a flexible manipulator in the floating frame

Basic kinematics of a link

In the floating frame approach, each link of the manipulator is three dimensional elastic body undergoing small deformations superimposed to finite overall motions. We consider a generic free link of reference configuration o Σ 3 ⊂ R . We attach to o Σ a material frame 

r e t t t x t X X X ϕ ϕ ϕ = = (55) 
As previously, the rigid transformation is written as:

( ) ( ) ( ). r t o X d t R t X ϕ ′ ′ = + (56)
Where X ′ is a point of

) (t o Σ
and o d is the displacement of the reference point of the body. As for the elastic transformation, we can write it:

( ) ( , ) e t X X X d t X ϕ ′ = = + , ( 57 
)
where d is the field of displacement (of material nature) mapping the position of the particle in the reference configuration on its image by the pure deformation. As previously, the set of all rigid transformations realizes the Lie group SE(3) here acting on the current deformed configuration

) (t o Σ
. Whereas e t ϕ is a point of 

( , ) ( ) ( ) ( ) ( ) m d t X X q t X q t α α α α α = = Φ = Φ ∑ , o X ∀ ∈Σ , ( 58 
)
where the α Φ 's are the natural modes of the body under certain boundary conditions (the modal indexes will be Greek and the indexes of 3 R will be Roman). They are material vectors, i.e.: 

K K Ε . α α Φ = Φ . Let
R d R d R R R d d g g G g g q q q q ′ ′ ′ ′      +                    ′ ′ ∀ ∈ = =                   ′ ′ +       , (59) 
Where:

1 2 ( , ,.. ) T m q q q q = denotes the vector of the modal coordinates. The Lie algebra g of G is realized by (3) m se × R , and thanks to the natural isomorphism pairing se(3) and 6 R , by the space 6 m + R provided with the product " * " such that:

6 , m η η + ′ ∀ ∈R , ( ) ( ) 0 V V V V V V q q q q q q η η ′ ′ ′ Ω Ω Ω×Ω Ω×Ω                 ′ ′ ′ ′ ′ ′ * = * = Ω× -Ω × = Ω× -Ω ×                 ′ ′ ′ + -+         (60) where T 1 
) ,... ( m q q q = takes the sense of a matrix of modal velocities (we denote the time differentiation by a point). Moreover, in accordance to the material setting, 6 m + R is identified to the space of infinitesimal material transformations of basis: 

+ = = =                   =                         .
And the 1 form with value in the Lie algebra (4) reduces to: where the six first components are those of a wrench in the material frame, and the last m ones are those of generalized modal forces. As for the duality product, it reduces to the duality product in 6 m + R . Finally, the co-adjoint action of any vector ξ ∈ g on any vector λ of its dual is simply:

( ) ( ) o t t dt V dt q η η Ω     = ⊗ = ⊗       ,
* * ( ) 0 V q W V ad ad W W Q ξ λ Ω           Λ × Ω + × Λ         = = ×Ω             . ( 61 
)

Lagrangian of one link

Taking into account (56), ( 57) and ( 58) in (55), it comes:

( ) ( ) ( ).( ( ). ( )) t o X d t R t X X q t α α ϕ = + +Φ .
And the velocity field is so:

( ) .( ( ). ) . ( ). t o X d R X X q R X q α α α α ϕ = + +Φ + Φ
Inserting this expression in the body kinetic energy and making appear the vector o η of the Lie algebra, we find:

1 1 1 1 . .( . ) .( ) . 2 2 2 2 o T T T T T t t T d m m V V J m qq V m s aq q α β α α αβ α α ϕ ϕ β Σ = = + Ω Ω+ + Ω × + +Ω ∫
Where from the right to the left, we find the rigid kinetic energy of translation, that of rotation, the kinetic energy of the deformation and the coupling terms, and where we defined the material tensors: . 

= ∫ , o ms X q dm α α Σ = +Φ ∫ , .q γ ν ν γ ν β α λ = + , , , ( . ) . 
( . ) ( ) o T T rr re er ee J X q X q dm J J J q J q q α β α αβ α β α α α β ∧ Σ = +Φ +Φ = + + + ∫
The kinetic energy is then completed with the potential strain energy, modeled by a quadratic form of the modal coordinates: 2 = . .

T U K q q q K q α β αβ = ,
where K is the modal stiffness matrix. Finally the Lagrangian of a free link takes the reduced form in (3)

m se × R : 1 1 ( , ) ( , , ). .1 . . . 2 2 T T T T T o T T J ms L q V q ms m a V q K q a M q β η β Ω       = Ω -          . ( 62 
)
Where we introduced the matrix of generalized modal inertia: And m s is the skew symmetric tensor such that:

3 ˆ. , ms v ms v v = × ∀ ∈R .

Poincaré-Chetayev equations of a link

Applying the finite dimensional Poincaré-Chetayev equations (31) to a Lagrangian of the form (62) gives: * 0 ( ) 0

0 g V q d T T dt T d T ad X L V dt V T d T q dt q Ω           ∂     ∂     ,
Then, noticing that . ms a q a q α α = = , and . 0 q q α α β β = = , and then invoking the relation:

( ) ( ) ( ) ( ) V ms V ms V ms ms V × Ω × -Ω × × = × Ω × = × Ω × , It comes after few computations: * ˆ. ( . . ) ( ) ˆ.1 . ( 2 . 
) .

o T o o T T T J ms J J q ms V d T T ad ms m a V mV a q ms dt a M q η β β η η β β     Ω Ω+Ω× Ω+ + × Ω×       ∂ ∂       - = + Ω× + +Ω×           ∂ ∂           Ω      
. Now, since the Lagrangian (62) depends on the configuration only through the deformations, the symmetry defect term of (31) takes the form:

1,.. 0 ( ) 0, 0, ( , ) (0, 0, ( ) ) (0, 0, ( ))

T T T T g q q m q d X L L q L row L d α α ε η ε ε = =       = + ∂ = ∂ = ∂         , with: L q α ∂ = ∂ , , , , 1 1 . 
( ). . .( ). 2 2 T T re er ee ee J J q J J β α α α β β α Ω + Ω+ Ω + Ω+ . q β αβ λ Τ Ω .( ) . T V a K q β α α β + Ω× -
Moreover, remarking that γα αγ λ λ =and that for any 3 3 × matrix A, we have:

.(( ). ) ( . ) . .( . ) 2 . .

T T T T T A

A A A A -Ω + Ω = -Ω Ω -Ω Ω = -Ω Ω ,
the symmetry defect term finally takes the form:

1,.. ( q m L col α = ∂ = , .
.

T er J α Ω Ω , . . 2 . 
. )

T T ee q J q K q β β β αβ βα αβ λ -Ω Ω + Ω +
And the dynamics of the free elastic body in e r e e J ms J J q J q q ms m a a q ms a M q col q J q J K q

α βα α β α β β β α βα α αβ αβ β γ β λ =     Ω Ω × Ω+ Ω + Ω             + Ω × + Ω ×Ω × =                 Ω -Ω Ω -Ω Ω +         , (63)
where we introduced the material acceleration of the reference point:

V V γ = +Ω× . The equations (63) are today well known of the multiboby systems community working in floating references. They correspond in this context to the "Generalized Newton-Euler model" of an elastic body [START_REF] Hughes | Dynamics of elastic multibody chains: part A-Body motion equations[END_REF][START_REF] Meirovitch | Hybrid state equations of motion for flexible bodies in terms of quasi-coordinates[END_REF][START_REF] Bremer | Fast moving flexible robot dynamics[END_REF][8][START_REF] Boyer | Generalisation of Newton-Euler model for flexible manipulators[END_REF][START_REF] Book | Recursive lagrangian dynamics of flexible manipulators arms[END_REF]. They can be interpreted as tensorial equations in the material space or as equations in terms of components in the mobile floating frame basis ( ( ). , ( ). , ( ). ) R t E R t E R t E . In order to integrate them we have to complete (63) with the reconstruction equation Ω = . R R .

Generalized Newton-Euler model of a flexible manipulator

We now consider the same manipulator as that defined in section 4. Each link is now modeled through the floating frame approach. The connection points of the bodies are denoted 1 2 , ,.. p O O O from the basis to the tool. The wrenches induced by joints are of the follower type. The floating frames are based at the connection points, and the modal shape functions are cantilevered at the same points. Indexing all the tensors by the index of the bodies, the generalized Newton-Euler model of the flexible manipulator is given by the three sets of equations:

• Links dynamics For 0,.., j p = : j rrj rej j j j1 j1 j T j erj eej j j j 1 j 1 j J . . J J c . . q

+ + + +     -         + =         -Φ             J C F T F V R F . ( 64 
)
• Model of velocities -----

= + Φ + V T V R A . ( 65 
)
• Model of accelerations For 1,.., j p = :

j j j j1 j1 j1 j1 j1 j . . . q - - - - - = + Φ + V T V R H . (66) 
Where (64) is deduced from (63) by posing ( , ) ( , , )

T T T T T T T j j j j j q q γ = Ω V . j F is the wrench applied by the . th j body onto its successor. j Φ is the 6 m × matrix of displacement and rotational cantilever shape vectors of the . th j link evaluated at ( 1) th jbody from its floating frame to that of its successor. j A is the 6 1 × vector of the . th j joint axis. And j H is the 6 1 × vector of Coriolis and centrifugal accelerations introduced by the . th j joint. Equations (64)-(66) correspond to the "Generalized Newton-Euler model" of flexible manipulators. They have been initially established in [START_REF] Hughes | Dynamics of elastic multibody chains: part A-Body motion equations[END_REF] and recovered in [START_REF] Meirovitch | Hybrid state equations of motion for flexible bodies in terms of quasi-coordinates[END_REF][START_REF] Bremer | Fast moving flexible robot dynamics[END_REF][8][START_REF] Boyer | Generalisation of Newton-Euler model for flexible manipulators[END_REF]. We invite the reader to consult [START_REF] Boyer | Flexible multibody dynamics based on non-linear Euler Bernoulli kinematics[END_REF][START_REF] D'eleuterio | Dynamics of an elastic multibody chain. Part C-recusive dynamics[END_REF][START_REF] Boyer | An efficient calculation of flexible manipulator inverse dynamics[END_REF] for more details about their use in flexible multi-body dynamics.

Concluding remarks

After having extended the equations of Poincaré-Chetayev to the case of a Cosserat medium, we have shown how this result realizes the natural language of the two main sets of equations today used in flexible manipulators dynamics. As regards as the Galilean approach, the partial differential equations obtained are the foundations of the geometrically exact approach of numerical treatment of flexible multibody systems [START_REF] Simo | On the dynamics in space of rods undergoing large motions -A geometrically exact approach[END_REF][START_REF] Cardona | A beam finite element non-linear theory with finite rotations[END_REF][START_REF] Ibrahimbegovic | Finite rotations in dynamics of beams and implicit tipe-stepping schemes[END_REF]. On the other hand, adopting floating references of the link deformations, the configuration space has been identified to the Cartesian product of SE(3) and of a space of generalized deformation coordinates. From the geometrical point of view, they are a trivialization of the elastic body dynamics on a principal fiber bundle, where the commutative subgroup is the base manifold (here the modal space and more generally 'the shape space'), and the fiber is the non-commutative sub-group (here SE(3)) [START_REF] Marsden | Introduction to mechanics and symmetry[END_REF]. Let us note at last that these equations have many uses in multi-body dynamics. Between these uses, let us quote that they have permitted to generate o(n) algorithms (where n is the number of links) of the inverse and forward dynamics of a flexible manipulator in relative coordinates [START_REF] D'eleuterio | Dynamics of an elastic multibody chain. Part C-recusive dynamics[END_REF][START_REF] Boyer | An efficient calculation of flexible manipulator inverse dynamics[END_REF]. A more recent use of these equations in robotics concerns the study of the locomotion of the poly-articulated systems. In this case the elastic manifold of the preceding example is replaced by the joints' manifold of a rigid multi-body system. The control problem that remains then is the following: what are the joint motions that we need to generate (by the control) to allow the system to move in an adequate manner on SE(3). This question is at the basis of an animal locomotion theory [START_REF] Ostrowski | Computing reduced equations for robotic systems with constraints and symmetries[END_REF].
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 1 is the reference configuration of the system also named "material space". The Lie algebra of G is denoted by g and defined as the tangent space to G at e denoted e T G , endowed with the Lie bracket [ , ]. Introducing the internal product , on G, we define * g as the vector space of 1 forms on G. g L and g R denote the left and right translations on G. * g L and * g R are their tangent maps. Dualizing these linear maps through the use on the internal product gives the cotangent maps to g L and g R , respectively denoted: * g L and * g R . Differentiating the group automorphism = , gives the action map * g Ad of G on g . Then differentiating * g Ad with respect to g at g e = , defines the adjoint map (.)* ad of → g g . Dualizing (.)* left (respect. right) invariant field on G is a vector field
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 3 ≤ ) of D. The space of parameters (be careful they are not the group parameters) will be denoted by P D is the time axis. We shall denote by x an arbitrary distinguished point of P of coordinates 0equations of a Cosserat medium, we are going to apply the Hamilton principle to a field of Lagrangian of the form:
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 1 form on D ∂ . Now, let us write the modified Hamilton principle:
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  Lagrange multipliers that evolve in order to satisfy the following conditions.
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 3 into itself, restricted to o Σ . Moreover, the floating frame coincides with the mobile frame, image of the material frame by the rigid component of the transformation. With the composition of maps (55), the configuration space of the body is the group: Σ , we replace it by a finite group calling upon the modal reduction:
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  The basis o B is rigid and fixed, while the other links are modeled by Reissner beams. The links are connected by one d.o.f. rotational joints of axis (from the basis to the tip): 1 2 , ,... p a a a . The joints are actuated with torques:
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