POINCARE-CHETAYEV EQUATIONS AND FLEXIBLE MULTI-BODY SYSTEMS - Archive ouverte HAL
Article Dans Une Revue Journal of Applied Mathematics and Mechanics Année : 2005

POINCARE-CHETAYEV EQUATIONS AND FLEXIBLE MULTI-BODY SYSTEMS

Résumé

This article is devoted to the dynamics of flexible multi-body systems and to their links with a fundamental set of equations discovered by H. Poincaré one hundred years ago [1]. These equations, called "Poincaré-Chetayev equations", are today known to be the foundation of the Lagrangian reduction theory. Starting with the extension of these equations to a Cosserat medium, we show that the two basic sets of equations used in flexible multi-body dynamics. The generalized Newton-Euler model of flexible multi-body systems in the floating frame approach and the partial differential equations of the nonlinear geometrically exact theory in the Galilean approach, are Poincaré-Chetayev equations.
Fichier principal
Vignette du fichier
POINCARE_CHETAYEV_EQUATIONS.pdf (346.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00672477 , version 1 (21-02-2012)

Identifiants

  • HAL Id : hal-00672477 , version 1

Citer

Frédéric Boyer, Dominique Primault. POINCARE-CHETAYEV EQUATIONS AND FLEXIBLE MULTI-BODY SYSTEMS. Journal of Applied Mathematics and Mechanics, 2005, 69 (6), pp.925-942. ⟨hal-00672477⟩
200 Consultations
499 Téléchargements

Partager

More