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Abstract 

 

 

 Hypospadias is one of the most common congenital malformations. It is considered 

to be a mild form of the 46,XY disorders of sex development (DSD), but its precise 

etiology remains to be elucidated. Compromised androgen synthesis or effects can cause 

this frequent malformation, although the mutational analyses of the genes involved in 

androgen actions have identified abnormalities in only a very small portion of patients. 

The overwhelming majority of cases remain unexplained and hypospadias may be a 

highly heterogeneous condition subject to multiple genetic and environmental factors. 

We here review the recent advances in this field and discuss the potential interactions 

between the environment and genetics.  
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 Hypospadias is defined as a defect in the development of the ventral aspect of the 

penis along with an ectopic opening of the urethral meatus. Its incidence ranges from 

1/1000 to 1/100 [1], with significant variations according to ethnic origin, making it one 

of the most frequent developmental defects. In most cases, the degree of hypospadias is 

relatively mild and a specific endocrine cause is not sought or is not found[2]. However, four 

main elements are involved in male genital construction and may contribute to this 

malformation[3,4]: (1) the genetic and endocrine background of the child, principally the 

genes of phallic development, gonadal steroid synthesis (mainly testosterone and its 5α 

reduced form, dihydrotestosterone, DHT), and the responsiveness to these hormones. The 

genital tubercle thus grows under the influence of androgens and any alteration in 

androgen production or receptors may produce a hypospadiac penis; (2) the placenta, 

which orchestrates the hormonal climate, especially during the first part of gestation; (3) the 

mother, with her own hormonal production and possible disorders; and (4) the environment of 

mother and child, which may also interfere in this fine balance[5,6].  

 

Over the last 30 years, male reproductive health has been altered, with deterioration 

in sperm count and an increasing number of cases of undescended testes, testicular cancers 

and hypospadias[9]. This phenomenon has raised some concerns regarding environmental 

chemicals such as the products of industrial and agricultural development [10,11]. We here 

review the role of the environment in the occurrence of hypospadias and the interaction 

between environmental factors and genetics. 
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I Genetic background 

 

Before evaluating the role of the environment, it should be acknowledged that several 

arguments are in favor of a predominant role for the genetic background. Familial clustering 

is seen in about 10% of the cases[12-15], and the recurrence risk in the male siblings of an 

affected patient is about 15% [16-18]. Seven percent of the fathers of children with 

hypospadias are also affected[19]. The risk of recurrence is also found to aggregate in 

more distant relatives. Using Danish health registers, Schnack et al. identified 5,380 boys 

diagnosed with hypospadias in a cohort of 1,201,790 boys born in the period 1973-2005. 

The risk ratios of hypospadias for male first-, second-, and third-degree relatives of a 

hypospadiac case were, respectively, 11.6%, 3.27%, and 1.33%. The risk of recurrence for 

the next male sibling depends on the severity of the hypospadias [16]. Segregation analysis 

suggests that hypospadias might be due to monogenic effects in a small proportion of the 

families, whereas a multifactorial mode of inheritance was reported to be more likely in the 

majority of families[20]. Finally, some of the 200 syndromes that include hypospadias have 

known genetic bases and shed light on the molecular mechanisms involved in genital 

development. [21,22] 

 

The environment may act on the genes that contribute to the occurrence of 

hypospadias at several levels.  

1- Level of phallus development: Homeobox genes A (HOXA) and D (HOXD) participate 

in the development of the phallus since knock-out of these genes in mice induces a 

malformation in the external genitalia consistent with hypospadias[23]. In humans, the 

hand-foot-genital syndrome (HFGS)[24,25] is related to mutations of HomeoboxA13 

(HOXA13). HOXA13 allows the normal expression of fibroblast growth factor (FGF) 8 
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and bone morphogenetic protein (BMP) 7 in the developing urethral epithelium in mice, 

thus modulating androgen receptor expression and glans vascularization[3]. The FGF 

gene family, especially FGF10[26], is also implicated in the development of external 

genitalia in mice[27]. In humans, polymorphisms of FGF8, FGF10 and FGFR2 may be 

associated with an increased risk of hypospadias[28]. 

 

2- Level of testicular determination: The genes leading to testicular dysgenesis are a cause of 

hypospadias. Severe hypospadias along with other genital abnormalities[29,30] can 

reveal heterozygous mutations of Wilms tumor 1 (WT1).  SOX9, DMRT1 and GATA4 

encode transcription factors acting immediately before the differentiation of the gonad 

into testis. Mutations of these genes induce testicular dysgenesis and are associated with 

46,XY disorders of sex differentiation (DSD), including severe hypospadias [31-34]. 

Variation in gene dosage, as shown in 46,XX and 46,XX d17 patients with SOX9 

duplication, can also induce penoscrotal hypospadias [31].  

 

3- Level of androgen biosynthesis: Mutations in the LH receptor gene (inducing a Leydig 

cell hypoplasia) and the 5α-reductase gene (inducing a defect of dihydrotestoterone 

synthesis) induce hypospadias, most often in a severe form with associated 

cryptorchidism and/or micropenis [32,35,36] [37]. MAMLD1 (mastermind-like domain 

containing gene) is another candidate gene that seems to modulate the synthesis of 

testosterone around the critical period of sex differentiation. MAMLD1 is expressed in 

the male gonad in mice, and it augments testosterone production and contains the SF1 

target sequence[38]. Fukami et al.[39] identified three nonsense mutations in four 

individuals with 46,XY DSD including micropenis, bifid scrotum and penoscrotal 

hypospadias. Genetic variants of MAMLD1 were further shown to be present in patients 



Page 6 of 25

Acc
ep

te
d 

M
an

us
cr

ip
t

with isolated hypospadias[40], as confirmed by Chen et al. [41], who identified five non-

synonymous mutations, some of them as polymorphisms. 

 

4- Level of androgen action: Mutations in the androgen receptor gene (AR) have been 

found in patients with either severe forms of hypospadias[42-44] or other signs of 

undervirilzation, such as cryptorchidism[45] or micropenis[46,47]. Mutation of the AR 

gene in partial androgen insensitivity syndrome is found only in 20% to 30% of cases 

and the phenotype remains particularly variable [46,48]. 

 

II Environment 

 

II-1 Arguments for an environmental contribution 

 

Several findings in both animal and human studies raise suspicion of an environmental 

contribution to this malformation. Hypospadias, whether associated with micropenis or not, 

has been reported in numerous wildlife species when the habitat is contaminated by 

pesticides[49]. The effects of prenatal xenoestrogens on animal male reproductive tract 

development have been studied by several groups. Male rat pups exposed to DES during 

gestation (at concentrations similar to those measured in first-trimester human fetal tissues) 

developed hypospadias[50,51]. Hypospadias was also found in male rodents after maternal 

treatment with vinclozolin (dose-response effect)[52], and similar findings were recorded for 

prenatal exposure to polychlorinated biphenyls (PCB), phthalates and dioxin[52-54].  

 
Despite some inaccurate registers which under-evaluate the number of hypospadias 

cases and the variable geographical distribution of the malformation[55], several reports 

suggest an increase in hypospadias over the last 20 years[56]. Boisen[57] performed a 
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prospective cohort study and found a high prevalence (1%) of hypospadias in the Danish 

population of male newborns, whereas the prevalence was reported to be 0.73% in the 

Netherlands in a cross-sectional study[58]. A prospective case-control study of 1,442 male 

newborns identified 16 cases of middle and posterior hypospadias (1.1%) in the south of 

France[59]. More recent reports have also described an increased incidence[60,61], but 

epidemiological studies nevertheless give divergent results about whether the trend of 

hypospadias is increasing and thus raise questions about temporal trends [62][63]. Aho 

et al. [64] identified all patients in the national hospital discharge registry who had been 

born in the period 1970-1986 and surgically treated for hypospadias before the age of 9 

years. They calculated the cumulative prevalence by dividing the number of patients by 

the number of male births and found that the prevalence of hypospadias in Finland 

remained constant throughout the study period but appeared to be approximately three 

times higher than previously reported. Improvements in completing the registration 

forms may account for a substantial proportion of the higher prevalence of hypospadias, 

according to these authors. Martinez Frias et al. [65] found similar results using the 

Spanish Collaborative Study of Congenital Malformations (ECEMC) registry to analyze 

the prevalence in two different periods.  

 

This phenomenon has raised some concerns regarding environmental chemicals, such 

as industrial and agricultural products. Two epidemiological studies reported a possible 

relationship between exposure to pesticides and hypospadias. Kristensen reported a moderate 

increase in the odds ratio (OR) for hypospadias in individuals exposed to farm chemicals (OR 

= 1.51, 95% confidence interval, 1.00-2.26)[66], and Weidner[67,68] concluded that 

maternal farming or gardening led to a slightly increased risk of hypospadias (OR = 1.27, 

95% confidence interval, 1.14-2.47). Residence in the vicinity of hazardous waste-disposal 
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sites has been associated with a high incidence of hypospadias[69,70]. Similarly, an increased 

rate of hypospadias was reported in boys from parents exposed to dioxin after the Seveso 

industrial accident[71]. A vegetarian diet in pregnant women was reported to carry a 

significant risk of hypospadias[72] (OR = 4.99, 95% confidence interval, 2.10-11.88). A 

study in Western Minnesota[73] found a higher rate of congenital abnormalities in infants 

conceived in spring when herbicides are usually widely used. Birth rates with urogenital 

abnormalities, as well as abnormalities in other systems, were significantly increased in high-

use areas. Another study[74] also suggested a possible gene-environment interaction at work 

in this agricultural region. A total of 22% of the families in which the father applied the 

herbicides had more than one child with a birth defect. 

 
Although most investigations of congenital anomalies have focused on major 

structural defects, recent epidemiology finds subtle developmental defects in genital 

masculinization. Anogenital distance, a reflection of male reproductive tract development 

which is reduced in hypospadiac patients[75], was found to be reduced in cases of prenatal 

exposure to phtalates[75,76]. 

 
Last, some of these substances, like DES (diethylstilbestrol), were observed to 

increase the hypospadias incidence in the second generation, suggesting a transgenerational 

effect[77]. 

 

 II-2 Substances  

 

Several substances in the environment may potentially interfere with male genital 

development because of their similarity to hormones. Although there is a long list of 

suspicious substances contained in herbicides, fungicides, insecticides, and industrial by-



Page 9 of 25

Acc
ep

te
d 

M
an

us
cr

ip
t

products or end-products (plasticizers, cosmetics, paints, etc.), none of them has been clearly 

identified as responsible for hypospadias. Various pollutants potentially involved in the 

abnormal development of the genital tubercle include: chlorinated pesticides (DTT, Lindane), 

polychlorinated biphenyl, methoxychlor, phenolic derivatives, nonylphenol, endosulfan, 

atrazine, phthalates, dioxine, furans[78], xenoestrogens, phytoestrogens, and mycoestrogens 

[79].  

 

 II-3 Contamination routes 

 

Humans are in constant contact with many of these substances[73,80] as they are 

found in water, soil, food and air[81,82]. These pollutants enter the body either by ingestion, 

inhalation, or adsorption, or they may be conveyed through the placenta. Individual exposure 

varies with dietary habits, life style, and work. Most of these pollutants are lipophilic and are 

stored in body fat for a lifetime[83]. They are also found in breast milk[84] and in the 

amniotic fluid. Since most of these chemicals use the same pathways as natural hormones, 

they have been named xenoestrogens and/or endocrine disrupting chemicals (EDC).  

 

III Interactions between environment and genetics 

 

 III-1 Types of action of environmental pollutants 

 

Environmental pollutants exhibit several genomic and non-genomic actions. They bind 

to the nuclear receptors such as estrogen receptors α and β (ERα/ERβ), inducing transcription 

activation (or repression) of specific gene expression[85,86]. Non-genomic actions are 

mediated by a plasma membrane estrogen or androgen receptor. Xenoestrogens have both 
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estrogenic and antiandrogenic actions and compete with natural androgens for the ligand-

binding domain (LBD) of the AR gene[87]. They also induce more potent estrogenic 

metabolites. In addition to these receptor-mediated actions, EDCs may affect synthesis, 

metabolism, excretion, and binding of endogenous hormones to SHBG, and they have 

the capacity to inhibit the transcription of androgen-dependent genes[88,89]. Finally, an 

epigenetic action has been demonstrated[90].  

 

A major point regarding the action of environmental toxicants in inducing 

hypospadias is the cumulative effects of multiple low-dose exposures. The cumulative effects 

of in utero administration of mixtures of "antiandrogens" on male rat reproductive 

development has previously been demonstrated[91]. In this study, the complex mixture 

behaved in a dose-additive manner, and compounds that acted by disparate mechanisms of 

toxicity displayed cumulative effects when present in combination. This situation could 

reflect real environmental conditions, in which several chemicals that do not act via a 

common cellular mechanism of action are present together and disrupt fetal tissues during 

sexual differentiation in a dose-additive manner[92,93]. 

 

 III-2 Candidate genes implicated in the susceptibility to environment 

 
 The dialogue between genes and the environment may include variations in gene 

expression and variations in receptivity.  Genetic variants (polymorphisms) may modulate the 

individual susceptibility to the external environment. 

 

III-2-1 Dysregulation of gene expression 

The expression of gonadal development genes varies according to the exposure to 

estrogen-like substances. Experimental studies in both rats and mice have demonstrated that 
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estrogens can directly inhibit testicular steroidogenesis in the fetus[94]. Consistent with this 

finding, studies have reported an increase in the incidence of hypospadias in male mice that 

were exposed in utero to DES or ethinyl estradiol[95]. In addition to this mechanism, a 

complete loss of androgen receptor protein expression was found to be a more severe effect of 

these substances[96].  

Xenoestrogens also act as endocrine disruptors. Molecular analyses in fetal rat testes 

after in utero exposure to phtalates have shed light on the potential mechanisms via which 

phtalates suppress testicular testosterone production. Several key genes involved in 

steroidogenesis were disrupted after in utero exposure to monobutyl phthalate and monoethyl 

hexyl phthalate, such as StAR, HMG-CoA synthase, SRB1 and the steroidogenic enzymes 

Cyp11a, 3beta HSD and Cyp 17 [97] [98,99]. Linuron, a urea-based pesticide, acts as an 

antiandrogen. It antagonizes rat and human AR, inhibits androgen-induced gene expression, 

and reduces testosterone production by effects on LH receptor expression [100] [101]. Dioxin 

also suppresses StAR and CYP17 mRNA expression later in gestation, possibly through 

suppression of LH secretion[102] [103]. 

Three estrogen-responsive genes are suspected to be at the crossroads of environment 

and genetics in hypospadias for several reasons: ATF3, ERα and TGF-β1. ATF3 is the most 

upregulated estrogen-dependent gene in the foreskin of hypospadiac patients [104]. 

Immunohistochemical analysis on human foreskin confirmed that the majority of the 

hypospadiac samples were positive for expression of ATF3[105]. Both animal and in 

vitro studies confirmed these findings. In vitro exposure to ethinyl estradiol increases 

expression and promoter activity of ATF3 in human foreskin fibroblasts [106]. In a 

murine model, fetal exposure to estrogen increases the level of ATF3 messenger RNA 

[107], whereas fetal exposure to DEHP (Di-(2-ethylhexyl) phthalate, a common 

plasticizer, activates the transcription and transduction of the ATF3 gene [108]. Since 
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ATF3 is implicated in cell cycle suppression, its upregulation may interfere with urethra 

formation[109], as suggested by the dysregulated apoptosis in the murine model 

described above [108]. 

Exogenous administration of estrogens also results in an increased expression of ERα 

(but not ERβ)[110]. Expression of TGF-β1 is also modulated by endocrine disruptors. 

Reverse-transcription polymerase chain reaction (RT-PCR) and Western blot studies have 

shown that the expression of TGF-β1 is upregulated in DEHP-treated mice along with a 

significant inhibition of male fetal genital tubercule[108]. 

 

  III-2-2 Gene polymorphisms 

 

 Polymorphisms of steroid receptors may modulate the response to toxic substances. 

An increased GGN trinucleotide repeat in the AR gene has been found to reduce its 

transcriptional activity in hypospadiac patients[111,112]. The role of amplification of the 

CAG repeats remains to be determined [113] and may be associated with 

undermasculinized genitalia, including hypospadias[114]. For some authors, the V89L 

variant of the SRD5A2 gene is a risk factor for hypospadias [115], whereas for others it 

is not [116]. Polymorphisms of the estrogen receptor may also facilitate the deleterious 

effects of xenoestrogens since their effects are mainly mediated through this receptor. The 

AGAGA haplotype of the estrogen receptor 1 (ESR1) gene is strongly associated with 

hypospadias[117]. The ESR1 C-A haplotype, for ESR1 XbaI and ESR2 2681-4A>G, 

respectively, increases the risk of malformation, as well[118]. An increased number of CA 

repeats (and subsequently increased ER activity) also augments the risk of 

malformation[119], and more recently we identified ATF3 polymorphisms in patients with 

isolated hypospadias[120]. The data regarding the association of polymorphisms with 
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hypospadias should nevertheless be interpreted with caution. In a large series of 620 

Caucasian hypospadiac patients, Van der Zanden et al. [116] failed to confirm the 

association of single nucleotide polymorphisms (SNPs) in SRD5A2 and ESR1 with 

hypospadias. The SNPs in ESR2 and ATF3 were even found to be associated in the 

opposite direction compared with earlier publications. These divergent results confirm 

that genetic association approaches need to be replicated in very large samples.  

 

 III-2-3 Xenoestrogen and epigenetics 

Changes in the epigenetic background induced by synthetic estrogens could be a 

significant factor in the susceptibility to disease development. The epigenetics appear to 

involve altered DNA methylation. The primordial germ cells undergo demethylation 

during migration and early colonization of the embryonic gonad, followed by 

remethylation starting at the time of sex determination in a sex-specific manner 

[121][122,123]. The exposure of the pregnant mother at the time of fetal sex 

determination may be sufficient to alter the remethylation of the germ line in the male 

fetus and permanently reprogram the imprinted pattern of DNA methylation in 

boys[124].  

Bredfeldt et al. [90] recently showed that 17beta-estradiol (E2) and the 

xenoestrogen diethylstilbestrol (DES) reduce levels of trimethylation of the lysine 

residue 27 on histone H3. Interestingly, the modulation of methylation by these 

substances is mediated by membrane-activated estrogen receptor signaling—through 

phosphatidylinositol 3 and kinase/protein kinase B—and occurs during windows of 

uterine development that are susceptible to developmental reprogramming. Activation 

of this nongenomic pathway has also been shown to reprogram the expression profile of 

estrogen-responsive genes in uterine myometrial cells. This mechanism for 
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developmental reprogramming caused by early-life exposure to xenoestrogens may 

contribute to the modulation of the epigenetic machinery during tissue development. 

 

IV Limitations and questions  

 

Although numerous studies point toward a major role for the environment in 

hypospadias, two limitations should be considered before attempting to draw definitive 

conclusions. First, caution should be exercised when extrapolating from murine experiments 

to humans. In these experiments, xenoestrogens induced hypospadias in male offspring 

exposed in utero, but the doses given to animals may not be comparable to environmental 

exposure. Second, several epidemiological studies have reported contradictory results, as 

noted above [62,64,65]. Epidemiological studies on maternal exposure are also inconclusive. 

Contrary to previously cited studies [67] [125], some reports did not confirm any significant 

risk of hypospadias when mothers were exposed to DTT[62,126]. Moreover, the critical level 

of exposure to EDCs was not assessed in any of the epidemiological studies implicating the 

environment[67] [125]. No relationship was identified between polybrominated biphenyl 

(PBB) [127] or polychlorinated biphenyl (PCB) exposure[128] and hypospadias. A recent 

meta-analysis indicated only a modestly increased risk of hypospadias associated with 

pesticide exposure[129].  

 

Conclusion 

 

The study of hypospadias is of interest for several reasons. It is an easily diagnosed 

malformation and, although minor, it recapitulates the pathophysiology of the disorders of sex 

development; the investigation of hypospadias thus offers insight into the mechanisms of sex 
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determination and differentiation. Moreover, because hypospadias is at the crossroads of 

genetics and environment, it is a model for exploring genetic and environmental interactions 

(Figure 1). The environmental data to date, however, should be interpreted with caution. 

Indisputable proof of the detrimental effects of the environment is still pending and no single 

EDC has been identified as a cause of hypospadias in humans. Hypospadias nevertheless 

remains a sentinel of the effects of the environment through genetics, both at the present time 

and for the next generation.  

 

 

Legend 

 

Table 1: Summary of genetic variants associated with an increased risk of hypospadias 
 

Figure 1: Schematic view of the intrication between environment and actors of genital 

masculinisation. 
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Table 1 

 

 

 

 

 

 

 

Gene Variants 

 

AR - CAG/GGN repeat length polymorphism 

SRD5A2 

- A49T,  

- L113V 

- H231R  

- V89L  

HSD17B3 - S232L 

ESR1 - G allele containing variants of ESR1 Xbal 

ESR2 
- G allele containing variants of ESR2 2681-4A>G 

- (CA)n polymorphism in intron 6 

ATF3 

- Specific ‘‘TTC’’ haplotype in intron 1  

- c.536A > G(R90) 

- 817C > T in the 3’-UTR.  

- L23M,  

- C53070T,  

- C53632A, 

- lns53943A 

MAMLD1/CXorf6 
- V432A 

- CAG10 > CAG13 

Table
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