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France. Tel: (33) 1.44.07.82.51; Fax: (33) 1.44.07.82.47
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Abstract

This paper uses experimental data to examine the existence of a teaching strategy
among boundedly rational players. If players realize that their own actions modify
their opponents’ beliefs and actions, they might play certain actions to this spe-
cific end and forego immediate payoffs if the expected payoff gain from a teaching
strategy is high enough. Our results support the existence of a teaching strategy in
several ways. After exhibiting some regularities consistent with teaching, we exam-
ine more precisely the existence of such a strategy. First we show that players update
their beliefs in order to take account of the reaction of their opponents to their own
action. Second, we examine whether players actually use a teaching strategy by
playing an action that induces a poor immediate payoff but is likely to modify the
opponent’s behavior so that a preferable outcome might emerge in the future. We
find strong evidence of such a strategy in the data and confirm this finding within
a logistic model that suggests that the future expected payoff that could arise from
a teaching strategy has indeed a significant impact on choice probabilities. Finally,
we investigate the effective impact of a teaching strategy on achieved outcomes and
find that more tenacious teachers can successfully use such a strategy in order to
reach their favorite outcome at the expense of their opponents.
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1 Introduction and motivations

Traditional game theory focuses on strategic interactions among fully rational
players, but as is now widely recognized, human reasoning might be bounded.
Thus, many approaches have suggested ways to encompass these limits into
game theory. While some studies address the theoretical side of the question
by examining, for example, convergence supported by evolutionary forces or
adaptive rules, other approaches, based on empirical standards, typically use
experimental data to provide a more accurate description of players’ behavior.
In the present study our aim is to contribute to the latter framework.

In the part of the literature designed to describe the way people play their
games, several studies analyze the interactions among adaptive players who
choose their response according to what they have learned in the past. Some
studies (e.g. Roth and Erev, 1995, and Arthur, 1991) focus on reinforcement
learning where players determine their actions according to their success in
bringing high payoffs in the previous periods of the game. In belief-based
learning models (Cheung and Friedman, 1997; Boylan and El-Gamal, 1993;
Mookherjee and Sopher, 1994, 1997; Rankin et al., 2000; Fudenberg and
Levine, 1998) players use the past history of the game to update their beliefs
about what their opponents may play. Finally, other studies (e.g. Camerer
and Ho, 1999) take both reinforcement and belief learning as two components
of the same learning model, known as the EWA learning model, which has
been proven to be very successful in predicting how people behave. All these
models provide foundations for equilibrium theory and offer opportunities to
model empirically observed behavior.

However, one might think that these approaches are at odds with the founda-
tions of traditional game theory by ruling out perfect rationality and regarding
people as merely adaptive. In this paper we attempt to exhibit empirically a
behavior that stands between these two extremes.

The starting point of our study is that in the learning models, players’ deci-
sion process has only a backward component: they respond according to what
they have experienced in the past. This rules out any awareness of the fact
that opponents might also learn from other players’ actions and might thus
be influenced by them. However, if a player suspects that his opponent can
also learn from the past history of the game, he might attempt to play strate-
gically to drive him into a particular set of actions. That is how a teaching
strategy might arise (i.e. playing an action that does not necessarily maximize
the expected payoff at the current round, but increases the probability of con-
vergence to equilibrium deemed preferable). Thus we aim to exhibit, among
adaptive players, a piece of sophistication or, from another point of view, we
are actually dumbing down rational players.
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What do we know about people strategic reasoning in experimental repeated
games? The fact that players might be willing to make good use of strategic
interactions in order to manipulate their opponents seems natural and has
been referred to in some stylized situations in economics. In repeated pub-
lic good games for instance, it might be argued that players choose positive
contributions in order to set a good example and signal their willingness to
cooperate in latter rounds so that they would induce others to do the same. In
Cournot games, players could play aggressively by producing a high quantity,
hoping that their competitors will reduce their productions in the future. How-
ever, it might be noted that, surprisingly, these reasonings have not always
proven to be as relevant as expected. In an experimental public good game
Offerman et al. (2001) find that players’ belief formation process is consistent
with naive Bayesian expectations where people do not take strategic interac-
tions into account. However, as noted by the authors, the step-level public
good game they use is strategically complicated. This game is characterized
by the fact that a funding threshold has to be reached before the good can
be provided. It has multiple equilibria, which might appear computationally
demanding so that strategic reasoning is made very difficult. On the other
hand, Huck et al. (1999) run an experimental Cournot game and find that
players tend to imitate the others so that a high production does not induce
low productions from the competitors in the future and behavior converges to
the competitive (or Walrasian) outcome. In a related research, Dürsch et al.
(in press) run a Cournot game where human players face a pre-programmed
computer that follows one of some usual learning algorithms; the authors find
that human players frequently try to take advantage of the learning process
of their adaptive ”artificial” opponent and teach it in order to increase their
payoff. However, consistent with Huck et al. (1999), the authors also find that
imitation is the unique learning rule that prevents human players from teach-
ing their opponents. Moreover, looking at the ”human vs human” data from
Huck et al. (2004), Dürsch et al. find that when human subjects interact with
other human subjects, they tend to behave as predicted by adaptive learning
models and do not teach.

These facts seem to indicate that teaching is not relevant in every situation.
Indeed, teaching might become an intricate job in too complicated games.
Likewise, particular forms of learning (e.g. imitation) might not be compati-
ble with a teaching strategy. Still, rejecting strategic reasoning in game theory
might appear strange, and one could suspect that in other environments, there
might be some room for strategies more sophisticated than the myopic strate-
gies induced by learning models. Indeed, the literature provides some studies
that unambiguously emphasize the limits of adaptive learning models and
suggest that players act more strategically than implied by these models. For
example, Ehrblatt et al. (2009) analyze how teaching speeds up convergence to
a unique (pure strategy) equilibrium. They suggest that when a player’s Nash
action converges before his beliefs, he must have chosen this action even if it

3
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does not maximize his short run payoff (because it is outside his best response
set) in order to teach his opponent and get a higher payoff in the long run.
They then use a criterion to separate teachers and learners in pairs of play-
ers: the player whose actions converge first in a pair is said to be the teacher
and the player whose actions converge later is a learner. On the other hand,
Camerer et al. (2002) add sophistication to adaptive models by assuming a
population composed of two types of players: a fraction of them are supposed
to be fully rational and consequently have the ability to exhibit equilibrium
behavior while the remaining fraction is regarded as adaptive and only looks
backward to choose the current action. Rational players have in mind their
own estimation of the repartition (not necessarily the real one) between ra-
tional and adaptive players, using their knowledge to outguess their adaptive
opponents. Hence the authors examine how people learn in a heterogeneous
population of players.

In our approach we let every player have a piece of sophistication, and we re-
gard them as neither extremely sophisticated nor extremely unsophisticated.
Thus we investigate teaching when every player has the ability to teach and
is willing to lead his opponents to his favorite outcome. In order to make our
purpose non trivial, we wanted players’ favorite outcomes to be different and
thus used a game with diverging interests. We are also interested in studying
strategic interaction in pairs of players rather than in a population of players.
Indeed, one can reasonably expect that manipulation would be more promi-
nent when players interact with the same opponent throughout the game. 1

In Section 2 we describe our experimental design. In Section 3, we discuss
our results by first exhibiting some regularities that support the existence of
teaching. We then turn to a thorough investigation of a teaching strategy.
First, we test whether players see their opponents as learners who observe
the history of the game and modify their behavior accordingly, which indeed
represents a necessary condition for players to adopt a teaching strategy. To
this end, we estimate the difference between players’ actual (or ”true”) beliefs,
elicited using an appropriate scoring rule, and γ-weighted beliefs (Cheung
and Friedman, 1997) where players only consider the past history of their
opponents’ actions. We then examine whether this difference can be explained
by players’ own past actions by testing whether they perceive that their own
actions can modify their opponents’ behavior. In the next step, we investigate
whether players actually use a teaching strategy. Teaching implies that players
could choose actions with poor immediate expected payoff that are likely to
influence the opponent’s behavior so that they might lead to a more profitable
outcome in the future. Thus, we examine this implication in two parts. First,
we test the existence of such strategy by examining players’ tendency to depart

1 For related theoretical approaches on that point, see Ellison (1997) and Schipper
(2006).
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from best responding by playing actions that might lead to the emergence of
a more favorable equilibrium in future. Second, we test if players choose their
actions according to the prospective payoff gain that might follow from a
modification of their opponents’ beliefs. More precisely, we estimate a logistic
model where the probability of a given action being played depends not only
on the immediate expected payoff, as it is the case when players are regarded
are merely myopic, but also on the cumulative future payoff gain induced by
the expected modification of the opponent’s behavior. Finally, we examine the
actual consequences of teaching and analyze whether using a teaching strategy
is an effective tool for players to drive the outcome of a game. Section 4 finally
concludes.

2 Experimental design and procedures

The experiment was run using the computerized experimental laboratory of
the University of Paris 1 Panthéon-Sorbonne from the Summer through the
Fall of 2006. 2 No subject had any training in game theory. Each experimental
session lasted almost one hour and a half. All sessions consist of 30 repetitions
of the game represented below under two strategic treatments we will describe
in this section. The written instructions given to the subjects clearly stated
that the game would last for 30 repetitions, so this was publicly known by every
subject. During the experiment, players were evenly and randomly divided into
type 1 and type 2 players. Payoffs were denominated in units of experimental
currency and converted into Euros at the end of each session. The subjects, on
average, earned approximately e14.4 for their participation. They were paid
e3 just for showing up. 3 A translation from the original French instructions
given to the participants can be found in an appendix at the end of the paper.

The game we used can be represented by the matrix below where row player
is of type 1, while column player is of type 2. It is in fact a reduced form of
the duopoly game initiated by Hamilton and Slutsky (1990). In their set-up,
X,Y and Z refer respectively to the Cournot, the Stackelberg leader and the
follower quantities.

2 For conducting the experiment we used the experimental software ‘Regate’
(Zeiliger, 2000).
3 Throughout the paper, all payoffs will also be denominated in units of experi-
mental currency. Subjects have been paid according to the sum of the payoffs they
received during the 30 repetitions of the stage game. Every 200 units of experimental
currency could be redeemed for e1.6 after each session.

5
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Payoff matrix

type 2

X Y Z

ty
p
e

1 X (40,52) (22,46) (40,52)

Y (35,40) (10,20) (44,46)

Z (40,52) (30,60) (40,52)

This game has many features we desired in our design. First of all, it is easy
to understand. Then, it has three non Pareto-rankable Nash equilibria: (X,X),
(Y,Z) and (Z,Y) which are not too difficult to calculate or learn deductively.

The multiplicity and non Pareto-rankability of these equilibria are useful fea-
tures for our purpose. Indeed, as already noted, we are interested in investigat-
ing teaching incentives in a set-up where both players are potential teachers
and are willing to lead their opponent to their favorite outcome. On the other
hand, diverging interests make teaching more useful and consequently more
likely to emerge because players have conflicting preferences over equilibria.
For instance, at (Y,Z), type 1 players get their best payoff. Thus, it is natural
that type 1 players would like to make (Y,Z) emerge. However, one can easily
notice that at this equilibrium, the type 2 opponents get their worst equi-
librium payoff, hence this equilibrium exhibits a strong conflict of interests.
Likewise, (Z,Y) is the best outcome for type 2 players while it is the worst
equilibrium in terms of payoff for the type 1 opponents. Then, consistent with
the terminology used by Hamilton and Slutsky 4 , if we observe convergence
to (Y,Z) (resp. (Z,Y)) in a pair, one could say that type 1 (resp. type 2) play-
ers take the leadership while the opponents are the followers. Consequently,
throughout the paper, we will refer to (Y,Z) and (Z,Y) respectively as type 1
and type 2 leadership equilibria.

Finally, one last interesting feature is the use of asymmetric payoffs that gen-
erates interesting testable implications concerning relative teaching incentives
across players.

For each session we conducted, we adopted one of two treatments that differ
according to the matching protocol that was implemented. More precisely, we
performed a fixed-opponent, or ‘Partner’, treatment and a random opponent,
or ‘Stranger’, treatment. In both treatments, the type assigned to each player
remains the same throughout the experiment. If players attempt to ‘teach’
their opponent, the way in which they are matched when a game is played
repeatedly might affect behavior. Thus, running these two treatments allows

4 More precisely, in Hamilton and Slutsky, (X,X) corresponds to the Cournot equi-
librium, while (Y,Z) and (Z,Y) correspond to the Stackelberg equilibria.

6
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us to test the impact of random matching. We recruited 76 subjects, 40 for the
Partner treatment and 36 (two sessions of 18 subjects each) for the Stranger
treatment.

In each round, before choosing their action, subjects’ beliefs were elicited using
a proper scoring rule defined below. They were asked to report their beliefs,
or predictions, about the likelihood that their opponent would use each of his
actions available in the current round (i.e. X, Y or Z).

The belief elicitation procedure takes the classical quadratic form used in the
literature. Subjects were asked to report the probability that their opponent
will play X, Y or Z. Such a report takes the form of a vector b = (bX , bY , bZ)
where ba represents the belief held by the subject associated with the action
a of his opponent (a =X,Y,Z). A player’s payoff when he reports b and his

opponent actually uses action a is given by
[

8 − 4
(

(1 − ba)
2 +

∑

z 6=a b2
z

)]

.

This formula means that each subject receives an endowment of 8 units of
experimental currency at the beginning of each round and reports his beliefs.
The amount (1 − ba)

2 subtracted from the initial endowment of the subject
corresponds to a penalty for having reported an inappropriate belief for the
action a his opponent has played in the current round. Note that this penalty
equals 0 when the subject reports a probability ba = 1 and his opponent
plays a at the current round. Subjects are also penalized for having stated
inappropriate beliefs for the other actions by a subtraction of an amount
∑

z 6=a b2
z from their initial endowment of 8 units of experimental currency. The

worst possible guess (i.e. putting all the probability weight on an action that
the opponent does not actually choose) leads a payoff of 0 (and explains the
normalization constant (4) which appears in the formula). It can be easily
demonstrated than according to this computation, risk neutral subjects should
tell the truth. 5

As usual in this kind of design, the reward for reporting beliefs remains small
in comparison with the payoffs associated with the game. Indeed, this is an
important point because a too large reward could affect subjects’ behavior due
to the possibility of playing any particular action repeatedly so as to maximize
their prediction payoffs at the expense of their game payoffs.

At the end of each round, subjects were informed about the action of their
opponent, their game payoff, their prediction payoff, and the game payoff
of their opponent for the current round. When deciding in a given round,
subjects could always see on their screen information about their own past

5 Several studies (e.g. Sonnemans and Offerman, 2001, Nyarko and Schotter, 2002)
indicate that, with this quadratic scoring rule, players indeed report the truth.
Rutström and Wilcox (2006), however, find that an intrusive scoring rule for belief
elicitation affects people’s behavior.

7
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actions, game payoffs and predictions in earlier rounds. Actions and game
payoffs of their opponents for the past rounds also remained present on the
screen. 6 Note that in the Stranger treatment, players were only informed
about their opponents’ actions and game payoffs at the current round, but
they were not given the whole history of actions and payoffs of each of their
successive opponents for the past rounds.

3 Results

3.1 A first overview

Before we turn to a more detailed analysis highlighting the existence of teach-
ing, we start by pointing out some prominent regularities in the data that
could indicate the existence of sophistication in players’ behavior.

Among the 76 subjects who participated in the experiment, 4 individuals (all
in the Partner treatment) reported clearly inconsistent beliefs (for example
always putting a probability 1 on a given action, or a probability 1 on each
of the three actions in turn, regardless of their opponent’s actual behavior) or
had no variation in their actions and/or beliefs, thus preventing the statistical
analysis of their behavior at the individual level carried out in Section 3.2; we
had to discard these subjects in the analysis. Two of these 4 puzzling subjects
were paired together, and we discarded this pair in the analysis; obviously,
the partners of the 2 others had to be discarded as well. Thus 3 pairs among
20 were discarded in the Partner treatment. All individuals in the Stranger
treatment were kept for the analysis. We are left with 34 players (17 pairs) in
the Partner treatment, and 36 players in the Stranger treatment.

Teaching involves playing an action that is not necessarily an immediate best
response but that is likely to modify the opponents’ behavior profitably in
the future. Thus, if players use a teaching strategy, they might be led to take
‘suboptimal’ decisions. Tables 1 to 4 present in the rows players’ decisions and
in columns their myopic optimal decision given stated beliefs (BestX, BestY,
BestZ), separating by type and treatment. Off-diagonal elements give the num-
ber of suboptimal decisions. These suboptimal decisions would be regarded as
errors in usual learning models, but as we will see in this section and analyze

6 For the reason noted above, it is natural in this kind of design to make sure that
the prediction payoffs are not too prominent in comparison with the game payoffs.
That is why subjects were informed about their prediction payoffs on the screen that
appeared at the end of each round and recapitulated all the relevant information
for the round, but contrary to game payoffs among others, prediction payoffs did
not remain present on the screen in later rounds.

8
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in greater details in the remainder of the paper, these decisions exhibit partic-
ular patterns that are inconsistent with an error process but consistent with
a teaching strategy whereby players try to influence their opponent’s future
beliefs and behavior by playing actions that are not necessarily in their im-
mediate best response set. Note that X is a best response when players put a
zero probability on their opponent playing Y. X then only weakly dominates Z,
and players are indifferent between X and Z. Since in this case players do not
think their opponent will choose Y, action Z does not support any equilibrium
whereas X supports the equilibrium (X,X). Consequently, in what follows, we
will retain X as the optimal choice when players are indifferent between X and
Z. As can be noticed below, this case remains relatively scarce in the data.

As can be seen in these tables, suboptimal decisions are not evenly distributed,
as would be the case if they were random errors by players, but rather concen-
trated on specific actions; notably on playing Y when Z was the best response
(accounting for 44 to 50% of suboptimal decisions). This pattern is particu-
larly interesting because, for both players, deviating from action Z when it
is a best response leads to the harshest cost of deviation. It is then hard to
interpret these suboptimal decisions as errors since it would mean that players
make many more errors when those errors are the most costly. On the other
hand, such actions are to be expected from players using a teaching strategy,
since their preferred equilibrium is supported by action Y while their worst
equilibrium payoff is supported by action Z.

Table 1
Partner treatment, type 1 players

BestX BestY BestZ

X 9 5 51

Y 5 154 75

Z 6 25 180

Table 2
Partner treatment, type 2 players

BestX BestY BestZ

X 5 14 59

Y 2 74 111

Z 2 33 210

One could obviously expect players to use a teaching strategy to make their
leadership equilibrium emerge by playing Y even if it is not a best response,
so, even if we will turn to a more detailed analysis in section 3.3.1, it can
be interesting, as a first approach, to examine the distribution of suboptimal
decisions across types and treatments. Table 5 presents, in its first row, the fre-
quency of all possible suboptimal decisions, separated by treatment and type.

9
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Table 3
Stranger treatment, type 1 players

BestX BestY BestZ

X 0 13 41

Y 1 206 89

Z 1 58 131

Table 4
Stranger treatment, type 2 players

BestX BestY BestZ

X 1 6 34

Y 1 50 71

Z 0 41 336

It shows that while type 1 players take slightly fewer suboptimal decisions in
the Partner treatment, the reverse is true for type 2 players: their proportion of
suboptimal decisions is 53% higher in the Partner than in the Stranger treat-
ment. Two-sample t-tests with unequal variances at the individual level (N=17
in the Partner treatment, and 18 in the Stranger treatment) reveal that type
2 players take significantly more suboptimal decisions in the Partner treat-
ment than in the Stranger treatment (p-value=0.013) while differences in the
frequency of suboptimal decisions across treatments is not significant for type
1 players (p-value=0.503). Moreover, in the Partner treatment, a paired t-test
at the pair level (N=17) shows that type 2 players take significantly more
suboptimal decisions than type 1 players (p-value=0.011). Conversely, type 1
and type 2 players in the Stranger treatment do not take such decisions in
significantly different proportions, as a two-sample t-test 7 at the individual
level shows (p-value=0.161).

In the three bottom rows of Table 5, we separate suboptimal decisions ac-
cording to whether they involved playing X, Y or Z: subX is the fraction of
suboptimal decisions X among all decisions, and similarly for subY and subZ.
We apply the same tests as above. We find that type 2 players take signifi-
cantly more suboptimal decisions X and Y across treatments (p-value=0.055
for suboptimal decisions X and p-value=0.037 for suboptimal decisions Y).
Moreover, we find that type 2 players take significantly more suboptimal de-
cisions Y than type 1 players within the Partner treatment. All the other 9 (5

7 Because no fixed pairs of players exist in the Stranger treatment, paired t-tests
are neither feasible nor adequate. We therefore use two-sample t-tests when testing
differences between types in the Stranger treatment. We thus regard our Stranger
treatment as a good proxy of a series of one-shot games where players are indepen-
dent of each other. All tests presented in this study are two-sided.

10
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inter types and 4 inter treatments) tests led to insignificant differences.

Table 5
Distribution of suboptimal decisions

Partner Stranger

type 1 type 2 type 1 type 2

All suboptimal decisions 0.327 0.433 0.376 0.283

By type of suboptimal decisions

subX 0.110 0.143 0.100 0.074

subY 0.157 0.222 0.167 0.133

subZ 0.061 0.069 0.109 0.076

Overall, Tables 1 to 5 show that type 1 players do not behave differently across
treatments with respect to suboptimal decisions, neither globally nor when
examining specific suboptimal decisions. On the other hand, type 2 players
have a higher frequency of suboptimal decisions in the Partner treatment, and
this difference is essentially caused by an increase in suboptimal decisions X
(+ 6.9 percentage points) and Y (+ 8.9 percentage points). Type 2 players
thus seem to be more prone than type 1 players to deviate from their best
response when the matching protocol gives them the opportunity to drive their
opponents to a specific outcome. Moreover, these deviations tend to favor the
action that supports the equilibrium giving them the highest possible payoff at
the risk of high deviation costs. Incidentally, giving type 1 players more salient
incentives to teach thanks to the fixed-matching protocol does not impact their
behavior. This is consistent with the fact that type 1 players benefit less than
type 2 players from the emergence of their leadership equilibrium.

Another interesting pattern concerns the description of convergence of pairs
of players in the Partner treatment. We say that a pair has converged to a
given equilibrium when this equilibrium is the majority outcome in the last
five rounds. Among the 17 pairs of players in the Partner treatment, 6 have
converged to a type 1 leadership equilibrium, 6 to a type 2 leadership equilib-
rium, 2 to the (X,X) equilibrium, and 3 have not converged to any equilibrium
outcome. We focus on the first two types of convergence as they represent the
focal equilibria for both types of players. Figure 1 presents the evolution of the
proportion of type 1 and type 2 leadership equilibria, separating by types of
convergence. Pairs converging to the type 1 leadership equilibrium do so quite
early in the game: from round 7 onwards, type 1 leadership is the majority
outcome in almost every round. On the other hand, for pairs converging to the
type 2 leadership equilibrium, a fiercer competition seems to have prevailed
among players, although type 2 leadership is somewhat more prevalent than
type 1 leadership during the early phases of the game.
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Fig. 1. Convergence
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Thus, type 2 players seem to have taken a more proactive role in groups con-
verging to their preferred equilibrium. Although type 1 and type 2 leadership
equilibria had roughly the same frequency in the first rounds in both con-
vergence groups, type 2 players in the first group seem to have abandoned
early the prospect of driving their opponent to the (Z,Y) equilibrium, while
the reverse appears true for the second convergence group. Looking at play-
ers’ decisions, we indeed find that type 2 players in the second convergence
group tend to play their leadership action Y more often than those in the first
convergence group even if Y is suboptimal. This confirms the fact that type 2
players in the second convergence group are more insistent on the emergence
of their leadership equilibrium than type 2 players in the first group of con-
vergence. The proportion of suboptimal decisions Y (among all decisions) by
type 2 players in the second group is 26.11% while it is 12.22% for type 2
players in the first group. This difference is significant (Student test N=6 in
each group, p-value=0.051). On the other hand, the difference of proportions
of suboptimal decisions Y for type 1 players across groups is weaker: these
proportions are 10% and 18.89% for type 1 players in the first and second
group respectively, and the difference is not significant (Student test N=6 in
each group, p-value=0.188). Thus, while type 1 players do not seem to behave
differently in the two convergence groups, we can notice that type 2 players’
behavior is different across groups and the tendency of this particular type of
player to insist on its leadership action seems to play a role in convergence.
In other words, these results support the fact that type 2 players’ behavior is
particularly likely to be a determinant of coordination. The remainder of this
paper will analyze in greater details the precise determinants, prevalence and
consequences of the presence of a teaching behavior in our game.

In sum, this section has emphasized some regularities which tend to indicate
that players think more strategically than what usual learning models pos-
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tulate and are likely to teach their opponents. The rest of the paper will be
devoted to testing the existence of a teaching strategy in greater details ac-
cording to a step-by-step approach: in the following section, we will confirm a
precondition for teaching, namely the fact that players think strategically and
see their opponents as manipulable learners. Then, in the following section, we
will check that players play strategically and actually use a teaching strategy.
In the final section, we will investigate the consequences of the use of such a
strategy on the outcome of a game.

3.2 Players’ beliefs

In order to use a teaching strategy, players must first be aware of the learning
process of their opponents (i.e. they must be aware of the fact that their
opponents use the past history of the game to form their beliefs). It is thus
natural, before we examine whether players actually teach their opponents,
to first confirm this precondition. In this section, we test whether players
anticipate their opponents’ reaction to their own action or, in other words, if
they see their opponents as learners.

Our strategy to examine whether players realize that they can influence their
opponents’ behavior will be to analyze whether subjects take their own ac-
tions into account when forming their beliefs. Explicitly modeling the way a
player’s actions influence his own beliefs via his opponent’s anticipated reac-
tion would undoubtedly lead to an intricate model and would require strong
behavioral assumptions. Our aim in this section is not to describe accurately
those complex interactions, but rather to test whether players think of their
opponents as learners who observe others’ actions and modify their behavior
accordingly. One way to do this would be to examine directly whether play-
ers’ beliefs vary according to their own action in the previous round. Beliefs,
however, may also depend on the history of the opponents’ past actions, as
postulated by traditional proxies used to describe players’ belief formation
process. 8 If it is the case, one must filter out the impact of these past actions
to avoid spurious correlations between ai(t − 1), player i’s own action in the
previous round, and his current beliefs. 9 Hence, we test whether player i’s

8 A typical example would be the Bayesian updating rule.
9 If players partly base their beliefs on the past history of their opponents’ play,
then this component will be correlated to their beliefs both in the previous and
current rounds and to their action in the previous round (because ai (t − 1) obviously
depends on player i’s beliefs in t − 1), and one would find a positive correlation
between current beliefs and previous action even if there is no causal effect of the
previous action on the current belief. Note that we do not assume that players
necessarily base their beliefs on the history of their opponents’ play, but rather
allow for the possibility of such a belief formation process.

13
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elicited beliefs about the action a, a = X, Y, Z, of player j in round t, denoted
Ba

i (t), significantly differ from beliefs that would depend only on the history
of his opponent’s past actions up to round t − 1, and if this difference can be
explained by ai(t − 1).

Adopt the terminology of Nyarko and Schotter (2002) and refer to beliefs based
only on the history of the opponents’ actions as “empirical” beliefs. Denote
them by B̃a

i (t) to distinguish from ”true” beliefs Ba
i (t) reported by players.

Next define Ra
i (t) as the difference between true and empirical beliefs: Ra

i (t) =
Ba

i (t)− B̃a
i (t). Since B̃a

i (t) is conditional on the history of the opponents’ past
actions, but not on ai(t − 1), then, if Ra

i (t) depends on ai(t − 1), true beliefs
Ba

i (t) must also depend on ai(t−1). In this case, we may conclude that players
think that their opponents modify their behavior according to the history of
the game and take this into account into their own beliefs, or in other words
they realize that their opponents can learn, which would be sufficient to make
teaching possible.

We chose to model empirical beliefs, B̃a
i (t), as γ-weighted beliefs (Cheung and

Friedman, 1997) where the belief held by player i about the probability that
player j will play action a in round t + 1 is given by

B̃a
i (t + 1) =

1 {aj(t) = a} +
∑t−1

u=1 γu1 {aj(t − u) = a}

1 +
∑t−1

u=1 γu
(1)

where 1 {aj(t) = a} equals one if player j has played action a in round t, and
zero otherwise. Actions played in a given round are discounted with time at
rate γ ∈ [0, 1]. When γ = 0, this model reduces to the Cournot model where
the belief held in period tabout action a is one if the action has been played
in round t − 1 and zero otherwise; when γ = 1, the model reduces to the
fictitious play model where the belief about a given action corresponds to the
frequency with which this action has been played since round 1. The Cheung
and Friedman model has been found to perform well empirically to explain
people’s behavior in games.

As can be seen from Equation (1), γ-weighted beliefs in round t are only
conditional on the past history of the actions played by other players up to
round t − 1 and are thus good candidates for constructing B̃a

i (t).

To do so, we estimate the model of equation (1) at the individual level using
the method of minimum mean-squared error 10 along the lines of Nyarko and

Schotter (2002). We are thus able to compute estimated empirical beliefs ˆ̃
Ba

i (t)

10 That is, our estimator is the values of the parameter vector that minimize
∑

i,t,a

(

Ba
i (t) − B̃a

i (t)
)2

.
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that can be interpreted as the largest part of the individual’s true beliefs Ba
i (t)

that can be explained by the past history of the opponents’ actions up to round
t−1 under the Cheung-Friedman hypothesis. For each a, a = X, Y, Z, we then
compute R̂a

i (t), the difference between true (or elicited) beliefs and estimated
empirical beliefs in round t, and proceed to examine whether these differences
vary according to the action taken by the individual in the previous round,
ai(t − 1).

If players think their opponents are adaptive learners, then, as argued earlier,
the difference between true and empirical beliefs must depend on ai(t − 1).
However, the difference can also vary according to the opponents’ past be-
havior, and, more particularly, according to the opponents’ propensity to best
respond to the previous action in the past.

Moreover, the size of the difference Ra
i (t) will also depend on the value of player

i’s empirical beliefs since a high empirical belief leaves less room for a large
positive Ra

i (t) than low empirical beliefs. Hence, for each a, a = X, Y, Z, we run
random-effect panel regressionswith heteroskedasticity-robust standard errors
of R̂a

i (t) on a dummy variable 1 {ai(t − 1) = ã} where a is the best response to
ã (i.e. X for R̂X

i (t), Z for R̂Y
i (t), and Y for R̂Z

i (t) ), on thecurrent propensity
of the opponent(s) to best respond when player i’s previous action was ã (i.e.

:
∑t

τ=3
1{aj(τ−1)=a,ai(τ−2)=ã}

∑t

τ=3
1{aj(τ−1)=a}

) 11 and on the estimated empirical belief of player

i, ˆ̃
Ba

i (t).

As mentioned above, the precondition we aim to exhibit in this section is that
players are aware of the impact of their actions on their opponents’ behavior;
thus results in Table 6 focus on the estimated coefficients of 1 {ai(t − 1) = ã}
for each belief difference R̂a

i (t) in each treatment, first for all players, then sep-
arating by type. 12 13 In this table, a positive coefficient means that players’
true beliefs regarding a given action have a stronger upward bias (or a weaker
downward bias) relative to γ-weighted beliefs when the action for which it is
a best response has been played in the previous round. In other words, it indi-
cates that player i will put more weight on his opponent best responding to his
own previous action ã than implied by γ-weighted beliefs. The coefficients are
always positive and significant in the Partner treatment. This indicates that
players in this treatment, whatever their type, hold a stronger belief about

11 The proportion is set at zero before round 3 and when the denominator is zero.
12 Results for the control variables indicate that, as expected and mainly in the

Partner treatment, Ra
i (t) tends to be smaller when ˆ̃

Ba
i (t) is high. No clear pattern

emerges for this variable in the Stranger treatment. No clear pattern emerges for
the proportion of best responses either, the corresponding coefficients often being
insignificant.
13 There are 17 individuals of each type in the Partner treatment and 18 in the
Stranger one.
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their opponent playing a when they just played ã than when they chose an-
other action. Our interpretation of this finding is that players think that their
opponent tries to predict future actions from the past history of the game, will
consequently put more weight on the probability that ã will be played again
in future rounds, and are thus likely to best respond a more frequently. When
separating by type, all coefficients remain positive and significant, indicating
that both types of player take strategic interactions into account when forming
their beliefs. Moreover, the size of the coefficients is also rather homogeneous
across types, except for RZ

i , where type 1 players seem to believe that the
impact of having played Y in the previous round will have a larger impact
than type 2 players do. This could be explained by the fact that (Y,Z) is the
equilibrium where the difference in payoffs between types is minimal, while
(Z,Y) is the equilibrium where this difference is maximal. A social norm for
equality would then make it harder to drive players to (Z,Y) than to (Y,Z).
This is consistent with the pattern depicted in Figure 1, which shows that
type 2 players have to be rather insistent to drive the game to their preferred
equilibrium.

On the contrary, results for the Stranger treatment show that the coefficients
are never significant, indicating that players do not anticipate the impact of
their actions on their opponents’ behavior in this treatment. The difference
in results for the two treatments reflects the fact that the matching protocols
differ in the ease with which players can influence their opponents.

To summarize, these results indicate that when players know they will face the
same opponent in the next round, they anticipate a greater tendency for the
opponent to play a best response to what has just been played than implied
by the history of their opponent’s past actions. In other words, they seem to
believe that their opponent partly bases his actions on the past history of the
game. Therefore, they realize that their own actions are likely to influence their
opponent’s behavior, thus confirming a precondition for teaching. Because in
the Stranger treatment players know that pairs are rematched in each round,
this conclusion does not hold. They have no reason to put a greater probability
on their opponents best responding to their past actions, which implies that
the differences between true and empirical beliefs do not differ according to
their previous action. The essential conclusion that can be inferred from these
results is that there is room for teaching in the Partner treatment, but the
actual use of teaching depends does not only on the knowledge of the learning
process of the opponent, but also directly on the incentives brought by the
payoff matrix. Because the latter is asymmetric, we can expect the two types
of players to differ in their use of a teaching strategy, despite having the
same knowledge of the potential impact of their actions on their opponent’s
behavior. The next section addresses the actual use of teaching by players.

16
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Table 6
Differences in belief formation

Partner Stranger

RY
i RZ

i RX
i RY

i RZ
i

All 0.064
(0.021)

∗∗ 0.109
(0.018)

∗∗ 0.093
(0.019)

∗∗ 0.006
(0.019)

0.006
(0.015)

0.008
(0.017)

type 1 0.070
(0.033)

∗ 0.109
(0.025)

∗∗ 0.143
(0.029)

∗∗ 0.032
(0.027)

0.016
(0.020)

0.026
(0.022)

type 2 0.081
(0.026)

∗∗ 0.103
(0.026)

∗∗ 0.048
(0.025)

† −0.023
(0.024)

−0.016
(0.023)

−0.022
(0.026)

Robust standard errors in parentheses.

Significance levels : † : 10%, ∗ : 5%, ∗∗ : 1%

3.3 Teaching a learner

If, as we have shown in the previous section, players think strategically and
are aware of their opponents’ learning process, they have an incentive to play
strategically and teach adaptive players. We are ready, therefore, to proceed to
the next step of our analysis which consists of investigating whether players
actually use a teaching strategy by choosing actions with poorer short run
payoffs but which will modify an adaptive opponent’s behavior in a way that
might lead to higher payoffs in the longer run.

3.3.1 Over and under responses

A way of testing whether players use a teaching strategy is to examine, along
the lines of Ehrblatt et al. (2009), whether their behavior is consistent with
their beliefs about their opponents’ actions or if they depart from such an
immediate payoff maximizing behavior.

Indeed, as noted in Section 3.1, the existence of a teaching strategy implies that
players will not necessarily respond best to their current beliefs about their
opponent’s behavior and that they are likely to take suboptimal decisions. It
will be convenient in what follows to give a more precise description of the
way players depart from their best response behavior. If players anticipate a
higher future payoff by playing an action which is not in their immediate best
response set, they might exhibit a stronger tendency to play this action than
implied by their current beliefs. We will refer to such a behavior as an ‘over
response’ behavior. Similarly, one could also say that players ‘under respond’
by exhibiting a weak tendency to play some actions even if they are in their
best response set. Teaching would notably consist in over-responding Y and
under-responding Z as these two actions support respectively players’ best and
worse equilibria in terms of payoff. If players use a teaching strategy, one could
expect to observe more over-responses Y and under-responses Z in the Partner
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treatment than in the Stranger treatment because, as mentioned earlier, we
can reasonably assume that rematching players in each round makes teaching
riskier. 14 Moreover, because type 1 players have weaker incentives to use a
teaching strategy, their over-response rate should be lower than for type 2
players.

We now attempt to test these implications of the existence of a teaching strat-
egy. For each round, we first derive the belief-wise best response defined by
argmaxa∈{X,Y,Z} Ea

i (t) where Ea
i (t) =

∑

q=X,Y,Z B
q
i (t).πi(a, q) is player i’s ex-

pected payoff induced by playing action a in round t, with πi(a, q) player i’s
payoff when he takes action a and his opponent takes action q, and B

q
i (t)

player i’s (true) beliefs concerning action q in round t. For each action X, Y
and Z, we calculate the number of times where the action has been played
despite not being a best response (which gives us a measure of over-response)
and the number of times it has not been played despite being a best response
(which gives us a measure of under-response).

Note, however, that we do not expect players in the Stranger treatment to
play exactly as if they were maximizing their immediate expected payoff in
each round. Indeed, other considerations such as fairness or some kind of social
norm could induce players to depart from a pure payoff-maximizing behav-
ior. Nonetheless, and irrespective of the introduction of social preferences,
the incentives brought by the Partner treatment should lead to statistically
significant differences in the over/under response behavior between the two
treatments.

Table 7 presents in its third (for the Partner treatment) and fourth (for the
Stranger one) columns, for each possible action and type of players, the av-
erage number of over-responses. The last column presents test statistics and
p-values for a t-test of equality between the means presented in the two previ-
ous columns. 15 Table 8 presents the same statistics for under-responses. Thus,
these Tables allow us to examine the behavior of each type of players between
treatments.

14 Note that in the Stranger treatment, we had 18 subjects in each session, so the
probability of being rematched with the same opponent in the next period is almost
11 per cent (i.e. relatively low). Because of space constraints, we could not run a
session with more than 18 subjects, and thus we could not decrease this percentage.
However, it can be noticed that even with ‘perfect’ rematching, when players are
matched only once with a given opponent, one could not completely rule out a priori
the use of a teaching strategy by contagion as soon as players’ former opponents
can be matched with their future opponents. Note also that players never received
information that could allow them to identify their opponents.
15 Since we separate by types of players, the unit of observation is here the individual
player. The number of observations is 17 in the Partner treatment and 18 in the
Stranger treatment.
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Table 7
Over responses

Action type Partner Stranger t-stat
(p-value)

X type 1 3.294 3.000 0.287
(0.776)

X type 2 4.294 2.222 1.990
(0.055)

Y type 1 4.706 5.000 0.212
(0.834)

Y type 2 6.647 4.000 2.277
(0.032)

Z type 1 1.824 3.278 1.360
(0.183)

Z type 2 2.059 2.278 0.218
(0.829)

Table 8
Under responses

Action type Partner Stranger t-stat
(p-value)

X type 1 0.647 0.111 1.576
(0.133)

X type 2 0.235 0.056 1.221
(0.236)

Y type 1 1.765 3.944 1.817
(0.078)

Y type 2 2.765 2.611 0.142
(0.888)

Z type 1 7.411 7.222 0.102
(0.920)

Z type 2 10.000 5.833 2.432
(0.022)

The over-response behavior of type 2 players is significantly stronger in the
Partner than in the Stranger treatment for action Y, as well as (although
quantitatively less so) for action X. Type 1 players, on the other hand, do
not over-respond significantly differently in the two treatments. Turning now
to the under-response behavior, Table 8 shows that type 2 players avoid to
playing Z when it is a best response significantly more often in the Partner
than in the Stranger treatment. Apart from type 1 players for action Y (where
we find that those players under-respond Y significantly more in the Stranger
treatment), no other significant differences can be found between the under-
response behaviors in the two treatments. These results indicate that type 2
players’ behavior is particularly consistent with the existence of a teaching
strategy in the Partner treatment (i.e. in the treatment which facilitates the
emergence of such a strategy). Indeed, in this treatment, type 2 players exhibit
a tendency to forego immediate payoff by not best responding to their beliefs,
both in order to make their leadership equilibrium emerge (by over-responding
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Y more often) and to deter the emergence of their opponent’s leadership equi-
librium (by under-responding Z more often). On the other hand, the matching
protocol has only a little impact on type 1 players’ behavior, and this impact
is not consistent with a teaching strategy as it leads to a higher tendency for
those players to under-respond action Y in the Stranger treatment. In sum,
type 2 players seem more prone to teach their opponents when they are given
the opportunity to do so more easily thanks to the fixed-matching protocol.
In contrast, the impact of the matching protocol on type 1 players’ propensity
to teach seems to be smaller. Thus, these findings support the fact that when
players interact with the same opponent throughout the game, their behavior
is altered a way which is particularly consistent with a teaching strategy for
type 2 players.

We now turn to the study of the differences between types of players within
each treatment. Table 9 shows the results of paired t-tests (for the Partner
treatment) and two-sample t-tests with unequal variance (for the Stranger
treatment). Consistent with previous results, we find that no significant differ-
ences exist between types in the Stranger treatment. In the Partner treatment,
type 2 players are significantly more likely than type 1 players to over-respond
action Y, which supports their preferred equilibrium, and to under-respond
action Z, which supports their least preferred equilibrium. Unsurprisingly, no
significant differences can be found across types regarding over-response to-
wards Z and under-response towards Y because such strategies would contra-
dict the aim of teaching. These results support the fact that players who have
more teaching incentives actually make use of this opportunity. Indeed, type
2 players exhibit a stronger tendency to use a teaching strategy than type 1
players. In the Partner treatment, they over-respond more the action support-
ing their leadership equilibrium and under-respond more the one supporting
the leadership equilibrium of their opponent. In the Stranger treatment, when
teaching is made riskier, over- and under-responses of each type of players
does not differ significantly.

To summarize, the over- (under-)response behavior of players is consistent
with the incentives given both by the matching protocol and by the asym-
metry of the payoff matrix. On the one hand, the fixed-matching protocol
exacerbates players’ tendency to over- and under-respond a way which is par-
ticularly consistent with a teaching strategy for type 2 players. On the other
hand, differences between types of players show that players who have more
to gain from the emergence of their leadership equilibrium (i.e. type 2 players)
are more prone to forego a higher immediate payoff by playing out of their
best response set and tend to favor future coordination into the equilibrium
giving them the highest payoff.

Teaching is a long run strategy which is consequently likely to exhibit a dy-
namic pattern. More precisely, the finite number of periods (known before-
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Table 9
Tests across types

over response under response

Action treatment type 1 type 2 t-stat
(p-value)

type 1 type 2 t-stat
(p-value)

X Partner 3.294 4.294 1.028
(0.295)

0.647 0.235 1.072
(0.299)

X Stranger 3.000 2.222 0.823
(0.416)

0.111 0.056 0.589
(0.560)

Y Partner 4.706 6.647 2.281
(0.036)

1.765 2.765 1.280
(0.219)

Y Stranger 5.000 4.000 0.773
(0.447)

3.944 2.611 1.221
(0.231)

Z Partner 1.824 2.059 0.394
(0.699)

7.411 10.000 1.936
(0.071)

Z Stranger 3.278 2.278 1.058
(0.298)

7.222 5.833 0.856
(0.399)

Note: paired t-test in the Partner treatment and 2-sample t-test in the Stranger treatment

hand by players) should lead to less teaching in later rounds as the gains
from teaching become less. Indeed, the gains from a teaching strategy depend
on the number of remaining periods during which higher payoffs can offset
the losses incurred by not best responding during the initial teaching phase.
One way to test this implication would be to examine the dynamics of over-
responses towards Y, but other factors unrelated to teaching can also lead
to such a decrease. For example, players might also learn during the game
how to best respond to their beliefs, thus reducing the number of errors as
the game unfolds. Therefore, a decrease in the occurrence of over responses
might not necessarily mean less teaching, but it could correspond to less errors.
However, one can disentangle the error-correction process from a decrease in
genuine teaching by contrasting the evolution of over-responses Y in the two
treatments. Indeed, players’ propensity to make errors should be irrespective
of the matching protocol, but teaching should be sensitive to this. More pre-
cisely, if over-responding Y is consistent with a teaching strategy, then the
rate at which these over-responses occur should have a stronger decrease in
the Partner treatment than in the Stranger treatment since such a decrease
should be a typical pattern of teaching, and teaching should be more salient in
a fixed-matching protocol. On the other hand, if over-responding Y is an error,
then these over-responses should decrease at the same rate across treatments.
Moreover, as we do not expect players to use a teaching strategy to make
(X,X) or the leadership equilibrium of their opponents emerge, decreases of
over-responses X and Z should be mostly due to fewer errors in later rounds,
and we should not observe a treatment effect concerning these decreases.

Figure 2 presents the evolution of over-responses Y across rounds, separating
by treatment and type. While the rate of over-responses Y decreases in all
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Fig. 2. Prevalence of over responses Y
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cases, it does so more sharply in the Partner treatment. Student tests with
unequal variance (N=34 in the Partner treatment, and 36 in the Stranger
treatment) show that the decrease in over responses Y between the first and
the last five rounds is significantly higher in the Partner than in the Stranger
treatment (p-value=0.082). 16 When examining the evolution of other over re-
sponses (X and Z), we find that their decrease is not significantly different be-
tween treatments (p-value=0.172). 17 In sum, the dynamics of over responses
is consistent with a teaching strategy centered on the emergence of players’
leadership equilibria.

3.3.2 Probabilistic choices

3.3.2.1 Model and estimation In this section, we modify learning mod-
els by adding a forward-looking component and see if it helps to explain play-
ers’ behavior. We first present a rationale on how players might evaluate their
gains from using a teaching strategy, and then we turn to the empirical spec-
ification and estimation results.

Playing against an adaptive opponent implies that every action played will

16 When considering type 1 and type 2 players separately (N=17 and 18 in the
Partner and Stranger treatment, respectively), we find that type 1 players seem to
give up teaching more quickly than type 2 players. Their behavior indeed exhibits
a significantly stronger decrease in over responses Y in the Partner treatment (p-
value=0.098), while the stronger decrease for type 2 players in the Partner treatment
is not significant (p-value=0.448).
17 When type 1 and type 2 players are considered separately, the difference in the
evolution of other over-responses remains insignificant (p-values= 0.673 and 0.110
for type 1 and type 2 players respectively).
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modify the opponent’s future behavior. In order to evaluate the prospects
brought by this potential influence, and to decide whether to make use of a
teaching strategy, players must first assess the potential gain that would stem
from a deviation from their immediate best response.

Playing action k instead of a given reference action r in period t, and hence
modifying the opponent’s behavior in t+1 relative to what it would have been
if r had been played, will lead to a difference in the expected payoffs in round
t + 1. Let δk

i denote this perceived difference in player i’s expected payoffs
when he plays k instead of r. Since an adaptive player’s beliefs are updated
in every round, the influence of past actions on the opponent’s beliefs and
behavior will decrease with time. Along the lines of Cheung and Friedman
(1997)’s model of varying influence of past actions, we assume that players
think this influence will decrease geometrically at rate β ∈ [0, 1). If β → 0,
then the influence of an action played in round t will tend to be only effective
for the next round and will have vanished in subsequent rounds. If β → 1,
then the potential gains from an action played at t will tend to be carried
forward unaltered until the end of the game.

Since players must evaluate the overall gain of playing action k in round t,
they have to assess the cumulative expected payoff gain, which can be written
as

θk
i =

T−t−1
∑

τ=0

δk
i β

τ = δk
i

1 − βT−t

1 − β
. (2)

The way we introduce this forward-looking component is similar to the ap-
proach of Rutström and Wilcox (2006). It represents to us an elegant and
parsimonious way to incorporate teaching. However, the authors use the same
rate to describe a decrease in players’ perceived influence on the opponent’s
beliefs (in their set-up, players assume their opponents are γ-weighted learners
who compute their beliefs according to Equation (1)) and a corresponding de-
crease in players’ perceived expected payoff gain, represented respectively by
γ and β in the present study. We do not follow this intuition here since there
is no reason for these two parameters to be necessarily equal. 18 Hence, we in-
troduce this new parameter β to describe the decreasing rate of the influence
of past actions, the interpretation of which is given in the above discussion.

If, as our results of section 3.2 suggest, players think that their opponents

18 Indeed, the way a change in player j’s distribution of beliefs will finally impact
player i’s expected payoff gains is not necessarily that straightforward. Briefly, a
change in player j’s distribution of beliefs does not necessarily induce the same
change in his choice probabilities, which in turn does not necessarily induce the
same change in player i’s expected payoff gains.
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modify their beliefs (and their behavior) according to the history of the game,
then they have an incentive to use a teaching strategy. The analysis of Section
3.3.1 has shown that players’ behavior was consistent with the existence of such
a strategy where players choose actions that do not maximize their expected
payoff at the current round, but increase the probability of convergence to an
equilibrium they deem preferable. We now turn to a more formal test of this
hypothesis by fitting a choice model that includes the cumulative expected
payoff bonus δk

i .

Our empirical model assumes that player i chooses his actions according to (1)
the intertemporal expected payoff from playing a given strategy, consisting of
(i) the immediate payoff, and (ii) the cumulative expected future payoff differ-
ence induced by playing the action, as defined above by θk

i ; and according to
(2) an intrinsic attraction for the given action, to which the player is attracted
for non-pecuniary reasons (such as fairness or another social norms that could
influence players’ behavior).

Formally, player’s i attraction for action a after period t has taken place is
denoted Aa

i (t) and can be written

Aa
i (t) = αa

i + λi [E
a
i (t) + θa

i ]

where αa
i is the intrinsic attraction for action a and λi represents the player’s

‘responsiveness’ to his expected (immediate and prospective) payoffs.

Some remarks about the way this model formally extends previous belief-based
learning models are worth noting. These usual models frequently postulate
that players’ attraction for an action at a given time depends linearly on the
immediate expected payoff induced by this action and on a ”bias parameter”.
This latter parameter is sometimes viewed as reflecting players’ non-pecuniary
motives or intrinsic attraction for the action. On the other hand, Battalio
et al. (2001) argue that this bias might also reflect players’ attempts to drive
coordination to their favorite equilibrium, which is the kind of behavior we
aim to exhibit in this paper. The way we build players’ attractions allows
us to separate the two effects supported by these two interpretations. More
precisely, usual attractions take the form ρa

i + λiE
a
i (t); here we use a new

specification for the bias parameter ρa
i , which allow us to identify teaching:

ρa
i = αa

i + λiθ
a
i . By adding θa

i , we might indeed identify the effect suggested
by Battalio et al. and then αa

i only reflect players’ non-pecuniary motives.

Following Fudenberg and Levine (1998) and many others in the literature, we
assume that the probability of a given action being chosen in round t takes
a logistic form. To identify such models, one has to define a reference action
(action X in our application) and normalize its attraction to 1. Parameters
of the components of other actions’ attraction must thus be interpreted as

24



Page 26 of 43

Acc
ep

te
d 

M
an

us
cr

ip
t

the difference with the reference action’s parameters: for example αa is the
difference between a’s and X’s intrinsic attractions; Ea

i (t) is the difference
between expected payoff induced by playing a and expected payoff induced by
playing X given the (true) beliefs. Probabilistic choices are given by

pX
i (t) =

1

1 +
∑

q=Y,Z exp (Aq
i (t))

pY
i (t) =

exp
(

AY
i (t)

)

1 +
∑

q=Y,Z exp (Aq
i (t))

pZ
i (t) =

exp
(

AZ
i (t)

)

1 +
∑

q=Y,Z exp (Aq
i (t))

where pX
i (t) is the probability that X will be chosen in round t; pY

i (t) and
pZ

i (t) are analogously defined.

As Wilcox (2006) has shown, pooled estimation of such learning models can
lead to severe bias in the parameters in the presence of heterogeneity in λ. His
Monte-Carlo study suggests that a random-coefficient approach, even if the
heterogeneity distribution is misspecified, greatly reduces such bias.

We follow this approach and use a random-coefficient model, where λ is as-
sumed to follow either a gamma distribution with shape parameter k and
scale parameter θ or a lognormal distribution with parameters µ and σ. Both
of these frequently used distributions ensure that λi lies on the positive real
line.

The final log-likelihood is thus

LL =
N

∑

i=1

T
∑

t=1

ln
(

∫

[

pX
i (t)

]1{ai(t)=X} [

pY
i (t)

]1{ai(t)=Y } [

pZ
i (t)

]1{ai(t)=Z}
f (λ) dλ

)

(3)

where f (λ) is the pdf of the gamma or of the lognormal distribution.

The integral in equation (3) is computed using a 32-node Gauss quadrature,
and the likelihood is then maximized using standard techniques.

3.3.2.2 Results We estimate the model of equation (3) separately for
the Partner and the Stranger treatments. Since the set-up is not symmetric,
we have distinguished between type 1 and type 2 players for the parameters
that are likely to differ between types of players (intrinsic attractions and

25



Page 27 of 43

Acc
ep

te
d 

M
an

us
cr

ip
t

prospective payoffs). Other ‘psychological’ parameters such as β and λ are left
equal across types of players since they should not be influenced by payoffs.

Estimated parameters 19 in the Partner treatment (shown in the first two
columns of Table 10 for the gamma and lognormal specifications, respectively)
are consistent with the existence of a teaching strategy. Moreover, estimated
coefficients are rather insensitive to the specification of the distribution of the
responsiveness parameter λ. Although type 1 players seem to fear that playing
the leadership action Y instead of X might lead to a slightly lower future
payoff 20 , type 2 players expect a significantly positive future payoff gain from
playing Y instead of X. Both types of players anticipate a significant future
payoff loss from playing the follower action Z. The ranking of expected future
payoff differences resulting from playing Y is consistent with the ranking of
payoffs in the underlying equilibria: while type 1 players have little to gain from
moving from the (X,X) equilibrium to the (Y,Z) equilibrium, the potential gain
is much larger for type 2 players if equilibrium (Z,Y) is reached. However, while
the payoff matrix should lead to a lower disincentive for type 2 players to play
Z instead of X, estimated δZ indicates that the expected payoff gains, although
negative, are not significantly different between type 1 and type 2 players in
the Partner treatment.

Because players are randomly rematched in each round in the Stranger treat-
ment, incentives for teaching should be weaker in this treatment than in the
Partner treatment. Hence, we expect the prospective payoff parameters to be
much smaller in absolute value in the Stranger treatment than in the Part-
ner treatment. The last two columns of Table 10 show that type 1 players in
the Stranger treatment do not seem to foresee any sizeable payoff gain from
playing Y instead of X and a small (and only significant at the 10% level in
the gamma specification) loss from playing Z instead of X. Type 2 players
expect slightly larger differences in future payoffs, but these expected payoff
bonuses are much smaller than in the Partner treatment. Note that some form
of “social learning” where players learn about the behavior of the population
of opponents (as opposed to their individual opponents in the Partner case)
might give rise to a corresponding “social teaching” behavior that could ex-
plain the small but significant prospective payoff parameters in the Stranger
treatment.

While the impact on the opponents’ behavior is unsurprisingly found to be
larger in the Partner treatment than in the Stranger treatment, the parameter
β indicates a stronger inertia in the Stranger treatment in comparison with

19 Standard deviations in all models have been adjusted for clustering at the indi-
vidual level.
20 Possibly because of the ‘leaders’ warfare’ (Y,Y) which is most unfavorable for
type 1 players.
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Table 10
Estimation results

Partner Stranger

Gamma Lognormal Gamma Lognormal

Variable Coefficient
(Std. Err.)

Coefficient
(Std. Err.)

Coefficient
(Std. Err.)

Coefficient
(Std. Err.)

Intrinsic attractions

αY (type 1) 2.266
(0.649)

∗∗ 1.941
(0.471)

∗∗ 1.410
(0.351)

∗∗ 1.543
(0.281)

∗∗

αY (type 2) 0.015
(0.351)

0.043
(0.577)

1.420
(0.513)

∗∗ 1.644
(0.439)

∗∗

αZ (type 1) 1.870
(0.766)

∗ 1.478
(0.522)

∗∗ 1.028
(0.256)

∗∗ 1.062
(0.245)

∗∗

αZ (type 2) 1.044
(0.336)

∗∗ 1.063
(0.331)

∗∗ 3.011
(0.437)

∗∗ 3.004
(0.440)

∗∗

Inertia parameter

β 0.556
(0.106)

∗∗ 0.565
(0.093)

∗∗ 0.858
(0.049)

∗∗ 0.869
(0.029)

∗∗

Prospective payoffs

δY (type 1) −0.852
(0.500)

† −0.565
(0.606)

0.097
(0.185)

0.047
(0.023)

∗

δY (type 2) 3.486
(0.674)

∗∗ 3.370
(0.675)

∗∗ 0.643
(0.174)

∗ 0.640
(0.138)

∗∗

δZ (type 1) −1.611
(0.803)

∗ −1.114
(0.480)

∗ −0.268
(0.144)

† −0.238
(0.051)

∗∗

δZ (type 2) −1.546
(0.390)

∗∗ −1.545
(0.405)

∗∗ −0.833
(0.264)

∗∗ −0.604
(0.083)

∗∗

Heterogeneity parameters

k 0.378
(0.085)

∗∗ 0.378
(0.150)

∗

θ 1.585
(0.761)

∗ 1.000
(0.717)

µ −0.724
(0.064)

∗∗ −0.598
(0.099)

∗∗

σ 0.748
(0.036)

∗∗ 1.181
(0.082)

∗∗

N 1020 1080

Log-likelihood -852.961 -850.759 -820.714 -813.433

χ2
(4) 35.67 29.63 52.581 52.28

Significance levels : †: 10% ∗: 5% ∗∗: 1%
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the Partner treatment. Behaviors might indeed evolve faster in a fixed pair of
players than in a large population. A reason for this is that players might be
quicker in adjusting their beliefs and behavior in a situation where they inter-
act repeatedly with the same opponent compared with a situation where they
have to gather information about their current opponent from a population of
players.

Finally, the ‘intrinsic attraction’ parameters show that, in both treatments,
type 1 players equally favor Y and Z over X and type 2 players favor Z over
the two other actions. This might indicate a preference for equality that we
will see reflected in the results of the next section.

3.4 Teaching as a coordination device

The literature on learning models generally aims to track players’ behavior
without investigating the effective impact of such a behavior on the outcome
of the game. Allowing for the use of a teaching strategy might permit us
to gain some insights on this question. In other words, do players succeed
in teaching their opponent to play a given action? More precisely, applying
this reasoning to the present set-up, we can ask the following question: Is
equilibrium selection affected when teaching is made riskier?

Our results of the previous sections suggest that type 2 players use this op-
portunity more than type 1 players do. As a consequence, we expect play-
ers to converge to type 2 leadership equilibrium (i.e. to the equilibrium that
brings type 2 players the highest payoff) more often in the Partner than in
the Stranger treatment.

Figures 3 and 4 graph the evolution of the number of equilibria attained
in the Stranger and Partner treatment respectively. Because coordination is
easier to achieve in a Partner set-up where players repeatedly interact with
the same opponent, differences in the number of equilibria attained might only
reflect differences in relative easiness to converge to an equilibrium rather than
differences in equilibrium selection due to the existence of a teaching strategy.
Thus, in Figures 5 and 6, we rather represent the evolution of the proportion
of the various equilibria among the equilibria attained in each round in the
Stranger and Partner treatments.
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Fig. 3. Number of equilibria, Stranger treatment
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Fig. 4. Number of equilibria, Partner treatment
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Fig. 5. Proportion of equilibria, Stranger treatment
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Fig. 6. Proportion of equilibria, Partner treatment
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Both sets of Figures show that the number and proportion of type 2 leadership
equilibria is larger in the Partner than in the Stranger treatment (50% in the
last round in the Partner treatment versus 10% in the Stranger treatment),
the reverse being true for type 1 leadership (42.86% in the last round in
the Partner case versus 90% in the Stranger case). Moreover, these graphs
show a decrease in the emergence of type 2 leadership equilibrium in the
Stranger treatment (from an average of 2.7 equilibria, or 29.07% during the
first 10 rounds to an average of 1 equilibrium, or 9.6% during the last 10
rounds) and an increase in the Partner treatment (from an average of 2.6
equilibria, or 40.3% during the first 10 rounds, to an average of 4.7 equilibria,
or 43.92% during the last 10 rounds), an opposite variation being observed
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for the emergence of type 1 leadership equilibrium: we find an increase in
the emergence of type 1 leadership equilibria in the Stranger treatment (from
an average of 5.7 equilibrium, or 67.94% during the first 10 rounds, to an
average of 9.1 equilibrium, or 90.4% during the last 10 rounds). Although the
number of type 1 equilibria is rather stable in the Partner treatment (from
an average of 4.7 in the first 10 rounds to an average of 5.1 in the last 10
rounds), the proportion of type 1 equilibria decreases in this treatment (from
an average of 58.6% in the first 10 rounds to an average of 48.05% in the
last 10 rounds). 21 The (X,X) equilibrium is also more likely to be attained in
the Partner treatment, but the difference between treatments is smaller than
for leadership equilibria (7.14% in the Partner treatment versus 0% in the
Stranger treatment in the last round).

Table 11 shows the mean count and proportion of each of the 3 equilibria,
in both treatments, as well as results from Student tests for the equality of
means across treatments. 22

Table 11
Attained equilibria

Equilibrium Statistic Partner Stranger t-stat
(p-value)

(X,X) Count 1.059 0.5 1.280
(0.212)

(X,X) Proportion 0.079 0.037 1.312
(0.200)

Type 1 leadership Count 8.941 11.888 1.200
(0.239)

Type 1 leadership Proportion 0.517 0.727 2.075
(0.046)

Type 2 leadership Count 6.176 2.778 2.197
(0.039)

Type 2 leadership Proportion 0.404 0.235 1.818
(0.079)

These results show that the matching protocol does significantly change the
distribution of attained equilibria, both in proportion and number. Moreover,
these changes are consistent with our previous findings that type 2 players are
more prone to use a teaching strategy than type 1 players. As a result, the

21 Note that one could have expected even more important variations in proportions
of leadership equilibria in the Partner treatment without the fact that the only
equilibria attained in the first round were 8 type 2 leadership equilibria, thus leading
to a proportion of 100% of type 2 leadership equilibria and 0% of type 1 leadership
equilibria in the first round.
22 Tests compare attained equilibria at the pair level in the Partner treatment to
attained equilibria for type 1 players in the Stranger treatment. Using type 2 players
instead of type 1 players does not change the results. There are 17 observations in
the Partner treatment and 18 in the Stranger treatment.
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number of type 2 leadership equilibria is much higher in the Partner treatment,
mainly to the detriment of type 1 leadership equilibria.

Although type 1 leadership predominates in both treatments (possibly because
players have in mind a norm of equality, (Y,Z) being the equilibrium where
the differences between players’ payoffs is minimal 23 ), the opportunity of a
teaching strategy in the Partner treatment leads to a doubling (both in abso-
lute value and in proportion) of the number of type 2 leadership. Equilibrium
selection thus appears to be significantly affected by the matching protocol in
a way that is consistent with the use of a teaching strategy by type 2 players,
who have the greatest incentives to deviate from a standard payoff-maximizing
behavior.

4 Conclusion

Adaptive-learning models have proven to be successful in describing how peo-
ple behave in games, yet in these models, players look only at the past history
of the game to choose their current actions, not paying attention to the fact
that these current actions could possibly influence their opponents’ behavior
in the future. In other words, in these models players do not try to outguess
their opponents and consequently do not use a teaching strategy by choosing
actions that do not necessarily maximize their immediate expected payoff but
might lead to a preferable outcome in the future. Taking this consideration
into account might help to track players behavior more accurately and might
also allow us to gain some insights in predicting the attained outcome of a
game.

This paper has used experimental data to examine whether players use a
teaching strategy aimed at modifying their opponents’ beliefs and actions in
order to reach a preferable outcome. We ran a ‘Partner’ treatment where
players were matched in fixed pairs during the whole game and a ‘Stranger’
treatment where players were randomly rematched at each period and had
thus no particular incentive to ‘teach’ their opponent. Our results indicate that
players indeed use a teaching strategy and suggest that these considerations
are relevant to determine the outcome achieved in a game.

First, players’ behavior exhibits some patterns which are not consistent with

23 As noted earlier, this social norm, while not formally tested in this paper, is
reflected in the ‘intrinsic attraction’ parameters αa of Section 3.3.2. These param-
eters indicate that, regardless of their beliefs, players have a tendency to favor the
(Y,Z) equilibrium, this preference being larger in the Partner treatment than in the
Stranger one.
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usual approaches designed to track people’s behavior in a repeated game but
are to be expected from players using a teaching strategy. We indeed found
that most suboptimal decisions correspond to very costly deviations, which
contradicts the postulates of an error process. On the other hand, these de-
viations were consistent with a teaching strategy where players aim to make
their leadership equilibrium emerge. This regularity appeared more prominent
in the Partner treatment where teaching is made easier and for players who
have the most to gain from a teaching strategy. Moreover, the latter type of
players precisely seems to play a proactive role in coordination.

We then turned to a thorough investigation of the existence of a teaching
strategy. We first tested whether players thought of their opponents as belief-
learners who base their beliefs on the past history of the game, which is a
necessary condition for players to use a teaching strategy. Our results show
that players anticipate their opponents’ reaction to their own actions and take
this reaction into account when forming their own beliefs, thus confirming the
precondition that players are aware of the fact that their opponents can learn.

In a second step, we examined whether players actually try to take advan-
tage of this knowledge that they can influence their opponents’ beliefs and
actions. To do so, we checked whether players’ behavior is consistent with the
existence of a teaching strategy and whether the matching protocol had an
impact on players’ tendency to use such a strategy. We found that, especially
when the treatment favors the emergence of teaching, players are likely to
depart from a best response behavior by choosing the action which supports
a preferable outcome and avoiding the action supporting their worst equilib-
rium payoff. Moreover, this behavior is prominent for players who have the
strongest teaching incentives. The dynamics of this over-response behavior is
also consistent with teaching, as players tend to teach less in later rounds. We
then estimated a logistic model which confirmed this tendency. More precisely,
the model suggests that when given the opportunity to teach their opponents,
the cumulative expected payoff that players could gain by modifying their op-
ponent’s behavior had a statistically significant influence on their propensity
to play a given action. Again, the model highlights a greater propensity for
type 2 players to base their actions on a teaching strategy.

Finally, we investigated the effective relevance of teaching on equilibrium selec-
tion and found that teaching indeed drives coordination significantly so that
more tenacious teachers are more likely to make their favorite equilibrium
emerge when they can directly teach their opponents.
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Appendix

Instructions (translated from French) 24

Thank you for participating in this experimental session. During this session,
upon the choices you make, you may be able to earn a significant amount of
money which will be paid you in private at the end of the experiment. Your
identity and those of the other participants will never be disclosed.

This session contains 30 repetitions (which will be labelled ”rounds” on your
screen). Your final payment corresponds to the sum of the payoffs you earn at
each repetition. More precisely, during the 30 rounds of this session, you will
make points labelled in Unités Monétaires Expérimentales (UME). At the end
of this session, your total payment in UME will be converted into Euros at
the rate:

200 UME = e1.6

In addition, you will automatically receive a fix amount of e3 as a ”thank
you” payment.

During this session, you will not be allowed to communicate with other partic-
ipants. If you have any questions, please raise the hand and the experimenter
will publicly answer.

Subjects were given one of the two following paragraphs according to the treat-
ment they participated.

Type and matching (Partner treatment)

At the beginning of the session, you will be attached a ”type”, you can be
either of type 1 or of type 2. Your type will remain the same for the
whole session. Moreover, you will be matched with a pair partner, picked up
at random at the beginning of the session among the participants whose
type is different from yours. For example, if you are of type 1 (resp. type
2), your pair partner will be of type 2 (resp. type 1). Your pair partner will
be the same for the whole session.

Type and matching (Stranger treatment)

At the beginning of the session, you will be attached a ”type”, you can be
either of type 1 or of type 2. Your type will remain the same for the
whole session. At the beginning of each round, you will be matched
with a pair partner picked at random among the participants whose type

24 The italicized sentences were not displayed to the subjects.
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is different from yours. For example, if you are of type 1 (resp. type 2),
all your successive pair partners will be of type 2 (resp. type 1). Your pair
partners’ identities will never be disclosed.

Your decisions

In each round, every participant can choose among 3 decisions: X, Y or Z.
The payoff associated to your decision in a given round depends on your own
decision and the decision of your pair partner. These payoffs are presented in
Tables 1 or 2 below if you are respectively of type 1 or of type 2.

Prediction of other people’s decisions

Prior to choosing a decision in each round, you will be given the opportunity
to earn additional money by predicting the decision your pair partner will take
in the current round. Thus, at the beginning of each round, you will be asked
the following three questions:

- On a scale from 0 to 100, how likely do you think your pair partner will take
decision X?

- On a scale from 0 to 100, how likely do you think your pair partner will take
decision Y?

- On a scale from 0 to 100, how likely do you think your pair partner will take
decision Z?

For each question you have to key in a number superior or equal to 0. The
sum of the three numbers you enter has to equal 100.

For example, suppose that you think that there is a 40% chance that your pair
partner will take decision X, a 35% chance that your pair partner will take
decision Y and a 25% chance that your pair partner will take decision Z. In
this case, you will key in 40 in the upper box on the screen and respectively 35
and 25 in the two other boxes. At the end of each round, we will look at the
decision actually made by your pair partner and compare his decision to your
prediction. We will then pay you for your predictions as follows. Consider the
above example: you entered 40% for decision X, 35% for decision Y and 25%
for decision Z. Suppose now that your pair partner actually chooses Y. In this
case, your payoff for your predictions will be:

4[2 − (1 − 0.35)2 − (0.40)2 − (0.25)2].

In other words, you will be given a fixed amount of 4×2 = 8 points (in UME)
from which we will subtract an amount which depends on how inaccurate
your predictions were. To do this, when we find out what decision your pair
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partner has made, we will take the number you assigned to that decision, in
this example 35% (or 0.35) on Y, subtract it from 100% (or 1), square it and
multiply by 4. Next, we will take the numbers assigned to the decisions not
made by your pair partner, in this case the 40% (or 0.40) you assigned to
X and the 25% (or 0.25) you assigned to Z, square them and multiply by 4.
These three squared numbers will then be subtracted from the 8 points we
initially gave you to determine the final payoff associated to your predictions
for the current round.

Note that since your predictions are made before you know what
your pair partner has actually chosen, the best thing you can do to
maximize the expected size of your prediction payoff is to simply
state your true beliefs about what you think your pair partner will
do. Any other predictions will decrease the amount you can expect
to earn as a prediction payoff. Note also that you can not lose points
from making predictions but can only earn more points. The worst
you can do is predicting that your pair partner will take one partic-
ular decision with 100% certainty but it turns out that he actually
takes a different decision. In this case, you will earn 0 point. Sim-
ilarly, the best you can do is to guess correctly and assign 100%
to that decision which turns out to be the actual decision chosen.
Here, you will keep the whole 8 points amount that was given to
you at the beginning of the current round.

In each round, you will have two minutes to enter a correct report. If you make
a mistake in a report, i.e. if you enter three numbers which sum is different
from 100, or if your report is incomplete, you will be able to retry as many
times as you want subject to the fact that you have enough time left to do
so. If the available time runs out while you have not entered a correct report,
the game continues and you will take your decision but you will not get any
payoff for your prediction at the current round.

The computer screens

In each round, you will enter your predictions and take your decisions on
different screens represented below.

In the first screen, you will have to report your predictions. You have to enter
one number for each decision in the box next to the corresponding question.
You will see on your screen the time remaining to report your predictions, both
in figures at the upper right of the screen and represented by a saltbox in the
middle of the screen. Below the three questions, you have a calculator that
automatically provides you, in the box ”Sum”, the sum of the numbers you
enter and show you, in the box ”Rest”, 100 minus the sum of the numbers
you have already entered so that it would made computations easier while

38



Page 40 of 43

Acc
ep

te
d 

M
an

us
cr

ip
t

reporting your predictions. You can change your report at any time provided
that you have any time left to do so and when your report sounds to you
satisfactory, click OK to proceed to the next screen to take your decision.

In the next screen, you will have to pick up a decision among the three decisions
available. To do so, you have to click on the box corresponding to your choice.
You have as time as you want to take your decision.

Once you have reported your predictions and taken your decision, you will get
information about the current round. More precisely, you will see recapitulated
on a final screen your decision, the decision of your pair partner, your payoff
and the payoff of your pair partner associated to your decisions along with the
predictions you reported and your prediction payoff. Your predictions, your
decisions, the decisions of your partner, and your respective decision payoffs
will remain present during the whole session on the bottom of your screen
in the table which recapitulates the history of the game by round, so that
you will always be able to track what happened in previous round and you
will always see which round you are in. Moreover, the last line in the table
reminds you of your type so that you could always look at the payoff tables
an appropriate way.

Your Final Payment

The payoff associated to your predictions will be in addition of what you will
make with your decisions. Your final payment in UME will simply be the sum
of all payoffs you will make throughout the 30 rounds of this session; it is
this total payoff that will be converted into Euros at the above rate.

Decision payoff by type

Table 1. Payoff associated to the decision of type 1 participants.
Your payoff and the payoff of your pair partner given your decision
and the decision of your pair partner.
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Your decision Decision of your pair partner Your payoff The payoff of your pair partner

X X 40 52

X Y 22 46

X Z 40 52

Y X 35 40

Y Y 10 20

Y Z 44 46

Z X 40 52

Z Y 30 60

Z Z 40 52

Table 2. Payoff associated to the decision of type 2 participants.
Your payoff and the payoff of your pair partner given your decision
and the decision of your pair partner.

Your decision Decision of your pair partner Your payoff The payoff of your pair partner

X X 52 40

X Y 40 35

X Z 52 40

Y X 46 22

Y Y 20 10

Y Z 60 30

Z X 52 40

Z Y 46 44

Z Z 52 40

The screen where you will be asked to report your predictions (the
last line of the table shows the appropriate type, type 1 in this

example)
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Fig. 7. Screenshot 1

The screen where you will be asked to take your decision (the last
line of the table shows the appropriate type, type 1 in this

example)

Fig. 8. Screenshot 2
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The following screen was not contained in the instructions given to the sub-
jects. It shows an example of how information were recapitulated at the end of
each round.

Fig. 9. Screenshot 3
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