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A multilayer anisotropic plate model with warping functions for the study of
vibrations reformulated from Woodcock’s work

A. Loredoa,∗, A. Castela

aDRIVE, Université de Bourgogne, 49 rue Mlle Bourgeois, 58027 Nevers, France

Abstract

In this paper, a plate model suitable for static and dynamic analysis of inhomogeneous anisotropic multilayered
plates is described. This model takes transverse shear variation through the thickness of the plate into account
by means of warping functions. Warping functions are determined by enforcing kinematic and static assumptions
at the interfaces of the layers. This model leads to a 10×10 behavior matrix in which membrane strains, bending
and torsion curvatures, and transverse shear x and y–derivatives are coupled to each other, and to a classical
2× 2 shear behavior matrix. This model has been proven to be very efficient, especially when high ratios –up
to 105– between the stiffnesses of layers are present.

This work is related to Woodcock’s model, so it can be seen as a reformulation of his work. However, it
propose several enhancements: the displacement field is made explicit; it is reformulated with commonly used
plate notations; laminate equations of motion are fully detailed; the place of this model relatively to other plate
models is now easy to see and is discussed; the link between this formulation and the original one is completely
written with all necessary proofs; misses and errors have been found in the energy coefficients of the original
work, and then have been corrected; it is now easy to improve or to adapt the model for specific applications
with the choice of refined or specific warping functions.
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1. Introduction

After the early works of Kirchhoff, Rayleigh, Love, done at the end of the 19th century, followed by Reiss-
ner, Mindlin, Uflyand in the middle of the 20th century, dealing respectively with thin and moderately thick
homogeneous plates, the behavior of anisotropic multilayered plates began to be studied by Leknitskii and
Ambartsumyan.

Since these works, static and dynamic behavior of anisotropic multilayered plates have been extensively
studied. In composite applications, the high ratio between shear and longitudinal stiffnesses and the strong
inhomogeneities between layers make standard models inefficient. It has incited searchers to develop more
refined theories, able to handle the behavior of such structures.

As done by the previously cited early works, these refined theories attempt to describe the displacement
field in the thickness direction by means of kinematic and/or static hypothesis. The difference is that in the
recent works, this description is more refined. In particular, the transverse shear evolution through the thickness
has received many attention. The more recent and pertinent theories have been built using warping functions
that describe this evolution. In these models, first spatial derivatives of the transverse shear are coupled with
membrane and bending terms, leading to a more complex behavior matrix of size 10 × 10 compared to the
classical 6× 6 behavior matrix of the previous models.

The model presented in this paper belongs to this last category as it will be shown later. It has been first
formulated in an early work of Sun & Whitney [1], it is the second model described in this reference. Even if the
model is presented for the more general case, authors have written equations of the model only for symmetric
isotropic laminate. This model was improved by other researchers [2, 3] to study the dynamic behavior of more
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general multilayered plates and also to simulate the sound transmission through these structures. This model
has been proved to be very efficient for the study of viscoelastic behavior of strongly inhomogeneous structures
like plates damped with viscoelastic PCLD patches [4, 5]. All these works were limited to on-axis orthotropic
plies. Woodcock has extended his first work to laminates including off-axes orthotropic plies [6].

The present work reformulates last Woodcock’s model [6]. This reformulation has been motivated by the
following disadvantages of the original work:

- the displacement field is not made explicit. It is only known implicitly and involves constraints on both
displacement and stress fields;

- the notations used by the author are not the standard notations for plate models, which makes the work
difficult to understand;

- some helpful formulas are not given and missing terms and errors have been found on the given energy
coefficients;

- due to the complexity of the model and its formulas, implementation is difficult;

- links between this model and other plate models are not easy to foresee.

The reformulation of this work leads to the following enhancements:

- the displacement field is now fully explicit. It involves four warping functions ϕαβ(z);

- the global plate behavior is given in terms of classical (membrane / bending / shearing) generalized
displacements, forces, and stiffnesses, using the most common plate theories notations;

- the link between the present model and Woodcock’s model is fully detailed;

- helpful formulas for computing Woodcock’s coefficients α`x, α
`
xy, β

`
x . . . are given;

- the corrected list of all the 69 Woodcock’s strain energy coefficients λi is given. It is shown that the list
reduces to 55 independent coefficients in the most general case;

- a corrected and extended list (18 instead of 15) of Woodcock’s coefficients δi for the kinetic energy is
given;

- the place of this model relatively to other plate theories is now easy to see, and it is discussed;

- as the model only involves integrals through the thickness, it is easy to implement;

- the present reformulation makes improvements easy to implement: warping functions may be changed or
enhanced without complicating the model.

2. Model

2.1. Laminate definition
The laminate is composed of n layers. In this study, all the quantities will be related to those of the first

layer, which then plays a central role. Figure 1 helps to visualize the following definitions:

- z` is the elevation/offsetting of the middle plane of the layer `

- the `th layer is located between elevations ζ`−1 and ζ`

With these definitions:

- there is n parameters z` with, by definition, z1 = 0,

- there is n+ 1 parameters ζi with i taking values from 0 to n,

- the thickness of the layer ` is h` = ζ` − ζ`−1

Plate models take classically as reference plane the laminate middle plane, then the laminate is located
between h/2 and −h/2 where h is the total height of the laminate. This model has been developed in a slightly
different way: the middle plane of the first layer is the reference plane. This is particularly useful, although
not essential, to study plates damped with patches [4, 5]. In this last case, the number of layers can vary from
a point to another and the definition of a middle plane is difficult to precise. Of course one can change the
reference plane in this formulation without changing the behavior of the model, but all formulas have to be
changed in consequence.
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Figure 1: Geometrical parameters of the undeformed laminate on the left side, and its deformed shape with corresponding quantities
on the right side.

2.2. Kinematic and static assumptions of the model
In the following, Greek subscripts takes values 1 or 2 and Latin subscripts takes values 1, 2 or 3. The

Einstein’s summation convention is used for subscripts only. The comma used as a subscript index means the
partial derivative with respect to the following(s) index(ices).

2.2.1. Displacement field
First, kinematic assumptions of Woodcock’s model are reported below after a change of notations in order

to agree with most of plate models notations. They are:{
u`α(x, y, z) = u`α(x, y, z

`) + (z` − z)(w1
,α(x, y)− γ`α3(x, y))

u`3(x, y, z) = w1(x, y)
(1)

where ` ∈ [1..n] is the number of the layer, z`, u`α(x, y, z), γ
`
α3(x, y) and u`3(x, y, z) are respectively the z-

coordinate of the mid plane, the in-plane displacements, the engineering transverse shear strains1, and the
transverse displacement within the layer `, w1(x, y) is the transverse displacement at the mid-plane of the
first layer. We can see that the transverse displacement is equal for all the layers and does not depends on z.
However, the superscript 1 is kept to show that the reference is, in this model, the middle plane of the first
layer. Note also that this model needs at this time 4n+ 1 unknowns functions of the (x, y) coordinates.

The kinematic assumptions of the present formulation are:{
uα(x, y, z) = u1α(x, y)− zw1

,α(x, y) + ϕαβ(z)γ
1
β3(x, y)

u3(x, y, z) = w1(x, y)
(2)

The main difference is the lack of the ` superscript and the consideration of four warping functions ϕαβ(z).
They will be determined with the use of equations (4a) and (4b).

1Note that in formula (2) of Woodcock’s work, there is a plus sign in the term (z`−z)(w1
,x(x, y)+ϕ

n
x(x, y)) which is not coherent

with the definition “the shear” given for the corresponding quantities (denoted ϕn
x and ϕn

y ). These quantities are obviously “the
rotations due to shear”, this explains some sign differences between the formulations which appear in the following.
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2.2.2. Additional assumptions
In addition, Woodcock’s model (as the second model of reference [1]) requires the continuity of in-plane

displacements and transverse shear stresses at each of the n− 1 interfaces:{
u`α(x, y, ζ

`) = u`+1
α (x, y, ζ`)

σ`α3(x, y, ζ
`) = σ`+1

α3 (x, y, ζ`)

(3a)

(3b)

where σ`α3 are the transverse shear stresses in layer `. These 4 × (n − 1) equations permit to eliminate all the
unknowns function of the upper layers as it is shown in references [2, 4, 6]. This is done by means of transfer
matrices and leads to the definition and the computation of coefficients α`x, α

`
xy, β

`
x . . . As the overall process is

quite complicated, it is not reproduced here but it is presented in details in Appendix A. The model reduces
finally to 4n+ 1− (4n− 4) = 5 unknown functions of the first layer: two in-plane displacements u1α(x, y, z

1), a
transverse displacement w1(x, y), and two transverse shear strains γ1α3(x, y). These generalized displacements
differentiate from the Mindlin-Reissner plate model in which rotations ψ1

α(x, y) = w1
,α(x, y) − γ1α3(x, y) are

considered. There is another difference: these quantities are those of the first layer, whereas in plate models,
they are generally defined at the mid-plane of the laminate. However it is possible to pass from one description
to another. The former one is particularly suitable to patch problems because the first layer is common to the
entire structure.

For the present formulation, which is already written in function of the above five unknown functions, the
same physical assumptions are done. They are written in a slightly different manner:

lim
z→ζ`−

uα(x, y, z) = lim
z→ζ`+

uα(x, y, z)

lim
z→ζ`−

σα3(x, y, z) = lim
z→ζ`+

σα3(x, y, z)

(4a)

(4b)

The advantage of this formulation is that, as shown below, the four warping functions ϕαβ(z) are easily obtained
by means of the above conditions, making explicit the displacement field.

2.2.3. Final form
As told before, the elimination of the displacements of the upper layers in Woodcock’s formulation is a quite

complicated process and does not lead to an explicit form for the displacement field. The displacement field is
then written independently for each layer with the help of coefficients which must be computed for each layer.

For the present model, the use of equations (4a) and (4b) to build the warping functions is presented below.
First, let us compute the strain field from equations (2):

εαβ(x, y, z) = ε1αβ(x, y)− zw1
,αβ(x, y) +

1

2

(
ϕαγ(z)γ

1
γ3,β(x, y) + ϕβγ(z)γ

1
γ3,α(x, y)

)
εα3(x, y, z) =

1

2
ϕ′αβ(z)γ

1
β3(x, y)

ε33(x, y, z) = 0

(5a)

(5b)

(5c)

Note that ε1αβ , w
1
,αβ , γ

1
α3,β and γ1α3 form a set of 12 independent generalized strains to consider in this model.

With the help of equations (5a) and Hooke’s law, the transverse shear stresses can be formulated:

σα3(x, y, z) = 2Cα3β3εβ3 = Cα3β3(z)ϕ
′
βγ(z)γ

1
γ3(x, y) (6)

On the above formula, the 2 factor comes from the symmetry of the stiffness and strain tensors:

σα3 = Cα3β3εβ3 + Cα33βε3β = 2Cα3β3εβ3 (7)

The additional conditions (4a) and (4b) can now be written in terms of conditions on the warping functions:
lim

z→ζ`−
ϕαβ(z) = lim

z→ζ`+
ϕαβ(z)

lim
z→ζ`−

Cα3β3(z)ϕ
′
βγ(z) = lim

z→ζ`+
Cα3β3(z)ϕ

′
βγ(z)

(8a)

(8b)
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Equations (8a) represent the continuity of the warping functions at the n− 1 interfaces whereas equations (8b)
represent “jump” conditions on the derivatives. For a laminate, the simplest way to choose the warping function
is to take their derivatives as step functions, then, the warping functions are continuous piecewise linear functions
of z. For the first layer i. e. for z ∈ [ζ0, ζ1], the choice of ϕ′αβ(z) = δKαβ is done, where δKαβ is the Kronecker
symbol. This choice corresponds to Woodcock’s model.

This leads to the following expressions for the derivative of the warping functions:

ϕ′αβ(z) = 4Sα3γ3(z)Cγ3δ3(z
1)δδβ = 4Sα3γ3(z)Cγ3β3(z

1) (9)

The warping functions are obtained integrating (9). Integration constants are chosen to give ϕαβ(0) = 0. That
means that the transverse shear strains have no effect on the displacement of the middle plane of the first layer,
which is normal because it is precisely the reference plane for the model. Hence the warping functions could be
written:

ϕαβ(z) = 4Cγ3β3(z
1)

∫ z

0

Sα3γ3(ζ)dζ (10)

2.3. Stresses
The strains obtained in formula (5) permit to compute the stresses:

σαβ(x, y, z) = Qαβγδ(z)
(
ε1γδ(x, y)− zw1

,γδ(x, y) + ϕγµ(z)γ
1
µ3,δ(x, y)

)
σα3(x, y, z) = Cα3β3ϕ

′
βµ(z)γ

1
µ3(x, y)

σ33(x, y, z) = 0

(11a)

(11b)

(11c)

where Qαβγδ are the reduced generalized plane strain stiffnesses. The vanishing of the term 1
2 of equation (5a)

into equation (11a) is not evident. Let us demonstrate it, omitting the x, y, and z coordinates:

1

2
Qαβγδ

(
ϕγµγ

1
µ3,δ + ϕδµγ

1
µ3,γ

)
=

1

2
Qαβγδϕγµγ

1
µ3,δ +

1

2
Qαβγδϕδµγ

1
µ3,γ

=
1

2
Qαβγδϕγµγ

1
µ3,δ +

1

2
Qαβδγϕγµγ

1
µ3,δ (12)

= Qαβγδϕγµγ
1
µ3,δ

2.4. Strain energy
It is possible to compute the strain energy density δJ = 1/2εijσij from formulas (5) and (11) and integrate

it over the thickness to obtain a strain energy surface density J(x, y). This is the method followed by Woodcock
and other previous authors. Woodcock has found an expression which is the sum of 69 terms. In fact there is
only 55 independent terms as we shall see below.

In this paper, this method was also reproduced to find Woodcock’s coefficients given in Appendix B but in
the following lines, a different approach is presented. Let us start with the strain energy surface density:

J =
1

2

∫ ζn

ζ0

εijσijdz =
1

2

∫ ζn

ζ0

(εαβσαβ + 2εα3σα3 + ε33σ33) dz

=
1

2

∫ ζn

ζ0

[(
ε1αβ − zw1

,αβ +
1

2

(
ϕαγ(z)γ

1
γ3,β + ϕβγ(z)γ

1
γ3,α

))
σαβ + 2

1

2
ϕ′αβ(z)γ

1
β3σα3

]
dz

=
1

2

∫ ζn

ζ0

[(
ε1αβ − zw1

,αβ + ϕαγ(z)γ
1
γ3,β

)
σαβ + ϕ′αβ(z)γ

1
β3σα3

]
dz (13)

It can also be written

J =
1

2

[
ε1αβNαβ − w1

,αβMαβ + γ1γ3,βPγβ + γ1β3Qβ
]

(14)
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naturally introducing the following quantities which are the generalized forces,
{Nαβ ,Mαβ , Pγβ} =

∫ ζn

ζ0
{1, z, ϕαγ(z)}σαβ(z)dz

Qβ =

∫ ζn

ζ0
ϕ′αβ(z)σα3(z)dz

(15a)

(15b)

each associated with a corresponding generalized displacement in the strain energy formula(14).

Interpretation:. Nαβ and Mαβ are respectively the classical plate membrane forces and bending moments, and
Pαβ and Qα are special moments associated with the warping functions, i. e. associated with the transverse
shear behavior. Note that Pαβ 6= Pβα in the general case, leading to a set of 12 generalized forces.

Let us follow the computation of these generalized forces with the help of equations (11) and (15). They are
(some explanations are given below):

Nαβ = Aαβγδε
1
γδ +Bαβγδ(−w1

,γδ) + Eαβµδγ
1
µ3,δ

Mαβ = Bαβγδε
1
γδ +Dαβγδ(−w1

,γδ) + Fαβµδγ
1
µ3,δ

Pαβ = Eγδαβε
1
γδ + Fγδαβ(−w1

,γδ) +Gαβµδγ
1
µ3,δ

Qα = Hα3β3γ
1
β3

(16a)

(16b)

(16c)

(16d)

where the following generalized stiffnesses have been introduced:
{Aαβγδ, Bαβγδ, Dαβγδ, Eαβµδ, Fαβµδ, Gνβµδ} =

∫ ζn

ζ0
Qαβγδ{1, z, z2, ϕγµ(z), zϕγµ(z), ϕαν(z)ϕγµ(z)}dz

Hα3β3 =

∫ ζn

ζ0
ϕ′γα(z)Cγ3δ3ϕ

′
δβ(z)dz

(17a)

(17b)

The Nαβ and Mαβ computation is straightforward but special attention must be paid to the computation of
the Pαβ , revealing some uncommon symmetries:

Pαβ =

∫ ζn

ζ0
ϕµα(z)σµβ(z)dz

=

∫ ζn

ζ0
ϕµα(z)Qµβγδ(z)

(
ε1γδ − zw1

,γδ + ϕγν(z)γ
1
ν3,δ

)
dz

= Eγδαβε
1
γδ + Fγδαβ(−w1

,γδ) +Gαβµδγ
1
µ3,δ (18)

In this last expression, the Eγδαβ and Fγδαβ are identified with the help of the major symmetry of the Qµβγδ(z)
tensor.

The A, B and D tensors inherits the symmetries of Hooke’s tensor, a symmetry for each pair of indices,
called the minor symmetries and the major symmetry which permits the swap of the two pairs of indices, this
last one being related to the existence of a strain energy. The E and F tensors loose the symmetry on the last
pair of indices, forcing the major symmetry to disappear. The G tensor looses the symmetry on the two pairs
of indices, but keep the major symmetry:

for the A, B, D tensors: Aβαγδ = Aαβγδ = Aγδαβ = Aγδβα

for the E, F tensors: Eβαγδ = Eαβγδ 6= Eγδαβ 6= Eγδβα

for the G tensor: Gβαγδ 6= Gαβγδ = Gγδαβ 6= Gδγβα

(19)

Hence there is 6 independent components for A, B and D, 12 for E and F, 10 for G, and 3 for H. So this plate
model has a total of 55 independent stiffness coefficients in the most general case.
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2.5. Static laminate behavior
The generalized forces are set, by type, into vectors:

N =

N11

N22

N12

 M =

M11

M22

M12

 P =


P11

P22

P12

P21

 Q =

{
Q1

Q2

}
(20)

and the same is done for the corresponding generalized strains:

ε =


ε111
ε122
ε112

 κ =


−w1

,11

−w1
,22

−2w1
,12

 Γ =


γ113,1
γ123,2
γ113,2
γ123,1

 γ =

{
γ113
γ123

}
(21)

Generalized forces are linked with the generalized strains by the 10× 10 and 2× 2 following behavior matrices:N
M
P

 =

 A B E
B D F

ET FT G

εκ
Γ

 {
Q
}
=
[
H
] {
γ
}

(22)

2.6. Kinetic energy
The kinetic energy surface density Ec(x, y) of the structure is:

Ec(x, y) =
1

2

∫ ζn

ζ0
ρ(x, y, z)u̇i(x, y, z)u̇i(x, y, z)dz

=
1

2

∫ ζn

ζ0
ρ(z)

[ (
u̇1α − zẇ1

,α + ϕαβ(z)γ̇
1
β3

) (
u̇1α − zẇ1

,α + ϕαβ(z)γ̇
1
β3

)
+ (ẇ1)2

]
dz

=
1

2

∫ ζn

ζ0
ρ(z)

[
u̇1αu̇

1
α − 2zu̇1αẇ

1
,α + 2u̇1αϕαβ(z)γ̇

1
β3 + z2ẇ1

,αẇ
1
,α

− 2zẇ1
,αϕαβ(z)γ̇

1
β3 + ϕαβ(z)γ̇

1
β3ϕαµ(z)γ̇

1
µ3 + (ẇ1)2

]
dz (23)

for concision x and y have been omitted for the last two lines of this formula.
Let us now introduce the following generalized mass:

{R,S, T, Uαβ , Vαβ ,Wαβ} =
∫ ζn

ζ0
ρ(z){1, z, z2, ϕαβ(z), ϕαβ(z)z, ϕµα(z)ϕµβ(z)}dz (24)

Note that the Uαβ and Vαβ are antisymmetric tensors but Wαβ is symmetrical. Then, there is 14 independent
mass coefficients to consider. The kinetic energy surface density can now be written:

Ec(x, y) =
1

2

(
Ru̇1αu̇

1
α − 2Su̇1αẇ

1
,α + 2Uαβ u̇

1
αγ̇

1
β3 + Tẇ1

,αẇ
1
,α

− 2Vαβẇ
1
,αγ̇

1
β3 +Wαβ γ̇

1
α3γ̇

1
β3 +R(ẇ1)2

]
dz (25)

2.7. Laminate equations of motion
Let us recall the equilibrium conditions within a solid. Without loss of generality, body forces are neglected

here, and the previous convention on indices is kept:

{
σαβ,β + σα3,3 = ρüα

σα3,α + σ33,3 = ρü3

(26a)
(26b)
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Integrating the equations of equilibrium (26) over the thickness, with the help of formulas (2), (15) and (24)
leads to: Nαβ,β + [σα3(z)]

ζn

ζ0 = Rü1α − Sẅ1
,α + Uαβ γ̈

1
β3

Qcα,α + [σ33(z)]
ζn

ζ0 = Rẅ1

(27a)

(27b)

where the Qcα are the classical shear forces. In order to get more equations, weighted integrals over the thickness
of equation (26a) are computed. Weight functions are z and ϕαγ(z). It gives four more equations:Mαβ,β + [σα3(z)z]

ζn

ζ0 −Q
c
α = Sü1α − Tẅ1

,α + Vαβ γ̈
1
β3

Pγβ,β + [ϕαγ(z)σα3(z)]
ζn

ζ0 −Qγ = Uαγ ü
1
α − Vαγẅ1

,α +Wγβ γ̈
1
β3

(28a)

(28b)

Let denote q = [σ33(z)]
ζn

ζ0 the value of the transverse loading and suppose there is no tangential forces on
the top and bottom of the plate, so σα3(−h/2) = σα3(h/2) = 0. We shall note that there is no generalized
strains corresponding to the classical shear forces Qcα. They must be eliminated. It is done setting values of Qcα
obtained from formula (28a) into equation (27b). This leads to the plate equilibrium system of equations:

Nαβ,β = Rü1α − Sẅ1
,α + Uαβ γ̈

1
β3

Mαβ,βα + q = Rẅ1 + Sü1α,α − Tẅ1
,αα + Vαβ γ̈

1
β3,α

Pαβ,β −Qα = Uβαü
1
β − Vβαẅ1

,β +Wαβ γ̈
1
β3

(29a)

(29b)

(29c)

2.8. Link with Woodcock’s model
2.8.1. Strain energy

The behavior matrices of equation (22) can be formulated using Woodcock’s 69 λi energy coefficients.
Computation of these coefficients is detailed in Appendix A and Appendix B and the proof of the link with
stiffnesses of formulas 17 is given in Appendix C. The two matrices of equation (22) can be written:

 A B E
B D F

ET FT G

 =
1

4



4λ3 2λ21 2λ47 −2λ5 −2λ15 −λ45 −2λ6 −2λ20 −2λ46 −2λ52
2λ21 4λ9 2λ62 −2λ15 −2λ11 −λ60 −2λ18 −2λ12 −2λ61 −2λ67
2λ47 2λ62 4λ25 −2λ41 −2λ56 −λ29 −2λ44 −2λ59 −2λ32 −2λ34
−2λ5 −2λ15 −2λ41 4λ1 2λ13 λ39 2λ4 2λ14 2λ40 2λ48
−2λ15 −2λ11 −2λ56 2λ13 4λ7 λ54 2λ16 2λ10 2λ55 2λ63
−λ45 −λ60 −λ29 λ39 λ54 λ22 λ42 λ57 λ27 λ28
−2λ6 −2λ18 −2λ44 2λ4 2λ16 λ42 4λ2 2λ17 2λ43 2λ50
−2λ20 −2λ12 −2λ59 2λ14 2λ10 λ57 2λ17 4λ8 2λ58 2λ65
−2λ46 −2λ61 −2λ32 2λ40 2λ55 λ27 2λ43 2λ58 4λ23 2λ31
−2λ52 −2λ67 −2λ34 2λ48 2λ63 λ28 2λ50 2λ65 2λ31 4λ24


(30)

and: [
H
]
=

1

4

[
4λ37 2λ69
2λ69 4λ38

]
(31)

with:

λ15 = λ19

λ25 = λ26 = λ36/2

λ29 = λ30

λ32 = λ33

λ34 = λ35

λ41 = λ49 = λ45/2 (32)
λ44 = λ51

λ47 = λ53
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λ56 = λ64 = λ60/2

λ59 = λ66

λ62 = λ68

These above 14 equalities show that only 69− 14 = 55 strain energy coefficients are independent, which is the
number previously announced after the examination of symmetries of tensors done in section 2.4 starting from
formula (19).

The presence of minus sign in the blocs corresponding to B and E blocs is not easy to understand because it
is due to two sign differences between the two formulations: −wαβ are used here instead of wαβ in Woodcock’s
work, and γα3 are used here instead of ϕα = −γα3 (hence ϕα,β = −γα3,β) in Woodcock’s work. The combination
of these two sign changes gives explanation to this point.

2.8.2. Kinetic energy
Let us put the generalized speeds into a vector:

ΩT =
{
u̇11 u̇

1
2 ẇ

1 −ẇ1
,1 −ẇ1

,2 γ̇
1
13 γ̇

1
23

}
(33)

which permits to define a generalized mass matrix Ξ:

Ec(x, y) =
1

2
ΩTΞΩ (34)

Identifying equation (25) with formula (18) of Woodcock’s work2 shows that the expression of the generalized
mass matrix can be put in the two alternative forms:

Ξ =



R 0 0 S 0 U11 U12

0 R 0 0 S U21 U22

0 0 R 0 0 0 0
S 0 0 T 0 V11 V12
0 S 0 0 T V21 V22
U11 U21 0 V11 V21 W11 W12

U12 U22 0 V12 V22 W12 W22


=

1

2



2δ3 0 0 −δ5 0 −δ6 −δ18
0 2δ9 0 0 −δ11 −δ17 −δ12
0 0 2δ13 0 0 0 0
−δ5 0 0 2δ1 0 δ4 δ15
0 −δ11 0 0 2δ7 δ16 δ10
−δ6 −δ17 0 δ4 δ16 2δ2 δ14
−δ18 −δ12 0 δ15 δ10 δ14 2δ8


(35)

Note that:

δ3 = δ9 = δ13

δ5 = δ11 (36)
δ1 = δ7

These above 4 equalities show that only 13− 4 = 9 coefficients were independent in Woodcock’s work (that can
be verified in Appendix A. of reference [6]), but with the 5 missing coefficients, this lead to the announced 14
independent generalized mass coefficients. Complete proof of this relationship, including the missing coefficients,
is given in Appendix C.

3. Place of this model relatively to other plate models

The present model is more general than the Love-Kirchoff, Mindlin-Reissner and Reddy’s models because
it integrates additional information on the laminate behavior. Setting ϕαβ(z) = 0 in the present model gives
the Love-Kirchoff model. Matrices E, F, G and H are null, so the system (22) can be reduced to the classical

2The terms δi for 14 ≤ i ≤ 18 are missing in Woodcock’s formula (18) and also in the list of δi he produced. They are introduced
here, but the corrected formula (18) is not given: one can easily obtain it with the present mass matrix or following Woodcock’s
procedure.
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6× 6 four-block membrane-bending behavior matrix. The shear matrix H is null. Mass terms Uαβ , Vαβ , Wαβ

are also null, so the motion equations reduces to three equations:{
Nαβ,β = Rü1α − Sẅ1

,α

Mαβ,βα + q = Rẅ1 + Sü1α,α − Tẅ1
,αα

(37a)

(37b)

Setting ϕαβ(z) = zδKαβ (where δKαβ is the Kronecker symbol) in the present model gives the Mindlin-Reissner
model. Pαβ becomes symmetric and equals Mαβ and Qα are now the classical shear forces (previously denoted
Qcα in this document). If γ13,2 and γ12,3 are summed, matrices E, F and G can be reduced to 3×3 matrices, and
doing this, E = A, F = B and G = D so that the −w,αβ and the γα3,β can be combined to give the classical
symmetrical part ψαβ = 1/2(φα,β + φβ,α) of the gradient of rotations φα = −w,α + γα3 of the Mindlin-Reissner
model and the classical 6 × 6 four-block membrane-bending behavior matrix. The shear matrix H is not null,
and it can be enhanced by shear correction factors. The rotations time second derivative φ̈α = −ẅ,α + γ̈α3 will
also appear. Note also that Uαβ = SδKαβ , Vαβ = TδKαβ and Wαβ = TδKαβ . The system (22) can then be reduced,
in a slightly different manner than for the previous case, with the help of (27b), leading to 5 equations:

Nαβ,β = Rü1α + Sφ̈α

Mαβ,β −Qα = Sü1α + T φ̈α

Qα,α + q = Rẅ1

(38a)

(38b)

(38c)

Reddy’s original third-order theory [7] is very efficient for a single layer plate because the kinematic assumption
is very close to the three-dimensional elasticity solution. In can be simulated setting ϕαβ(z) = (z − 4/3z3)δKαβ
in the present model. This will work perfectly with the present formulation, but the link with Woodcock’s work
is not valid anymore, due to the presence of cubic terms in z. But this model is not adapted to high modulus
ratio between adjacent layers because the warping functions are those of an homogeneous plate.

More sophisticated models with refined warping functions have been proposed. We shall pay attention only
on those for which the number of unknowns does not depend on the number of layers. Among these models,
we can cite the references [8, 9]. These authors obtain warping functions for the general case, starting from
undetermined cubic functions in each layer. Then they develop a (different) method to combine the layer
polynomial functions into 4 laminate warping functions. It is also evident at this point that these warping
functions can be put into our model, but it was not the purpose of this paper.

4. Conclusion

In this work, a multilayered plate model has been reformulated from Woodcock’s work [6]. First, the
pertinence of this model, especially when there is high modulus ratios between the layers, has been proved by
comparing to the literature and to three-dimensional finite element studies [4, 5]. The reformulation has been
motivated by several reasons. First, in the original work, there are missing terms in formulas for the energy
coefficients, leading to an erroneous list of those coefficients. It is problematic because these energy coefficients
are precisely the core of the method. Second, this work is not presented with the standard notations of plate
models, that makes it very difficult to understand and to situate relatively to other known models. For example,
the displacement field, which is not explicit in the original work, has been made explicit in the present paper
by means of warping functions.

A mechanical behavior law involving a 10×10 matrix for the membrane / bending / shear warping behavior
and their respective coupling, and a 2 × 2 matrix for the shear behavior, is given. This is suitable for static
analysis. Complete equations of motion with generalized mass are also given. It has been proven that 55
generalized stiffnesses components (or strain energy coefficients) and 15 generalized mass (or kinetic energy
coefficients) are independent.

A complete link has been established between the original model and its new formulation, with all necessary
proofs. In addition, the original work of Woodcock has been completed by additional formulas and detailed
procedures to implement it in numerical simulations. It is ready to use in analytical works or in numerical
simulations with Rayleigh-Ritz or finite element discretization for example.

The place of the model amongst all multilayered plate models is now easy to see. That permits to understand
why the model is pertinent in the cases discussed above, and also to understand its limits, especially the one
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due to the hypothesis of constant transverse shear stresses, which is a poor hypothesis for thick plates without
shear correction coefficients. This limit is not so problematic, because the present model can be, without effort,
enhanced by a choice of more refined warping functions. Results of interesting works like [8] can be easily
implemented for dynamic studies with the help of this work, which was definitely not the case from initial
formulation.
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Appendix A. Computation of Woodcock’s layer coefficients α`
x, α

`
xy, β

`
x . . .

In this section, the computation of the transfer matrix given in Woodcock’s work at formula (14) is made.
The notations used are those of section 2.2.1.

Appendix A.1. Link between the layer `+ 1 and the layer `
We start with the kinematic and “static” assumptions of formulas (3a) and (3b). Let us consider that x and

y are fixed, hence they can be omitted in the terms. Enforcing condition (3a) into (1) leads to:

u`+1
α (z`+1) + (z`+1 − ζ`)(w1

,α − γ`+1
α3 ) = u`α(z

`) + (z` − ζ`)(w1
,α − γ`α3) (A.1)

Let [C`
s] be the transverse shear stiffness matrix of layer ` defined as:

[C`
s] =

[
C`1313 C

`
1323

C`1323 C
`
2323

]
(A.2)

Hence, with the “static” assumption (3b):{
γ`+1
13

γ`+1
23

}
= [C`+1

s ]−1
{
σ`+1
13

σ`+1
23

}
= [C`+1

s ]−1
{
σ`13
σ`23

}
= [C`+1

s ]−1[C`
s]

{
γ`13
γ`23

}
(A.3)

Let us define:

[A`+1] = [C`+1
s ]−1[C`

s] (A.4)

hence: {
γ`+1
13

γ`+1
23

}
= [A`+1]

{
γ`13
γ`23

}
(A.5)

For clarity we denote u`α the mid-layer membrane displacements u`α(z
`). Equation (A.1) can then be written:{

u`+1
1

u`+1
2

}
=

{
u`1
u`2

}
+ (z` − z`+1)

{
w1
,1

w1
,2

}
− (z` − ζ`)

{
γ`13
γ`23

}
+ (z`+1 − ζ`)[A`+1]

{
γ`13
γ`23

}
(A.6)
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And finally (minus signs are left to fit Woodcock’s formulas):{
u`+1
1

u`+1
2

}
= [ I ]

{
u`1
u`2

}
− [D`+1]

{
−γ`13
−γ`23

}
+ [B`+1]

{
w1
,1

w1
,2

}
(A.7)

with:

[B`+1] = (z` − z`+1)[ I ] and [D`+1] =
h`

2
[ I ] +

h`+1

2
[A`+1] (A.8)

Equations (A.4) and (A.7) can be written :

u`+1
1

u`+1
2

−γ`+1
13

−γ`+1
23

w`+1
,1

w`+1
,2


=

 I −D`+1 B`+1

0 A`+1 0
0 0 I




u`1
u`2
−γ`13
−γ`23
w`,1
w`,2


(A.9)

Let Υ` denote the vector involved in the right side of equation (A.9) and Ω`+1 the corresponding block matrix:

Υ`+1 = Ω`+1Υ` (A.10)

Appendix A.2. Link between the layer ` and the layer 1 (for ` > 1)
Let us try to compute a matrix which links the layer ` and the layer 1:

Υ` = Ω`Ω`−1 . . .Ω2Υ1 = Ω̂
`
Υ1 (A.11)

It is shown in the following lines that the matrix Ω̂
`
can be written:

Ω̂
`
=

 I −D` B`

0 A` 0
0 0 I

 (A.12)

where:

A` = [C`
s]
−1[C1

s] (A.13a)

D` =
h1

2
A1 +

`−1∑
m=2

hmAm +
h`

2
A` (A.13b)

B` = (z1 − z`) I = −z` I (A.13c)

Let us make the proof by recurrence. Setting ` = 1 into equations (A.4) and (A.8) leads to:

A2 = [A2] = [C2
s]
−1[C1

s] (A.14a)

D2 = [D2] =
h1

2
[ I ] +

h2

2
[A2] (A.14b)

B2 = [B2] = (z1 − z2)[ I ] = −z2[ I ] (A.14c)

Computing Ω̂
`+1

= Ω`+1Ω̂
`
leads to:

Ω̂
`+1

=

 I −D` −D`+1A` B` + B`+1

0 A`+1A` 0
0 0 I

 (A.15)
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Computation of the three non trivial blocks shows that the formulas (A.13) work also for the layer `+ 1,

A`+1 = A`+1A`

= [C`+1
s ]−1[C`

s][C
`
s]
−1[C1

s]

= [C`+1
s ]−1[C1

s] (A.16a)

D`+1 = D` +D`+1A`

=
h1

2
A1 +

`−1∑
m=2

hmAm +
h`

2
A` +

(
h`

2
I +

h`+1

2
A`+1

)
A`

=
h1

2
A1 +

∑̀
m=2

hmAm +
h`+1

2
A`+1 (A.16b)

B`+1 = B` + B`+1

= (z1 − z`) I + (z` − z`+1) I

= (z1 − z`+1) I = −z`+1 I (A.16c)

that ends the proof.
The Ω̂

`
matrix contains terms which are here denoted in a slightly different manner than in Woodcock’s

work:

Ω̂
`
=

 I −D` B`

0 A` 0
0 0 I

 =



1 0 δ`xx δ`xy β` 0

0 1 δ`yx δ`yy 0 β`

0 0 α`xx α
`
xy 0 0

0 0 α`yx α
`
yy 0 0

0 0 0 0 1 0
0 0 0 0 0 1

 (A.17)

This notation permits to write generic formulas like (C.6) for example. The correspondence with Woodcock’s
notation and the matrix in formula (14) of Woodcock’s article [6] can be obtained following the rules:

- replace superscripts ` by n− 1 (n would have been a more judicious choice),

- replace δn−1xx by γn−1x and δn−1yy by γn−1y ,

- replace αn−1xx by αn−1x and αn−1yy by αn−1y ,

- makes appear a βn−1x and a βn−1y instead of the two (identical) βn−1,

- swap rows and columns of matrix following (1, 2, 3, 4, 5, 6)→ (5, 3, 1, 6, 4, 2)

Appendix B. Corrected lists of Woodcock’s energies coefficients

Appendix B.1. Important note
Below are listed the corrected 69 Woodcock’s strain energy coefficients and the corrected 18 kinetic energy

coefficients as they were defined in the article [6].
Computation has been done with the help of a symbolic computation software. The coefficients have been

computed following Woodcock’s procedure: once established that the transfer matrix of equation (A.17) could
link each layer to the first one, strain and kinetic energies are expressed in function of the first layer displace-
ment field. Integration of these strain and kinetic energies over the thickness of the plate leads to functionals
given in reference [6] at formulas (24) and (18), and in Appendix B. Woodcock found that these functional
has respectively 69 and 13 coefficients, some of them being equal. Reproducing Woodcock’s procedure, the
computation shows that mistakes occur in the given lists. A rapid examen of these lists shows that none of the
coefficients exhibit a δxy or a αxy term which are present in the transfer matrix of formula (14) of reference [6].

Another proof is given in this work, mainly in Appendix C, in which these same coefficients are computed
from a different method involving the warping functions of formula (10).
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Appendix B.2. Preliminary remarks
Some preliminary remarks must be done at this time:

1. Energy coefficients has been given in Woodcock’s work using the two index Voigt’s notation for the fourth
order stiffness tensor, so we choose to keep here this index convention. We shall recall here that the change
is made according to the well known rule (11, 22, 33, 23, 13, 12)↔ (1, 2, 3, 4, 5, 6).

2. Note that in this document a ` superscript has been chosen for the layer index instead of the n superscript
in Woodcock’s formulas. Note also that an awkward choice of numbering in Woodcock’s work has lead
to a mix of n and n − 1 superscript which hides the true nature of inner terms of coefficients, which are
simply “weights” for each layer into generalized stiffnesses or mass.

3. The density µn of the nth layer in Woodcock’s work has been changed with ρ` in the following formulas.

Some equalities between coefficients are listed in equations (32) and (36). It can be verified that these
relations obtained by symmetry considerations on the energies are confirmed in the lists below. Note that there
remain only 55 and 15 independent coefficients for respectively strain and kinetic energies, in the most general
case.

Appendix B.3. Definition of coefficients λi

λ1 =

n∑
`=1

[(
1

12

(
h`
)3

+ h`
(
β`
)2)

Q`11

]

λ2 =

n∑
`=1

[(
1

12

(
α`x
)2 (

h`
)3

+
(
γ`x
)2
h`
)
Q`11 +

(
1

6
α`xα

`
yx

(
h`
)3

+ 2γ`xδ
`
yxh

`

)
Q`16

+

(
1

12

(
α`yx
)2 (

h`
)3

+
(
δ`yx
)2
h`
)
Q`66

]
λ3 =

n∑
`=1

[
h`Q`11

]

λ4 =

n∑
`=1

[(
1

6
α`x
(
h`
)3

+ 2γ`xh
`β`
)
Q`11 +

(
1

6
α`yx

(
h`
)3

+ 2δ`yxh
`β`
)
Q`16

]

λ5 =

n∑
`=1

[
2h`β`Q`11

]

λ6 =

n∑
`=1

[
2γ`xh

`Q`11 + 2δ`yxh
`Q`16

]

λ7 =

n∑
`=1

[(
1

12

(
h`
)3

+ h`
(
β`
)2)

Q`22

]

λ8 =

n∑
`=1

[(
1

12

(
α`y
)2 (

h`
)3

+
(
γ`y
)2
h`
)
Q`22 +

(
1

6
α`yα

`
xy

(
h`
)3

+ 2γ`yδ
`
xyh

`

)
Q`26

+

(
1

12

(
α`xy
)2 (

h`
)3

+
(
δ`xy
)2
h`
)
Q`66

]
λ9 =

n∑
`=1

[
h`Q`22

]

λ10 =

n∑
`=1

[(
1

6
α`y
(
h`
)3

+ 2γ`yh
`β`
)
Q`22 +

(
1

6
α`xy

(
h`
)3

+ 2δ`xyh
`β`
)
Q`26

]
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λ11 =

n∑
`=1

[
2h`β`Q`22

]

λ12 =

n∑
`=1

[
2γ`yh

`Q`22 + 2δ`xyh
`Q`26

]

λ13 =

n∑
`=1

[(
1

6

(
h`
)3

+ 2h`
(
β`
)2)

Q`12

]

λ14 =

n∑
`=1

[(
1

6
α`y
(
h`
)3

+ 2γ`yh
`β`
)
Q`12 +

(
1

6
α`xy

(
h`
)3

+ 2δ`xyh
`β`
)
Q`16

]

λ15 =

n∑
`=1

[
2h`β`Q`12

]

λ16 =

n∑
`=1

[(
1

6
α`x
(
h`
)3

+ 2γ`xh
`β`
)
Q`12 +

(
1

6
α`yx

(
h`
)3

+ 2δ`yxh
`β`
)
Q`26

]

λ17 =

n∑
`=1

[(
1

6
α`xα

`
y

(
h`
)3

+ 2γ`xγ
`
yh
`

)
Q`12 +

(
1

6
α`xα

`
xy

(
h`
)3

+ 2γ`xδ
`
xyh

`

)
Q`16

+

(
1

6
α`yα

`
yx

(
h`
)3

+ 2γ`yδ
`
yxh

`

)
Q`26 +

(
1

6
α`xyα

`
yx

(
h`
)3

+ 2δ`xyδ
`
yxh

`

)
Q`66

]
λ18 =

n∑
`=1

[
2γ`xh

`Q`12 + 2δ`yxh
`Q`26

]

λ19 =

n∑
`=1

[
2h`β`Q`12

]

λ20 =

n∑
`=1

[
2γ`yh

`Q`12 + 2δ`xyh
`Q`16

]

λ21 =

n∑
`=1

[
2h`Q`12

]

λ22 =

n∑
`=1

[(
1

3

(
h`
)3

+ 4h`
(
β`
)2)

Q`66

]

λ23 =

n∑
`=1

[(
1

12

(
α`yx
)2 (

h`
)3

+
(
δ`yx
)2
h`
)
Q`22 +

(
1

6
α`xα

`
yx

(
h`
)3

+ 2γ`xδ
`
yxh

`

)
Q`26

+

(
1

12

(
α`x
)2 (

h`
)3

+
(
γ`x
)2
h`
)
Q`66

]
λ24 =

n∑
`=1

[(
1

12

(
α`xy
)2 (

h`
)3

+
(
δ`xy
)2
h`
)
Q`11 +

(
1

6
α`yα

`
xy

(
h`
)3

+ 2γ`yδ
`
xyh

`

)
Q`16

+

(
1

12

(
α`y
)2 (

h`
)3

+
(
γ`y
)2
h`
)
Q`66

]
λ25 =

n∑
`=1

[
h`Q`66

]

λ26 =

n∑
`=1

[
h`Q`66

]

λ27 =

n∑
`=1

[(
1

3
α`yx

(
h`
)3

+ 4δ`yxh
`β`
)
Q`26 +

(
1

3
α`x
(
h`
)3

+ 4γ`xh
`β`
)
Q`66

]
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λ28 =

n∑
`=1

[(
1

3
α`xy

(
h`
)3

+ 4δ`xyh
`β`
)
Q`16 +

(
1

3
α`y
(
h`
)3

+ 4γ`yh
`β`
)
Q`66

]

λ29 =

n∑
`=1

[
4h`β`Q`66

]

λ30 =

n∑
`=1

[
4h`β`Q`66

]

λ31 =

n∑
`=1

[(
1

6
α`xyα

`
yx

(
h`
)3

+ 2δ`xyδ
`
yxh

`

)
Q`12 +

(
1

6
α`xα

`
xy

(
h`
)3

+ 2γ`xδ
`
xyh

`

)
Q`16

+

(
1

6
α`yα

`
yx

(
h`
)3

+ 2γ`yδ
`
yxh

`

)
Q`26 +

(
1

6
α`xα

`
y

(
h`
)3

+ 2γ`xγ
`
yh
`

)
Q`66

]
λ32 =

n∑
`=1

[
2δ`yxh

`Q`26 + 2γ`xh
`Q`66

]

λ33 =

n∑
`=1

[
2δ`yxh

`Q`26 + 2γ`xh
`Q`66

]

λ34 =

n∑
`=1

[
2δ`xyh

`Q`16 + 2γ`yh
`Q`66

]

λ35 =

n∑
`=1

[
2δ`xyh

`Q`16 + 2γ`yh
`Q`66

]

λ36 =

n∑
`=1

[
2h`Q`66

]

λ37 =

n∑
`=1

[ (
α`yx
)2
h`C`44 + 2α`xα

`
yxh

`C`45 +
(
α`x
)2
h`C`55

]

λ38 =

n∑
`=1

[ (
α`y
)2
h`C`44 + 2α`yα

`
xyh

`C`45 +
(
α`xy
)2
h`C`55

]

λ39 =

n∑
`=1

[(
1

3

(
h`
)3

+ 4h`
(
β`
)2)

Q`16

]

λ40 =

n∑
`=1

[(
1

6
α`yx

(
h`
)3

+ 2δ`yxh
`β`
)
Q`12 +

(
1

6
α`x
(
h`
)3

+ 2γ`xh
`β`
)
Q`16

]

λ41 =

n∑
`=1

[
2h`β`Q`16

]

λ42 =

n∑
`=1

[(
1

3
α`x
(
h`
)3

+ 4γ`xh
`β`
)
Q`16 +

(
1

3
α`yx

(
h`
)3

+ 4δ`yxh
`β`
)
Q`66

]

λ43 =

n∑
`=1

[(
1

6
α`xα

`
yx

(
h`
)3

+ 2γ`xδ
`
yxh

`

)
Q`12 +

(
1

6

(
α`x
)2 (

h`
)3

+ 2
(
γ`x
)2
h`
)
Q`16

+

(
1

6

(
α`yx
)2 (

h`
)3

+ 2
(
δ`yx
)2
h`
)
Q`26 +

(
1

6
α`xα

`
yx

(
h`
)3

+ 2γ`xδ
`
yxh

`

)
Q`66

]
λ44 =

n∑
`=1

[
2γ`xh

`Q`16 + 2δ`yxh
`Q`66

]

λ45 =

n∑
`=1

[
4h`β`Q`16

]
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λ46 =

n∑
`=1

[
2δ`yxh

`Q`12 + 2γ`xh
`Q`16

]

λ47 =

n∑
`=1

[
2h`Q`16

]

λ48 =

n∑
`=1

[(
1

6
α`xy

(
h`
)3

+ 2δ`xyh
`β`
)
Q`11 +

(
1

6
α`y
(
h`
)3

+ 2γ`yh
`β`
)
Q`16

]

λ49 =

n∑
`=1

[
2h`β`Q`16

]

λ50 =

n∑
`=1

[(
1

6
α`xα

`
xy

(
h`
)3

+ 2γ`xδ
`
xyh

`

)
Q`11 +

(
1

6
α`xα

`
y

(
h`
)3

+
1

6
α`xyα

`
yx

(
h`
)3

+2γ`xγ
`
yh
` + 2δ`xyδ

`
yxh

`

)
Q`16 +

(
1

6
α`yα

`
yx

(
h`
)3

+ 2γ`yδ
`
yxh

`

)
Q`66

]
λ51 =

n∑
`=1

[
2γ`xh

`Q`16 + 2δ`yxh
`Q`66

]

λ52 =

n∑
`=1

[
2δ`xyh

`Q`11 + 2γ`yh
`Q`16

]

λ53 =

n∑
`=1

[
2h`Q`16

]

λ54 =

n∑
`=1

[(
1

3

(
h`
)3

+ 4h`
(
β`
)2)

Q`26

]

λ55 =

n∑
`=1

[(
1

6
α`yx

(
h`
)3

+ 2δ`yxh
`β`
)
Q`22 +

(
1

6
α`x
(
h`
)3

+ 2γ`xh
`β`
)
Q`26

]

λ56 =

n∑
`=1

[
2h`β`Q`26

]

λ57 =

n∑
`=1

[(
1

3
α`y
(
h`
)3

+ 4γ`yh
`β`
)
Q`26 +

(
1

3
α`xy

(
h`
)3

+ 4δ`xyh
`β`
)
Q`66

]

λ58 =

n∑
`=1

[(
1

6
α`yα

`
yx

(
h`
)3

+ 2γ`yδ
`
yxh

`

)
Q`22 +

(
1

6
α`xα

`
y

(
h`
)3

+
1

6
α`xyα

`
yx

(
h`
)3

+2γ`xγ
`
yh
` + 2δ`xyδ

`
yxh

`

)
Q`26 +

(
1

6
α`xα

`
xy

(
h`
)3

+ 2γ`xδ
`
xyh

`

)
Q`66

]
λ59 =

n∑
`=1

[
2γ`yh

`Q`26 + 2δ`xyh
`Q`66

]

λ60 =

n∑
`=1

[
4h`β`Q`26

]

λ61 =

n∑
`=1

[
2δ`yxh

`Q`22 + 2γ`xh
`Q`26

]

λ62 =

n∑
`=1

[
2h`Q`26

]

λ63 =

n∑
`=1

[(
1

6
α`xy

(
h`
)3

+ 2δ`xyh
`β`
)
Q`12 +

(
1

6
α`y
(
h`
)3

+ 2γ`yh
`β`
)
Q`26

]
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λ64 =

n∑
`=1

[
2h`β`Q`26

]

λ65 =

n∑
`=1

[(
1

6
α`yα

`
xy

(
h`
)3

+ 2γ`yδ
`
xyh

`

)
Q`12 +

(
1

6

(
α`xy
)2 (

h`
)3

+ 2
(
δ`xy
)2
h`
)
Q`16

+

(
1

6

(
α`y
)2 (

h`
)3

+ 2
(
γ`y
)2
h`
)
Q`26 +

(
1

6
α`yα

`
xy

(
h`
)3

+ 2γ`yδ
`
xyh

`

)
Q`66

]
λ66 =

n∑
`=1

[
2γ`yh

`Q`26 + 2δ`xyh
`Q`66

]

λ67 =

n∑
`=1

[
2δ`xyh

`Q`12 + 2γ`yh
`Q`26

]

λ68 =

n∑
`=1

[
2h`Q`26

]

λ69 =

n∑
`=1

[
2α`yα

`
yxh

`C`44 +
(
2α`xα

`
yh
` + 2α`xyα

`
yxh

`
)
C`45 + 2α`xα

`
xyh

`C`55

]
(B.1)

Appendix B.4. Definition of coefficients δi

δ1 =

n∑
`=1

[(
1

12

(
h`
)3

+ h`
(
β`
)2)

ρ`
]

δ2 =

n∑
`=1

[(
1

12

(
α`x
)2 (

h`
)3

+
1

12

(
α`yx
)2 (

h`
)3

+
(
γ`x
)2
h` +

(
δ`yx
)2
h`
)
ρ`
]

δ3 =

n∑
`=1

[
h`ρ`

]

δ4 =

n∑
`=1

[(
1

6
α`x
(
h`
)3

+ 2γ`xh
`β`
)
ρ`
]

δ5 =

n∑
`=1

[
2h`β`ρ`

]

δ6 =

n∑
`=1

[
2γ`xh

`ρ`
]

δ7 =

n∑
`=1

[(
1

12

(
h`
)3

+ h`
(
β`
)2)

ρ`
]

δ8 =

n∑
`=1

[(
1

12

(
α`y
)2 (

h`
)3

+
1

12

(
α`xy
)2 (

h`
)3

+
(
γ`y
)2
h` +

(
δ`xy
)2
h`
)
ρ`
]

δ9 =

n∑
`=1

[
h`ρ`

]

δ10 =

n∑
`=1

[(
1

6
α`y
(
h`
)3

+ 2γ`yh
`β`
)
ρ`
]

δ11 =

n∑
`=1

[
2h`β`ρ`

]
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δ12 =

n∑
`=1

[
2γ`yh

`ρ`
]

δ13 =

n∑
`=1

[
h`ρ`

]

δ14 =

n∑
`=1

[(
1

6
α`xα

`
xy

(
h`
)3

+
1

6
α`yα

`
yx

(
h`
)3

+ 2γ`xδ
`
xyh

` + 2γ`yδ
`
yxh

`

)
ρ`
]

δ15 =

n∑
`=1

[(
1

6
α`xy

(
h`
)3

+ 2δ`xyh
`β`
)
ρ`
]

δ16 =

n∑
`=1

[(
1

6
α`yx

(
h`
)3

+ 2δ`yxh
`β`
)
ρ`
]

δ17 =

n∑
`=1

[
2δ`yxh

`ρ`
]

δ18 =

n∑
`=1

[
2δ`xyh

`ρ`
]

(B.2)

Appendix C. Proof of the link between behavior and mass matrices and Woodcock’s coefficients

Appendix C.1. Preliminary results
We recall here that the height of each layer is written h` = ζ`−ζ`−1 and that with the help of formulas (A.16c)

and (A.17) it can be seen that (ζ`+ ζ`−1)/2 = z` = −β` is the layer mid-plane elevation. Let us first compute:∫ ζ`

ζ`−1

dz = h` (C.1a)∫ ζ`

ζ`−1

zdz =
1

2
((ζ`)2 − (ζ`−1)2) = h`z` = h`(−β`) (C.1b)∫ ζ`

ζ`−1

z2dz =
1

3
((ζ`)3 − (ζ`−1)3) =

1

12
((ζ`)3 − (ζ`−1)3) +

1

4
((ζ`)3 − (ζ`−1)3)

=
1

12
(ζ` − ζ`−1)3 + 1

4
((ζ`)3 − (ζ`−1)3 + (ζ`)2ζ`−1 − ζ`(ζ`−1)2)

=
1

12
(h`)3 + h`(z`)2 =

1

12
(h`)3 + h`(β`)2 (C.1c)

These above three formulas help to compute:∫ ζ`

ζ`−1

(z − z`)dz = h`(z` − z`) = 0 (C.2a)∫ ζ`

ζ`−1

(z − z`)zdz = 1

12
(h`)3 + h`(z`)2 − h`(z`)2 =

1

12
(h`)3 (C.2b)∫ ζ`

ζ`−1

(z − z`)2dz = 1

12
(h`)3 + h`(z`)2 − 2h`(z`)2 + (z`)2h` =

1

12
(h`)3 (C.2c)

Another important preliminary result consists in the transformation of the following integral on a sum over the
layers, written in a particular manner which leads to easier calculus on the following steps:∫ z

0

Sα3γ3(ζ)dζ = S1
α3γ3(ζ

1 − 0) +

`−1∑
m=2

Smα3γ3(ζ
m − ζm−1) + S`α3γ3(z − ζ`−1)
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= S1
α3γ3

h1

2
+

`−1∑
m=2

Smα3γ3h
m + S`α3γ3

h`

2
+ S`α3γ3(z − z`) (C.3)

Appendix C.2. Warping function integrals
In this section, for clarity, the notations of equation (A.17) for Woodcock’s coefficients are used. The link

with Woodcock’s notations is explained just after equation (A.17).

Computation of the Eαβγδ. It requires the calculus of:∫ ζ`

ζ`−1

ϕαβ(z)dz = 4Cγ3β3(z
1)

∫ ζ`

ζ`−1

(∫ z

0

Sα3γ3(ζ)dζ
)
dz (C.4)

according to preliminary results of formulas (C.1a), (C.2a) and (C.3):∫ ζ`

ζ`−1

ϕαβ(z)dz = 4Cγ3β3(z
1)

(
S1
α3γ3

h1

2
+

`−1∑
m=2

Smα3γ3h
m + S`α3γ3

h`

2

)
h` (C.5)

One can see now with the help of Appendix A that the integrals of the warping functions over the layer `
are linked with Woodcock’s coefficients δ`αβ :∫ ζ`

ζ`−1

ϕαβ(z)dz = −δ`αβh` (C.6)

Computation of the Fαβγδ. It requires the calculus of:∫ ζ`

ζ`−1

ϕαβ(z)zdz = 4Cγ3β3(z
1)

∫ ζ`

ζ`−1

(∫ z

0

Sα3γ3(ζ)dζ
)
zdz (C.7)

according to preliminary results of formulas (C.1b), (C.2b) and (C.3):∫ ζ`

ζ`−1

ϕαβ(z)zdz = 4Cγ3β3(z
1)

[(
S1
α3γ3

h1

2
+

`−1∑
m=2

Smα3γ3h
m + S`α3γ3

h`

2

)
(−h`β`) + S`α3γ3

(h`)3

12

]
(C.8)

One can see now with the help of Appendix A that the first moments of the warping functions over the layer
` are linked with Woodcock’s coefficients δ`αβ , β

` and α`αβ :∫ ζ`

ζ`−1

ϕαβ(z)zdz = δ`αββ
`h` + α`αβ

(h`)3

12
(C.9)

Computation of the Gαβγδ. It requires the calculus of:∫ ζ`

ζ`−1

ϕαβ(z)ϕγδ(z)dz = 16Cλ3β3(z
1)Cµ3δ3(z

1)

∫ ζ`

ζ`−1

(∫ z

0

Sα3λ3(ζ)dζ
∫ z

0

Sγ3µ3(ζ)dζ
)
dz (C.10)

according to preliminary results of formulas (C.1a), (C.2a), (C.2c) and (C.3):∫ ζ`

ζ`−1

ϕαβ(z)ϕγδ(z)dz =16Cλ3β3(z
1)Cµ3δ3(z

1)

∫ ζ`

ζ`−1

[
(
S1
α3λ3

h1

2
+

`−1∑
m=2

Smα3λ3h
m + S`α3λ3

h`

2

)(
S1
γ3µ3

h1

2
+

`−1∑
m=2

Smγ3µ3h
m + S`γ3µ3

h`

2

)

+

(
S1
α3λ3

h1

2
+

`−1∑
m=2

Smα3λ3h
m + S`α3λ3

h`

2

)
S`γ3µ3(z − z`)
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+

(
S1
γ3µ3

h1

2
+

`−1∑
m=2

Smγ3µ3h
m + S`γ3µ3

h`

2

)
S`α3λ3(z − z`)

+S`γ3µ3S
`
α3λ3(z − z`)2

]
dz (C.11)

One can see now with the help of Appendix A that this integral over the layer ` is linked with Woodcock’s
coefficients δ`αβ and α`αβ : ∫ ζ`

ζ`−1

ϕαβ(z)ϕγδ(z)dz = δαβδγδh
` + ααβαγδ

(h`)3

12
(C.12)

Appendix C.3. Computation of matrices [A], [B], [D], [E], [F], [G], [H] and [Ξ]

Matrices [A], [B] and [D]. The computation of components of these matrices is classical. Formula (17) shows
that results can be written directly in a matrix form:

{[A], [B], [D]} =
∫ ζn

ζ0
[Q]{1, z, z2}dz =

n∑
`=1

[Q]`{h`,−h`β`, (h
`)3

12
+ h`(β`)2} (C.13)

One can see that these formulas corresponds to Woodcock’s coefficients λi with i ∈ (3, 9, 21, 25, 47, 62) for [A],
to −λi with i ∈ (5, 11, 15, 29, 45, 60) for [B] and to λi with i ∈ (1, 7, 13, 22, 39, 54) for [D]. Note that some
Woodcock’s coefficients must be divided by 2 or by 4 according to the correspondence shown in formula (30).

Matrix [E]. Formulas (17) and (C.6) gives:

Eαβµδ =

∫ ζn

ζ0
Qαβγδϕγµ(z)dz = −

n∑
`=1

Q`αβγδδ
`
γµh

` (C.14)

This formula gives Woodcock’s coefficients −λi with i ∈ (6, 12, 18, 20, 32, 34, 44, 46, 52, 59, 61, 67). Let us finish
the demonstration for some of them, changing the notations on the fly to fit Woodcock’s coefficients:

E1111 = −
n∑
`=1

(Q`1111δ
`
11 +Q`1121δ

`
21)h

` = −
n∑
`=1

(Q`11γ
`
x +Q`16δ

`
yx)h

` = −λ6
2

(C.15a)

E2211 = −
n∑
`=1

(Q`2211δ
`
11 +Q`2221δ

`
21)h

` = −
n∑
`=1

(Q`12γ
`
x +Q`26δ

`
yx)h

` = −λ18
2

(C.15b)

E1122 = −
n∑
`=1

(Q`1112δ
`
12 +Q`1122δ

`
22)h

` = −
n∑
`=1

(Q`16δ
`
xy +Q`12γ

`
y)h

` = −λ20
2

(C.15c)

E1221 = −
n∑
`=1

(Q`1211δ
`
12 +Q`1221δ

`
22)h

` = −
n∑
`=1

(Q`16δ
`
xy +Q`66γ

`
y)h

` = −λ34
2

(C.15d)

Matrix [F]. Formulas (17) and (C.9) gives:

Fαβµδ =

∫ ζn

ζ0
Qαβγδϕγµ(z)zdz =

n∑
`=1

Q`αβγδ

(
δ`γµβ

`h` + α`γµ
(h`)3

12

)
(C.16)

This formula gives Woodcock’s coefficients λi with i ∈ (4, 10, 14, 16, 27, 28, 40, 42, 48, 55, 57, 63). Let us finish
the demonstration for some of them, changing the notations on the fly to fit Woodcock’s coefficients:

F2222 =

n∑
`=1

[
Q`2212

(
δ`12β

`h` + α`12
(h`)3

12

)
+Q`2222

(
δ`22β

`h` + α`22
(h`)3

12

)]

=

n∑
`=1

[
Q`26

(
δ`xyβ

`h` + α`xy
(h`)3

12

)
+Q`22

(
γ`yβ

`h` + α`y
(h`)3

12

)]
=
λ10
2

(C.17a)

21



F1122 =

n∑
`=1

[
Q`1112

(
δ`12β

`h` + α`12
(h`)3

12

)
+Q`1122

(
δ`22β

`h` + α`22
(h`)3

12

)]

=

n∑
`=1

[
Q`16

(
δ`xyβ

`h` + α`xy
(h`)3

12

)
+Q`12

(
γ`yβ

`h` + α`y
(h`)3

12

)]
=
λ14
2

(C.17b)

F1121 =

n∑
`=1

[
Q`1111

(
δ`12β

`h` + α`12
(h`)3

12

)
+Q`2221

(
δ`22β

`h` + α`22
(h`)3

12

)]

=

n∑
`=1

[
Q`11

(
δ`xyβ

`h` + α`xy
(h`)3

12

)
+Q`16

(
γ`yβ

`h` + α`y
(h`)3

12

)]
=
λ48
2

(C.17c)

F2212 =

n∑
`=1

[
Q`2212

(
δ`11β

`h` + α`11
(h`)3

12

)
+Q`2222

(
δ`21β

`h` + α`21
(h`)3

12

)]

=

n∑
`=1

[
Q`26

(
γ`xβ

`h` + α`x
(h`)3

12

)
+Q`22

(
δ`yxβ

`h` + α`yx
(h`)3

12

)]
=
λ55
2

(C.17d)

Matrix [G]. Formulas (17) and (C.12) gives:

Gνβµδ =

∫ ζn

ζ0
Qαβγδϕαν(z)ϕγµ(z)dz =

n∑
`=1

Qαβγδ

(
δανδγµh

` + ααναγµ
(h`)3

12

)
(C.18)

This formula gives Woodcock’s coefficients λi with i ∈ (2, 8, 17, 23, 24, 31, 43, 50, 58, 65). Let us finish the
demonstration for some of them, changing the notations on the fly to fit Woodcock’s coefficients:

G1111 =

n∑
`=1

[
Q`1111

(
δ`11δ

`
11h

` + α`11α
`
11

(h`)3

12

)
+Q`1121

(
δ`11δ

`
21h

` + α`11α
`
21

(h`)3

12

)
+Q`2111

(
δ`21δ

`
11h

` + α`21α
`
11

(h`)3

12

)
+Q`2121

(
δ`21δ

`
21h

` + α`21α
`
21

(h`)3

12

)]
=

n∑
`=1

[
Q`11

(
(γ`x)

2h` + (α`x)
2 (h

`)3

12

)
+ 2Q`16

(
γ`xδ

`
yxh

` + α`xα
`
yx

(h`)3

12

)
+Q`66

(
(δ`yx)

2h` + (α`yx)
2 (h

`)3

12

)]
= λ2 (C.19a)

G1212 =

n∑
`=1

[
Q`1212

(
δ`11δ

`
11h

` + α`11α
`
11

(h`)3

12

)
+Q`1222

(
δ`11δ

`
21h

` + α`11α
`
21

(h`)3

12

)
+Q`2212

(
δ`21δ

`
11h

` + α`21α
`
11

(h`)3

12

)
+Q`2222

(
δ`21δ

`
21h

` + α`21α
`
21

(h`)3

12

)]
=

n∑
`=1

[
Q`66

(
(γ`x)

2h` + (α`x)
2 (h

`)3

12

)
+ 2Q`26

(
γ`xδ

`
yxh

` + α`xα
`
yx

(h`)3

12

)
+Q`22

(
(δ`yx)

2h` + (α`yx)
2 (h

`)3

12

)]
= λ23 (C.19b)

G1221 =

n∑
`=1

[
Q`1211

(
δ`11δ

`
12h

` + α`11α
`
12

(h`)3

12

)
+Q`1221

(
δ`11δ

`
22h

` + α`11α
`
22

(h`)3

12

)
+Q`2211

(
δ`21δ

`
12h

` + α`21α
`
12

(h`)3

12

)
+Q`2221

(
δ`21δ

`
22h

` + α`21α
`
22

(h`)3

12

)]
=

n∑
`=1

[
Q`16

(
γ`xδ

`
xyh

` + α`xα
`
xy

(h`)3

12

)
+Q`66

(
γ`xγ

`
yh
` + α`xα

`
y

(h`)3

12

)
+Q`12

(
δ`yxδ

`
xyh

` + α`yxα
`
xy

(h`)3

12

)
+Q`26

(
δ`yxγ

`
yh
` + α`yxα

`
y

(h`)3

12

)]
=
λ31
2

(C.19c)
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G1121 =

n∑
`=1

[
Q`1111

(
δ`11δ

`
12h

` + α`11α
`
12

(h`)3

12

)
+Q`1121

(
δ`11δ

`
22h

` + α`11α
`
22

(h`)3

12

)
+Q`2111

(
δ`21δ

`
12h

` + α`21α
`
12

(h`)3

12

)
+Q`2121

(
δ`21δ

`
22h

` + α`21α
`
22

(h`)3

12

)]
=

n∑
`=1

[
Q`11

(
γ`xδ

`
xyh

` + α`xα
`
xy

(h`)3

12

)
+Q`16

(
γ`xγ

`
yh
` + α`xα

`
y

(h`)3

12

+δ`yxδ
`
xyh

` + α`yxα
`
xy

(h`)3

12

)
+Q`66

(
δ`yxγ

`
yh
` + α`yxα

`
y

(h`)3

12

)]
=
λ50
2

(C.19d)

Note the specific structure of these coefficients, some of them involving 3 different stiffness tensor components
(with also different coefficients structures) like λ23 and λ50, and some of them involving 4 different stiffness
tensor components, like λ31.

Matrix [H]. Equations (17), (9) and (A.16a) gives:

Hα3β3 =

∫ ζn

ζ0
ϕ′γα(z)Cγ3δ3ϕ

′
δβ(z)dz =

n∑
`=1

C`γ3δ3α
`
γαα

`
δβh

` (C.20)

This formula gives Woodcock’s coefficients λi with i ∈ (37, 38, 69). Let us finish the demonstration for the λ69:

H1323 =

n∑
`=1

[
C`1313

(
α`11α

`
12h

`
)
+ C`2313

(
α`21α

`
12h

`
)
+ C`1323

(
α`11α

`
22h

`
)
+ C`2323

(
α`21α

`
22h

`
) ]

=

n∑
`=1

[
C`55α

`
xα

`
xyh

` + C`45(α
`
yxα

`
xy + α`xα

`
y)h

` + C`44α
`
yxα

`
yh
`

]
=
λ69
2

(C.21)

Matrix [Ξ]. Equations (24), (C.1a), (C.1b), (C.1c), (C.6), (C.9) and (C.12) permits to write:

R =

∫ ζn

ζ0
ρ(z)dz =

n∑
`=1

ρ`h` = δ3 = δ9 = δ13 (C.22)

S =

∫ ζn

ζ0
ρ(z)zdz = −

n∑
`=1

ρ`β`h` = −δ5 = −δ11 (C.23)

T =

∫ ζn

ζ0
ρ(z)z2dz =

n∑
`=1

ρ`
(

1

12
(h`)3 + h`(β`)2

)
= δ1 = δ7 (C.24)

Uαβ =

∫ ζn

ζ0
ρ(z)ϕαβdz = −

n∑
`=1

ρ`δ`αβh
` are the − δi

2
for i ∈ {6, 12, 17, 18} (C.25)

Vαβ =

∫ ζn

ζ0
ρ(z)ϕαβzdz =

n∑
`=1

ρ`
(
δ`αββ

`h` + α`αβ
(h`)3

12

)
are the

δi
2

for i ∈ {4, 10, 15, 16} (C.26)

Wαβ =

∫ ζn

ζ0
ρ(z)ϕµαϕµβdz =

n∑
`=1

ρ`
(
δµαδµβh

` + αµααµβ
(h`)3

12

)
are the δi for i ∈ {2, 8} and

λ14
2

(C.27)
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