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Semiclassical Limit with Vanishing Magnetic Fields

Nicolas Dombrowski and Nicolas Raymond

February 20, 2012

Abstract

We analyze the 2D magnetic Laplacian in the semiclassical limit in the case when

the magnetic field vanishes along a smooth curve. In particular, we prove local and

micro-local estimates for the eigenfunctions and a complete asymptotic expansion of

the eigenpairs in powers of h1/6.

1 Introduction

We consider a vector potential A ∈ C∞(R2,R2) and we consider the self-adjoint

operator defined by:

Lh,A = (−ih∇ + A)2,

where h > 0 is the semiclassical parameter: We are interested in the limit h → 0.
This operator is gauge invariant. Indeed, for a smooth and real-valued function φ, we

have:

e−iφ/hLh,Ae
iφ/h = Lh,A+∇φ.

Therefore the spectrum of Lh,A only depends on the magnetic field β = ∇× A.

Notation 1.1 We will denote by λn(h) the n-th eigenvalue of Lh,A.

The aim of this paper is to give asymptotic expansions of λn(h) when h → 0. Let

us notice that this regime is equivalent to the high magnetic field limit which is often

involved in applications (superconductivity, Hall regime etc.).

Framework and state of the art There are essentially four motivations to the

present analysis. The first one comes from the theory of superconductivity in which

the magnetic Laplacian appears in the study of the third critical field associated with

the Ginzburg-Landau functional (see [27, 28] and also the book [10] and the references

therein).

The second one is related to the papers of R. Montgomery [30], X-B. Pan and

K-H. Kwek [31] and B. Helffer and Y. Kordyukov [16] (see also [18] and [14]) where

the authors analyze the spectrum of the magnetic Laplacian when the magnetic field
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vanishes along a smooth curve. In these papers, the main question is to know if the

cancellation of the magnetic field can be seen on the semiclassical expansion of the

eigenpairs (until now only the first term of the asymptotics is known for λn(h), see

[16, Corollary 1.1] when k = 1). Coming from geometrical motivations, Montgomery

was interested by the geometrical aspect of the magnetic field. More precisely, the

magnetic Hamiltonian is the Laplacian associated to a connection whose curvature is

the magnetic field (see [30] for more details). Our results complete these considera-

tions in the sense that the asymtptotics of [30] only gives the leading term whereas our

method will give the complete structure of the spectrum in the semiclassical limit.

The third motivation appears in the recent paper [8] where the authors are con-

cerned with the “magnetic waveguides”. Among other questions they analyze the

case of a magnetic barrier, that is of a piecewise constant magnetic field in R
2. In

particular they investigate the case when the field takes two opposite values and en-

lighten the classical “snake orbits” along the jump through the semiclassical limit. It

turns out that the singularity (arising along a line) of the magnetic field in their paper

seems to play the role of a vanishing magnetic field. The main application is related to

new type of semi-conductor devices for which the transport caused by Quantum Hall-

effect (QHE) would be played by such magnetic phenomenons. The important fact

proved in [8] is that such phenomenons are due the QHE intrinsic to the system (in

the sense that the transport is topologically quantized). For the physical counterpart

of these results one refers to [36, 12].
The last motivation is to understand at which point there is an analogy between

the magnetic Laplacian and the Laplacian with electric potential (see for instance the

papers [22, 23, 13]). For instance, it is clear that if we translate the electric potential

by a constant, then the spectrum is translated by a constant ; but if we translate the

magnetic field by a constant, we will see in this paper that the semiclassical analysis is

strongly changed. Moreover this paper also aims at enlightening that, at some point,

the magnetic Laplacian can be reduced to the electric Laplacian thanks to a local and

microlocal analysis and unitary transforms (as it is the case when the magnetic field is

positive in [9, 35]). Part of our analysis will use the Feshbach-Grushin method (also

called Lyapunov-Schmidt reduction and which is a resolvent approximation result)

and an homogenization process involving multiple-scale expansions (see for instance

the recent work [24] where the same philosophy appears in another context).

Let us now recall the nature of the known results concerning the asymptotic ex-

pansion of the eigenvalues of the magnetic Laplacian. When the magnetic field is

constant in 2D, there are many results concerning the two terms asymptotics of the

lowest eigenvalue λ1(h) (see [2, 3, 7, 19] in the case of a smooth and bounded domain

with the Neumann condition on the boundary) ; the asymptotics at any order of all the

lowest eigenvalues is proved in [9]. In the Neumann case, when the magnetic field is

generically non constant and positive, the one term asymptotics is given in [27], the

two terms asymptotics in [32] and at any order in [35]. For the Dirichlet case, the com-

plete asymptotics is done in [17]. When the magnetic field cancels, the main results

concern the one term asymptotics of the eigenvalues and the eigenfunctions concen-

tration near the zero locus of the magnetic field (see [30, 31]). In 3D, the two terms

expansion is performed in [20] whereas in the variable case this problem is analyzed
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in [33] and [34].

General Assumptions on β Let us describe the main frame of this paper. In

order Lh,A to have compact resolvent, we will assume that:

β(x) →
|x|→+∞

+∞. (1.1)

As in [31, 16], we will investigate the case when β cancels along a closed and smooth

curve Γ in R
2. Let us notice that Assumption 1.1 could clearly be relaxed so that

one could also consider a smooth, bounded and simply connected domain of R
2 with

Dirichlet or Neumann condition on the boundary as far as the magnetic field does not

vanish near the boundary. Nevertheless we do not strive for maximum generality the

present “generic” case giving enough information when the magnetic field “nicely”

cancels (one could also make it to cancel at an higher order as in [16]). We let:

Γ = {γ(s), s ∈ R}.

We assume that β is non positive inside Γ and non negative outside. We introduce the

standard tubular coordinates (s, t) near Γ:

Φ(s, t) = γ(s) + tν(s),

where ν(s) denotes the inward pointing normal to Γ at γ(s). We let:

β̃(s, t) = β(Φ(s, t))

so that:

β̃(s, 0) = 0.

Heuristics and leading operator Let us adopt first a heuristic point of view to

introduce the leading operator of the analysis presented in this paper. We want to

describe the operator Lh,A near the cancellation line of β, that is near Γ. In a rough

approximation, near (s0, 0), we can imagine that the line is straight (t = 0) and that

the magnetic field cancels linearly so that we can consider β̃(s, t) = δ(s0)t where

δ(s0) is the derivative of β̃ with respect to t. Therefore the operator to which it seems

we are reduced at the leading order near s0 is:

h2D2
t +

(
hDs − δ(s0)

t2

2

)2

.

1.1 The Montgomery operator

As in [30], [31] and [16], we will be led to investigate the following operator (self-

adjoint realization on R) with parameters η ∈ R and δ > 0:

Hη,δ = D2
t + (−η +

δ

2
t2)2, (1.2)

where we have used the notation:
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Notation 1.2 If y is a variable, we let Dy = −i∂y.

We can also refer to [20, Section 2.4] where this operator appears. In fact, this oper-

ator is sometimes called Montgomery operator (see [30]). This operator is a generic

example of the larger class of anharmonic oscillators (see [21]). We will see that it

will be involved in the asymptotics at the first order whereas the second order will be

related to an harmonic oscillator.

The Montgomery operator has clearly compact resolvent and we can consider its

lowest eigenvalue denoted by νδ(η). In fact, νδ is related to ν1. Indeed, we can

perform a rescaling t = δ−1/3τ so that Hη,δ is unitarily equivalent to:

δ2/3

(
D2

τ + (−ηδ−1/3 +
1

2
τ2)2

)
= δ2/3Hηδ−1/3,1.

It is known (see [15, 21]) that, for all δ > 0:

η 7→ νδ(η) admits a unique and non-degenerate minimum at a point η0. (1.3)

We may write:

inf
η∈R

νδ(η) = δ2/3ν1(η0). (1.4)

Notation 1.3 We let Hη = Hη,1 and we denote by uη the L2-normalized and positive

eigenfunction associated with ν1(η).

For fixed δ > 0, the family (Hη,δ)η∈R is an analytic family of type (B) so that the

eigenpair (ν1(η), uη) has an analytic dependence on η (see [26]).

Numerical computations of the η0 and νη0
are performed by Virginie Bonnaillie-

Noël (see [21, Table 1]) and give η0 ≈ 0.35 and ν1(η0) ≈ 0, 57. It also proved that:

lim
|η|→+∞

ν1(η) = +∞.

Feynman-Hellmann Theorem Let us recall a few formulas justified by the per-

turbation theory of Kato and known as “Feynman-Hellmann” formulas.

Lemma 1.4 We have:

(Hη0
− ν(η0))vη0

= −(∂ηHη)|η=η0
uη0

,

with vη0
= (∂ηuη)|η=η0

. Moreover, it holds:

ν ′1(η0) = 0.

Proof: We write:

Hηuη = ν(η)uη.

We have:

(Hη − ν(η))∂ηuη = (ν ′(η) − ∂ηHη)uη. (1.5)
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For η = η0, this becomes:

(Hη0
− ν(η0))(∂ηuη)|η=η0

= −(∂ηHη)|η=η0
uη0

.

�

The next lemma is sometimes called “effective mass theorem” (see [24]).

Lemma 1.5 We have:

(Hη0
− ν(η0))wη0

= (ν ′′(η0) − 2)uη0
− 2(∂ηHη)|η=η0

vη0
,

with wη0
= (∂2

ηuη)η=η0
. Moreover, we have:

〈(∂ηHη)|η=η0
vη0
, uη0

〉 =
ν ′′(η0) − 2

2
.

Proof: Taking the derivative of (1.5) with respect to η, we obtain:

(Hη0
− ν(η0))(∂

2
ηuη)η=η0

= (ν ′′(η0) − 2)uη0
− 2(∂ηHη)|η=η0

vη0
.

Then, we take the scalar product with uη0
. �

1.2 Local coordinates (s, t)

Before stating the main result of this paper, we shall introduce some notation related to

the geometry of the zero locus of β. We use the local coordinates (s, t), where t(x) =
d(x,Γ) and s(x) is the tangential coordinate of x. We choose a parametrization of Γ:

γ : R/(|∂Ω|Z) → Γ.

We choose the orientation of the parametrization γ to be counter-clockwise, so that:

det(γ′(s), ν(s)) = 1.

The curvature k(s) at the point γ(s) is given in this parametrization by:

γ′′(s) = k(s)ν(s).

The map Φ defined by:

Φ : R/(|Γ|Z) × (−t0, t0) → R
2

(s, t) 7→ γ(s) + tν(s), (1.6)

is clearly a diffeomorphism, when t0 is sufficently small, with image

Φ(R/(|Γ|Z) × (−t0, t0)) = {x ∈ Ω|d(x,Γ) < t0} = Ωt0 .

We let:

Ã1(s, t) = (1 − tk(s))A(Φ(s, t)) · γ′(s), Ã2(s, t) = A(Φ(s, t)) · ν(s),
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β̃(s, t) = β(Φ(s, t)),

and we get:

∂sÃ2 − ∂tÃ1 = (1 − tk(s))β̃(s, t).

The quadratic form becomes:

Q̃h,A(ψ) =

∫
(1− tk(s))|(−ih∂t + Ã2)ψ|2 + (1− tk(s))−1|(−ih∂s + Ã1)ψ|2 dsdt.

In a (simply connected) neighborhood of (0, 0), we can choose a gauge such that:

Ã1(s, t) = −
∫ t

0
(1 − t′k(s))β̃(s, t′)dt′, Ã2 = 0. (1.7)

1.3 Assumptions and main result

We consider the normal derivative of β on Γ, i.e. the function δ : s 7→ ∂tβ̃(s, 0). We

will assume that:

δ admits a unique, non-degenerate and positive minimum at x0. (1.8)

We let δ0 = δ(0) and assume without loss of generality that x0 = (0, 0). Let us state

the main result of this paper:

Theorem 1.6 We assume Assumption 1.8. For all n ≥ 1, there exist a sequence

(θn
j )j≥0 and h0 > 0 such that for h ∈ (0, h0), we have:

λn(h) ∼ h4/3
∑

j≥0

θn
j h

j/6

where:

θn
0 = δ

2/3
0 ν1(η0), θn

1 = 0, θn
2 = δ

2/3
0 C0 + δ

2/3
0 (2n− 1)

(
αν(η0)ν

′′(η0)

3

)1/2

,

where we have let:

α =
1

2
δ−1
0 δ′′(0) > 0 (1.9)

and:

C0 = 〈Luη0
, uη0

〉τ̂ , (1.10)

where:

L = 2κ(0)δ(0)−4/3

(
τ̂2

2
− η0

)
τ̂3 + 2τ̂ δ(0)−1/3k(0)

(
−η0 +

τ̂2

2

)2

,

and:

κ(0) =
1

6
∂2

t β̃(0, 0) − k(0)

3
δ0.
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Let us make a few remarks concerning our main theorem and give perspectives.

Remark 1.7 This theorem is mainly motivated by the paper of B. Helffer and Y.

Kordyukov [16] (see also [14, Section 5.2] where the result of this paper is presented

as a conjecture and the paper [18] where the case of discrete wells is analyzed) where

the authors prove a one term asymptotics for all the eigenvalues (see [16, Corollary

1.1]). Moreover, they also prove an accurate upper bound in [16, Theorem 1.4] thanks

to a Grushin type method (see [11]). In the present case (dimension 2 and the order

of cancellation is k = 1), our result is stronger in the sense that we get a complete

asymptotics (in the same spirit as [9]).

Remark 1.8 As mentioned in the previous remark, in comparison with [16], we only

deal with the case of dimension 2, k = 1 and when the metrics is flat. Nevertheless, the

different generalizations are technical adaptations. Indeed, when k = 1, in the case of

higher dimension and with a Riemannian metrics, the only additional (and technical)

point is the introduction of normal coordinates related to the Riemannian structure.

After such a choice (using the exponential map), we are essentially reduced to the flat

case (modulo error terms which are lower order) and our normal form technique can

be implemented exactly in the same way. For the case k ≥ 1, the difference is only

the leading operator which is an higher order anharmonic oscillator (see [21]) and our

method can again be used under the same kind of generic assumptions (see (1.8)). Let

us finally mention that the case k ≥ 2 and the cancellation along an hypersurface in

dimension greater than 2 are maybe not the most generic situations (one could imagine

that, in 3D, the magnetic field cancels along a smooth curve for instance).

In order to prove Theorem 1.6, it is enough to prove the two following theorems.

Theorem 1.9 We assume Assumption 1.8. For all n ≥ 1, there exist a sequence

(θn
j )j≥0 such that, for all J ≥ 0, there exists h0 > 0 such that for h ∈ (0, h0), we

have:

d


h4/3

J∑

j=0

θn
j h

j/6, σ(Lh,A)


 ≤ Ch4/3h(J+1)/6.

Moreover, we have:

θn
0 = δ

2/3
0 ν1(η0), θn

1 = 0, θn
2 = δ

2/3
0 C0 + δ

2/3
0 (2n− 1)

(
αν(η0)ν

′′(η0)

3

)1/2

.

The second theorem provides the spectral gap between the eigenvalues.

Theorem 1.10 We assume Assumption 1.8. For all n ≥ 1, there exists h0 > 0 such

that for h ∈ (0, h0), we have:

λn(h) ≥ h4/3(θn
0 + h1/3θn

2 ) + o(h5/3).
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1.4 Organization of the paper

In Section 2, we prove Theorem 1.9. The main ingredient of the analysis are the

Feynman-Hellmann theorem, the reduction of Lh,A to a “normal form” and an expan-

sion of the operator in power series which is an alternative to the so-called Grushin

procedure (see [11, 14, 9]). In Section 3, we prove localization and micro-localization

estimates for the true eigenfunctions thanks to the Agmon estimates and a repeated use

of the IMS formula. More precisely we will prove estimates of the eigenfunctions with

respect to s and Ds in order to reduce the symbol of the operator when acting on the

eigenfunctions. In Section 4, we use the localization results of Section 3 to estimate

the Feshbach-Grushin projection and reduce the operator to a Schrödinger operator

with electric potential which is in the Born-Oppenheimer form. Finally, we use the

Born-Oppenheimer theory to estimate the spectral gap between the eigenvalues and

prove the optimality of the quasimode construction of Section 2.

2 Construction of quasimodes

This section is devoted to the proof of Theorem 1.9.

2.1 Reduction to a normal form

Before starting the analysis, we shall use a few unitary transformations to normalize

Lh,A. Let us notice that these transformations do not appear in [16] (or in the context

of [9]) and permit to strongly simplify the analysis.

We can write the operator near the cancellation line in the coordinates (s, t):

L̃h,A = h2(1 − tk(s))−1Dt(1 − tk(s))Dt + (1 − tk(s))−1P̃ (1 − tk(s))−1P̃ ,

where

P̃ = ih∂s + Ã(s, t)

with:

Ã(s, t) =

∫ t

0
(1 − k(s)t′)β̃(s, t′)dt′.

In terms of the quadratic form, we can write:

Q̃h,A(ψ) =

∫ (
|hDtψ|2 + (1 − tk(s))−2|P̃ψ|2

)
m(s, t)dsdt,

with:

m(s, t) = (1 − tk(s)).

We consider the following operator on L2(dsdt) which is unitarily equivalent to L̃h,A

(see [25, Theorem 18.5.9 and below]):

Lnew

h,A = m1/2L̃h,Am
−1/2 = P 2

1 + P 2
2 − h2k(s)2

4m2
,

with P1 = m−1/2(−hDs + Ã(s, t))m−1/2 and P2 = hDt.
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We wish to use a system of coordinates more adapted to the magnetic situation.

Let us perform a Taylor expansion near t = 0. We have:

β̃(s, t) = δ(s)t+ ∂2
t β̃(s, 0)

t2

2
+O(t3).

This provides:

Ã(s, t) =
δ(s)

2
t2 + κ(s)t3 +O(t4),

with:

κ(s) =
1

6
∂2

t β̃(s, 0) − k(s)

3
δ(s)

This suggests, as for the model operator, to introduce the new magnetic coordinates in

a fixed neighborhood of (0, 0):

τ = δ(s)1/3t, σ = s.

The change of coordinates for the derivatives is given by:

Dt = δ(σ)1/3Dτ , Ds = Dσ +
1

3
δ′δ−1τDτ .

The space L2(dsdt) becomes L2(δ(σ)−1/3dσdτ). In the same way as previously, we

shall conjugate Lnew

h,A . We introduce the self-adjoint operator on L2(dσdτ):

Ľh,A = δ−1/6Lnew

h,A δ
1/6.

We deduce:

Ľh,A = h2δ(σ)2/3D2
τ + P̌ 2,

where:

P̌ = δ−1/6m̌−1/2

(
−hDσ + Ǎ(σ, τ) − h

1

3
δ′δ−1τDτ

)
m̌−1/2δ1/6,

with:

Ǎ(σ, τ) = Ã(σ, δ(σ)−1/3τ).

A straight forward computation provides:

P̌ = m̌−1/2

(
−hDσ + Ǎ(σ, τ) − h

1

6
δ′δ−1(τDτ +Dττ)

)
m̌−1/2,

where we make the generator of dilations τDτ +Dττ to appear (and which is related

to the virial theorem). Up to a change of gauge, we can replace P̌ by:

m̌−1/2

(
−hDσ − η0(δ(σ))1/3h2/3 + Ǎ(σ, τ) − h

1

6
δ′δ−1(τDτ +Dττ)

)
m̌−1/2.
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Normal form Therefore, the operator takes the form “à la Hörmander”:

Ľ(h) = P1(h)
2 + P2(h)

2 − h2k(σ)2

4m(σ, δ(σ)1/3τ)2
, (2.1)

where:

P1(h) = m̌−1/2

(
−hDσ − η0(δ(σ))1/3h2/3 + Ǎ(σ, τ) − h

1

6
δ′δ−1(τDτ +Dττ)

)
m̌−1/2,

P2(h) = hδ(σ)1/3Dτ .

Computing a commutator, we can rewrite P1(h):

P1(h) = m̌−1

(
−hDσ − η0(δ(σ))1/3h2/3 + Ǎ(σ, τ) − h

1

6
δ′δ−1(τDτ +Dττ)

)
+ Ch,

(2.2)

where:

Ch = −hm̌−1/2(Dσm̌
−1/2) − hδ′δ−1

3
τm̌−1/2(Dτm̌

−1/2).

Remark 2.1 As we will see in the analysis, the “normal form” given by (2.1) will

spare us many technical considerations (see [9, 16]) involved in the construction of

quasimodes and also in the microlocal estimates.

2.2 Construction of quasimodes

We now enter in the proof of Theorem 1.9. The main ingredient for the proof is to

homogenize the operator Ľ and to use a formal power series expansion.

2.2.1 The homogenized operator L̂
We perform the scaling:

τ = h1/3τ̂ , σ = h1/6σ̂. (2.3)

The operator h−4/3Ľ will be denoted by L̂ in these new coordinates. We expand the

new operator in powers of h1/6 in the sense of formal power series:

δ
−2/3
0 L̂(h) ∼

∑

j≥0

Ljh
j/6,

with

L0 = D2
τ̂ +

(
−η0 +

1

2
τ̂2

)2

,

L1 = −2Dσ̂

(
−η0 +

1

2
τ̂2

)
,

L2 = D2
σ̂ +

2

3
ασ̂2L0 + L,
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where α = 1
2δ

−1
0 δ′′(0) > 0 and:

L = 2κ(0)δ(0)−4/3

(
τ̂2

2
− η0

)
τ̂3 + 2τ̂ δ(0)−1/3k(0)

(
−η0 +

τ̂2

2

)2

.

We look for quasi eigenpairs in the form:

λ ∼ h4/3
∑

j≥0

θjh
j/6,

ψ ∼
∑

j≥0

ψjh
j/6

so that, in the sense of formal power series:

L̂(h)ψ ∼ λψ. (2.4)

2.2.2 Solving the formal system

Considering (2.4), we are led to solve an infinite formal system of PDE’s which we

will solve thanks a compatibility condition known as the Fredholm alternative.

Term in h0 We solve the equation:

L0ψ0 = θ0ψ0.

This provides:

θ0 = ν1(η0)

and

ψ0(σ̂, τ̂) = g0(σ̂)uη0
(τ̂).

Term in h1/6 We solve the equation:

(L0 − θ0)ψ1 = (θ1 − L1)ψ0.

Using Lemma 1.4, we have:

(L0 − θ0)(ψ1 +Dσ̂g0(σ̂)vη0
(τ̂)) = θ1ψ0.

The Fredholm alternative (the r. h. s. is orthogonal to uη0
for each σ̂) implies:

θ1 = 0

and:

ψ1 +Dσ̂g0(σ̂)vη0
(τ̂) = g1(σ̂)uη0

(τ̂),

where g1 shall be determined in a next step.
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Term in h2/6 We solve the equation:

(L0 − θ0)ψ2 = (θ2 − L2)ψ0 − L1ψ1. (2.5)

Using Lemmas 1.4 and 1.5, this equation rewrites:

(L0 − θ0)
(
ψ2 +Dσ̂g1vη0

−D2
σ̂g0

wη0

2

)

=

(
θ2g0 −

ν ′′(η0)

2
D2

σ̂g0 −
2

3
αν1(η0)σ̂

2g0 − g0L(τ̂ , ∂τ̂ )

)
uη0

.

The Fredholm condition implies that, for all σ̂:

(H + C0)g0 = θ2g0,

where C0 is defined in (1.10) and where H denotes the effective harmonic oscillator

(we recall (1.9) and that ν ′′1 (η0) > 0 by (1.3)):

H =
ν ′′(η0)

2
D2

σ̂ +
2

3
ασ̂2. (2.6)

If we denote by (µn)n≥1 the non decreasing sequence of the eigenvalues of H, we

have by scaling:

µn = (2n− 1)

(
αν′′1 (η0)

3

)1/2

.

Anyway we choose

θ2 = µn + C0

and for g0, we take g(n) a corresponding L2-normalized eigenfunction. With theses

choices, we determine a unique function ψ⊥
2 which is solution of (2.5) and satisfying

〈ψ⊥
2 , uη0

〉τ̂ = 0 so that ψ2 can be written as:

ψ2 = ψ⊥
2 −Dσ̂g1vη0

+D2
σ̂g0

wη0

2
+ g2(σ̂)uη0

(τ̂),

where g2 has to be determined in a next step.

Further terms (“Grushin procedure”) Let J ≥ 2. Let us assume thatψ0, · · ·ψJ−2

are determined as functions in the Schwartz class, that θ0, · · · , θJ are determined and

that ψJ−1 and ψJ are in the form:

ψk = ψ⊥
k −Dσ̂gk−1vη0

+ gkuη0
, k = J − 1, J,

where ψ⊥
k is a determined function in the Schwartz class which satisfies, for all σ̂,

〈ψ⊥
k , uη0

〉τ̂ = 0. Let us write the equation of order J + 1:

(L0 − θ0)ψJ+1 = θJ+1ψ0 +

J∑

j=2

θjψJ+1−j −
J+1∑

j=1

LjψJ+1−j .

12



This equation can be put in the form:

(L0 − θ0)ψJ+1 = θJ+1ψ0 + θ2ψJ−1 − L1ψJ − L2ψJ−1 + FJ ,

where FJ is a determined function in the Schwartz class by recursion. We now use

the explicit form of ψJ−1 and ψJ and, using Lemmas 1.4 and 1.5, we deduce:

(L0 − θ0)
(
ψJ+1 +Dσ̂gJvη0

−D2
σ̂gJ−1

wη0

2

)

= θJ+1ψ0 + (θ2gJ−1 −
ν ′′(η0)

2
D2

σ̂gJ−1 −
2

3
ασ̂2gJ−1 − gJ−1L(τ̂ , ∂τ̂ ))uη0

+ F̃J .

Taking the scalar product with uη0
with respect to the variable τ̂ , we find the equation:

(H + C0)gJ−1 − θ2gJ−1 = θJ+1g(n) + 〈F̃J , uη0
〉τ̂ ,

where H is given in (2.6). The Fredholm condition determines a unique pair (θJ+1, gJ−1)
with gJ−1 in the Schwartz class and such that 〈gJ−1, g(n)〉σ̂ = 0.

Proof of Theorem 1.9 Let us introduce a smooth cutoff function χ0 supported in

a fixed neighborhood of (0, 0). For J ≥ 0 and n ≥ 1, we let:

ψ
[J,n]
h = χ0

J∑

j=0

ψj(h
−1/6s, h−1/3t)hj/6,

and:

λ
[J,n]
h = δ

2/3
0 h4/3

J∑

j=0

θjh
j/6.

Using the fact the ψj are in the Schwartz class, we deduce that:

‖(Ľ(h) − λ
[J,n]
h )ψ

[J,n]
h ‖ ≤ C(J)h4/3h(J+1)/6

and the spectral theorem provides the conclusion.

3 Local and microlocal estimates

This section deals with a priori estimates satisfied by the eigenfunctions of Lh,A.

3.1 A rough estimate for the eigenvalues

Let us first state an elementary lemma the proof of which can be found in [30, Theorem

5].

Lemma 3.1 For all φ ∈ C∞
0 (R2), we have:

Qh,A(φ) ≥
∣∣∣∣
∫

R2

β(x)|φ|2 dx
∣∣∣∣ .

13



Proposition 3.2 For all n ≥ 1, there exists h0 > 0 such that, for h ∈ (0, h0):

λn(h) ≥ δ
2/3
0 ν1(η0)h

4/3 − Ch4/3+2/15.

Proof: We use a partition of unity with balls of size hρ:
∑

j

χ2
j,h = 1

and such that: ∑
|∇χj,h|2 ≤ Ch−2ρ.

We will denote:

Bj,h = suppχj,h.

We have the IMS formula (cf. [6]):
∑

j

Qh,A(χj,hψ) − h2‖∇χj,hψ‖2 = λ‖χj,hψ‖2.

We distinguish between the balls which intersect t = 0 and the others so that we

introduce:

J1(h) = {j : Bj,h ∩ Γ 6= ∅}, J2(h) = {j : Bj,h ∩ Γ = ∅}.

If j ∈ J2(h) , we use the inequality of Lemma 3.1:

Qh,A(χj,hψ) ≥ h

∣∣∣∣
∫
β(x)|χj,hψ|2 dx

∣∣∣∣ ≥ ch1+ρ‖χj,hψ‖2.

If j ∈ J1(h), we write:

Qh,A(χj,hψ) ≥ (1 − Chρ)

∫
|h∂t(χj,hψ)|2 + |(ih∂s + Ã)(χj,hψ)|2 dsdt,

where we have:

|Ã(s, t) − δ(sj)t
2

2
| ≤ C(t3 + |s− sj |t2).

We infer, for all ε ∈ (0, 1):

Qh,A(χj,hψ) ≥

(1 − Chρ)

(
(1 − ε)

∫
|h∂t(χj,hψ)|2 + |(ih∂s +

δ(sj)t
2

2
)(χj,hψ)|2 dsdt− Ch6ρ

ε
‖χj,hψ‖2

)
,

and we deduce, with (1.4):

Qh,A(χj,hψ) ≥ (1 − Chρ)
(
(1 − ε)h4/3ν1(η0)δ

2/3
j ‖χj,hψ‖2 − ε−1Ch6ρ‖χj,hψ‖2

)
.

Optimizing with respect to ε, we choose: ε = h3ρ− 2

3 . Then, we take ρ such that:

2 − 2ρ = 3ρ+ 2
3 and we deduce: ρ = 4

15 . �

Corollary 3.3 For all n ≥ 1,we have:

λn(h) = δ
2/3
0 ν1(η0)h

4/3 +O(h4/3+2/15).
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3.2 Normal estimates of Agmon

In this subsection, we aim at proving localization estimates of Agmon type (cf. [1]

and also [18, Section 5], [20, Section 7] where the same ideas are used).

Proposition 3.4 Let (λ, ψ) be an eigenpair of Lh,A. There exist h0 > 0, C > 0 and

ε0 > 0 such that, for h ∈ (0, h0):

∫
e2ε0|t(x)|h−1/3 |ψ|2 dx ≤ C‖ψ‖2 (3.1)

and:

Qh,A(eε0|t(x)|h−1/3

ψ) ≤ Ch4/3‖ψ‖2. (3.2)

Proof: Let us consider an eigenpair (λ, ψ) of Ph A. We begin to write the IMS

formula:

Qh,A(eΦψ) = λ‖ψ‖2 + h2‖∇ΦeΦψ‖2. (3.3)

We use a partition of unity with balls of size Rh1/3:

∑

j

χ2
j,h = 1

and such that: ∑
|∇χj,h|2 ≤ CR−2h−2/3.

We may assume that the balls which intersect the line t = 0 have their centers on it.

Using again the IMS formula, we get the decomposition into local ”energies”:

∑

j

Qh,A(χj,he
Φψ) − λ‖χj,he

Φψ‖2 − h2‖χj,h∇ΦeΦψ‖2 − h2‖∇χj,he
Φψ‖2 = 0.

We distinguish between the balls which intersect t = 0 and the others:

J1(h) = {j : Bj,h ∩ Γ 6= ∅}, J2(h) = {j : Bj,h ∩ Γ = ∅}.

If j ∈ J2(h), we use Lemma 3.1 combined with the non-degeneracy of the cancella-

tion of β (see (1.8) in which we just use the positivity of the minimum). We get the

existence of c > 0 and h0 > 0 such that, for h ∈ (0, h0):

Qh,A(χj,he
Φψ) ≥ h

∣∣∣∣
∫
β(x)|χj,he

Φψ|2 dx
∣∣∣∣ ≥ cRh4/3‖χj,he

Φψ‖2.

If j ∈ J1(h), we write, in the same way as in the proof of Proposition 3.2:

Qh,A(χj,he
Φψ) ≥ (1 − CRh1/3)

(
(1 − ε)h4/3ν1(η0)δ

2/3
j − ε−1Ch2‖|χj,he

Φψ‖2
)
.

We take ε = h1/3. We use Corollary 3.3 to get an upper bound on λ. We are led to

choose Φ(x) = ε0|t(x)|h−1/3 so that:

h2|∇Φ|2 ≤ h4/3ε20.
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Taking ε0 small enough and R large enough, we infer the existence of c̃ > 0, C > 0
and h0 > 0 such that, for h ∈ (0, h0):

c̃h4/3
∑

j∈J1(h)

∫
e2Φ|χj,hψ|2 dx ≤ Ch4/3

∑

j∈J2(h)

∫
e2Φ|χj,hψ|2 dx.

Then, due to the support of χj,h when j ∈ J2(h) ,we infer:

∑

j∈J2(h)

∫
e2Φ|χj,hψ|2 dx ≤ C̃

∑

j∈J2(h)

∫
|χj,hψ|2 dx.

We deduce (3.1). Finally, (3.2) follows from (3.1) and (3.3).

�

3.3 Rough localization

This subsection is devoted to the proof of localization estimates near and on the can-

cellation line of the magnetic field.

Proposition 3.5 Let (λ, ψ) be an eigenpair of Lh,A. There exist h0 > 0, C > 0 and

ε0 > 0 such that, for h ∈ (0, h0):
∫
e2χ(t(x))|s(x)|h−1/15 |ψ|2 dx ≤ C‖ψ‖2 (3.4)

and:

Qh,A(eχ(t(x))|s(x)|h−1/15

ψ) ≤ Ch4/3‖ψ‖2, (3.5)

where χ is a fixed smooth cutoff function being 1 near 0.

Proof: Let us consider an eigenpair (λ, ψ) of Ph,A. We begin to write the IMS

formula:

Qh,A(eΦψ) = λ‖ψ‖2 + h2‖∇ΦeΦψ‖2. (3.6)

We use a partition of unity with balls of size h4/15:

∑

j

χ2
j,h = 1

and such that: ∑
|∇χj,h|2 ≤ Ch−8/15.

We take: Φ = χ(t(x))|s(x)|h−1/15. In particular, we have: |∇Φ| ≤ Ch−1/15. We

write:

∑

j

Qh,A(χj,he
Φψ) − λ‖χj,he

Φψ‖2 − h2‖χj,h∇ΦeΦψ‖2 − h2‖∇χj,he
Φψ‖2 = 0.

Let us defined the two subsets of index:

J1(h) = {j : Bj,h ∩ Γ 6= ∅}, J2(h) = {j : Bj,h ∩ Γ = ∅}.
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As previously, we can write, for the balls with index j ∈ J2(h):

Qh,A(χj,he
Φψ) ≥ h

∣∣∣∣
∫
β(x)|χj,he

Φψ|2 dx
∣∣∣∣ ≥ ch1+4/15‖χj,he

Φψ‖2.

For the balls of index j ∈ J1(h), we have:

Qh,A(χj,he
Φψ) ≥

(
h4/3ν1(η0)δ

2/3
j − Ch4/3+2/15

)
‖χj,he

Φψ‖2,

where δj = δ(sj) ((sj , 0) is the center of the ball). Gathering the estimates, we

deduce:

(ch1+4/15 − h4/3ν1(η0)δ
2/3
0 )

∑

j∈J2(h)

‖χj,he
Φψ‖2 (3.7)

+
∑

j∈J1(h)

(
h4/3ν1(η0)(δ

2/3
j − δ

2/3
0 ) − Ch4/3+2/15

)
‖χj,he

Φψ‖2 ≤ 0.

Then, we fix ε0 > 0 and D > 0 and we write:

J1(h) = J1,1(h) ∪ J1,2(h) ∪ J1,3(h),

where:

J1,1(h) = {j ∈ J1(h) : |sj | ≤ Dh1/15},
J1,2(h) = {j ∈ J1(h) : Dh1/15 < |sj | ≤ ε0},
J1,3(h) = {j ∈ J1(h) : |sj | ≥ ε0}.

For j ∈ J1,3(h), there exist c(ε0) > 0 and h0 > 0 such that, for h ∈ (0, h0):

h4/3ν1(η0)(δ
2/3
j − δ

2/3
0 ) − Ch4/3+2/15 ≥ c(ε0)h

4/3.

For j ∈ J1,2(h), from Assumption 1.8, there exists c̃(ε0) > 0 such that:

h4/3ν1(η0)(δ
2/3
j − δ

2/3
0 ) − Ch4/3+2/15 ≥ h4/3c̃(ε0)s

2
j − Ch4/3+2/15.

We notice that:

h4/3c̃(ε0)s
2
j − Ch4/3+2/15 ≥ h4/3(c̃(ε0)D

2 − C)h2/15.

We choose D so that: c̃(ε0)D
2 − C > 0. We notice that, for j ∈ J1,1(h):

‖χj,he
Φψ‖ ≤ C‖ψ‖.

We now deduce from (3.7):
∑

j∈J1,2(h)

‖χj,he
Φψ‖2 ≤ C‖ψ‖2

and then:
∑

j∈J1,3(h)

‖χj,he
Φψ‖2 ≤ C‖ψ‖2,

∑

j∈J2(h)

‖χj,he
Φψ‖2 ≤ C‖ψ‖2.

This provides (3.4) and the identity (3.6) implies (3.5). �
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Introduction of cutoff functions From Propositions 3.4 and 3.5, we are led to

introduce a cutoff function living near x0. We take γ > 0 and we let:

χh,γ(x) = χ
(
h−1/3+γt(x)

)
χ
(
h−1/15+γs(x)

)
.

where χ is a fixed smooth cutoff function supported near 0. Moreover, we will denote

by ψ̌ the function χh,γ(x)ψ(x) in the coordinates (σ, τ). In particular, we have:

‖ψ̌‖ = (1 +O(h∞))‖ψ‖.

As a consequence of Proposition 3.4 we have the following corollary.

Corollary 3.6 Let (λ, ψ) be an eigenpair of Lh,A. For all n ∈ N, there exist h0 > 0,

C > 0 and ε0 > 0 such that, for h ∈ (0, h0):
∫
τn|ψ̌|2 dσdτ ≤ Ch2n/3‖ψ̌‖2,

∫
τn(|hDτ ψ̌|2 + |hDσψ̌|2) dσdτ ≤ Ch2n/3h4/3‖ψ̌‖2.

3.4 Order of the second term

From the normal estimates of Agmon, we deduce the proposition:

Proposition 3.7 For all n ≥ 1, there exist h0 > 0 and C > 0 s. t., for h ∈ (0, h0):

λn(h) ≥ δ
2/3
0 ν1(η0)h

4/3 − Ch5/3.

Proof: We consider an eigenpair (λn(h), ψn,h) and we use the IMS formula:

Q̌(ψ̌n,h) = λn(h)‖ψ̌n,h‖2 +O(h∞)‖ψ̌n,h‖2.

We have (cf. (2.1)):

Q̌(ψ̌n,h) ≥
∫
m̌−2

∣∣∣∣
(
−hDσ − η0δ

1/3h2/3 + Ǎ− h

6
δ′δ−1(τDτ +Dττ) + Ch

)
ψ̌n,h

∣∣∣∣
2

dσdτ

+ h2δ2/3‖Dτ ψ̌n,h‖2 − Ch2‖ψ̌n,h‖2.

Let us deal with the terms involving Ch in the double product produced by the expan-

sion of the square. We have to estimate:

h
∣∣ℜ〈δ′δ−1(τDτ +Dττ)ψ̌n,h, Chψ̌n,h〉

∣∣

We have :

‖Chψ̌n,h‖ = o(h)‖ψ̌n,h‖
and, with the estimates of Agmon (and the fact that 0 is a critical point of δ):

‖δ′δ−1(τDτ +Dττ)ψ̌n,h‖ = o(1)‖ψ̌n,h‖.
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Moreover, we have in the same way:

h
∣∣ℜ〈Ǎψ̌n,h, Chψ̌n,h〉

∣∣ = o(h5/3)‖ψ̌n,h‖2.

Then, we have the control:

h
∣∣ℜ〈ȟDσψ̌n,h, Chψ̌n,h〉

∣∣ = o(h5/3)‖ψ̌n,h‖2,

where we have used the rough estimate:

‖hDσψ̌n,h‖ ≤ Ch2/3‖ψ̌n,h‖.

We have:

Q̌(ψ̌n,h) ≥ (3.8)
∫
m̌−2

∣∣∣∣
(
−hDσ − η0δ

1/3h2/3 + Ǎ− h

6
δ′δ−1(τDτ +Dττ)

)
ψ̌n,h

∣∣∣∣
2

dσdτ

+ h2δ
2/3
0 ‖Dτ ψ̌n,h‖2 + o(h5/3)‖ψ̌n,h‖2.

We now deal with the term involving τDτ +Dττ . With the estimates of Agmon, we

have:

h
∣∣∣ℜ〈δ′δ−1(τDτ +Dττ)ψ̌n,h, (−hDσ − η0δ

1/3h2/3 + Ǎ)ψ̌n,h〉
∣∣∣ = o(h5/3)‖ψ̌n,h‖2.

This implies:

Q̌(ψ̌n,h) ≥δ2/3
0 h2‖Dτ ψ̌n,h‖2 +

∫
m̌−2

∣∣∣
(
−hDσ − η0δ

1/3h2/3 + Ǎ
)
ψ̌n,h

∣∣∣
2
dσdτ

+ o(h5/3)‖ψ̌n,h‖2.

We the same arguments, it follows:

Q̌(ψ̌n,h) ≥h2δ
2/3
0 ‖Dτ ψ̌n,h‖2 +

∫
m̌−2

∣∣∣∣
(
−hDσ − η0δ

1/3h2/3 + δ1/3 τ
2

2

)
ψ̌n,h

∣∣∣∣
2

dσdτ

(3.9)

+O(h5/3)‖ψ̌n,h‖2

and

Q̌(ψ̌n,h) ≥h2δ
2/3
0 ‖Dτ ψ̌n,h‖2 +

∫ ∣∣∣∣
(
−hDσ − η0δ

1/3h2/3 + δ1/3 τ
2

2

)
ψ̌n,h

∣∣∣∣
2

dσdτ

(3.10)

+O(h5/3)‖ψ̌n,h‖2.

We get:

Q̌(ψ̌n,h) ≥h2δ
2/3
0 ‖Dτ ψ̌n,h‖2 +

∫
δ
2/3
0

∣∣∣∣
(
−hδ−1/3Dσ − η0h

2/3 +
τ2

2

)
ψ̌n,h

∣∣∣∣
2

dσdτ

+O(h5/3)‖ψ̌n,h‖2.
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Then, we write:

δ−1/3Dσ = δ−1/6Dσδ
−1/6 + i(δ−1/6)′.

and deduce:

Q̌(ψ̌n,h) ≥h2δ
2/3
0 ‖Dτ ψ̌n,h‖2 +

∫
δ
2/3
0

∣∣∣∣
(
−hδ−1/6Dσδ

−1/6 − η0h
2/3 +

τ2

2

)
ψ̌n,h

∣∣∣∣
2

dσdτ

+O(h5/3)‖ψ̌n,h‖2.

We can apply the functional calculus to the self-adjoint operator δ−1/6Dσδ
−1/6 and

the following lower bound follows:

Q̌(ψ̌n,h) ≥h4/3δ
2/3
0 ν1(η0) +O(h5/3)‖ψ̌n,h‖2.

�

From this analysis, we infer that, for all n ≥ 1, there exist h0 > 0 and C > 0 such

that, for all h ∈ (0, h0) :

|λn(h) − δ
2/3
0 ν1(η0)h

2/3| ≤ Ch5/3. (3.11)

Introduction the space generated by the truncated eigenfunctions For

all N ≥ 1, let us consider L2-normalized eigenpairs (λn(h), ψn,h)1≤n≤N such that

〈ψn,h, ψm,h〉 = 0 when n 6= m. We consider the N dimensional space defined by:

EN (h) = span
1≤n≤N

ψ̌n,h.

Remark 3.8 The estimates of Agmon of Corollary 3.6 are satisfied by all the elements

of EN (h).

3.5 Localization with respect to σ and Dσ

This subsection is devoted the analysis of the behavior of the eigenfunctions with re-

spect to σ andDσ. In particular the crucial propositions that we prove are Propositions

3.9 and 3.12. We will see that these local and microlocal controls will be enough to es-

timate the spectral gap between the eigenvalues (we do not need higher order controls,

i.e. estimates of σm and Dm
σ , even if they could be proved).

3.5.1 Localization with respect to σ

This subsection deals with the proof of the following proposition:

Proposition 3.9 There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and for all

ψ̌ ∈ EN (h):
‖σψ̌‖ ≤ Ch1/6‖ψ̌‖.
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Proof: We only have to prove the wished inequality for ψ̌ = ψ̌n,h, the extension to

ψ̌ ∈ EN (h) being an easy consequence. We consider (λ, ψ) an eigenpair of Lh,A. We

can write:

Q̌(ψ̌) = λ‖ψ̌‖2 +O(h∞)‖ψ̌‖2.

We have:

Q̌(ψ̌) = ‖P1(h)ψ̌‖2 + ‖P2(h)ψ̌‖2 +O(h2)‖ψ̌‖2.

We can write:

‖P1(h)ψ̌‖2

= ‖m̌−1(−hDσ − η0(δ(σ))1/3h2/3 + Ǎ(σ, τ) − h
1

6
δ′δ−1(τDτ +Dττ)ψ̌ + Chψ̌‖2,

with:

Ch = ihm̌−1/2∂σm̌
−1/2 − hδ′

6δ
[τDτ +Dττ, m̌

−1/2].

Let us first erase the term involving C(h). From the estimates of Agmon, it follows:

‖P1(h)ψ̌‖2 (3.12)

≥ ‖m̌−1(−hDσ − η0(δ(σ))1/3h2/3 + Ǎ(σ, τ) − h
1

6
δ′δ−1(τDτ +Dττ)ψ̌‖2

− Ch2‖ψ̌‖2.

Then, we use again the normal Agmon estimates to replace m̌ by 1:

‖P1(h)ψ̌‖2 (3.13)

≥ ‖(−hDσ − η0(δ(σ))1/3h2/3 + Ǎ(σ, τ) − h
1

6
δ′δ−1(τDτ +Dττ)ψ̌‖2

− Ch5/3‖ψ̌‖2.

From the non-degeneracy assumption on δ, we infer that there exist c > 0 and h0 > 0
such that, for h ∈ (0, h0):

Q̌(ψ̌) ≥ δ
2/3
0 ν1(η0)h

4/3‖ψ̌‖2 + c‖hDτσψ̌‖2 (3.14)

+ c

∫
σ2

∣∣∣∣
(

(ihδ−1/3∂σ + η0h
2/3 +

τ2

2
+Rh − hδ′

6δ4/3
(τDτ +Dττ)

)
ψ̌

∣∣∣∣
2

dσdτ

− Ch2‖ψ̌‖2,

with

Rh = κ(σ)δ−4/3τ3 +O(τ4).

We must analyze:

∫
σ2

∣∣∣∣
(

(ihδ−1/3∂σ + η0h
2/3 +

τ2

2
+Rh − hδ′

6δ4/3
(τDτ +Dττ)

)
ψ̌

∣∣∣∣
2

dσdτ

=

∫ ∣∣∣∣
(

(ihδ−1/3∂σ + η0h
2/3 +

τ2

2
+Rh − hδ′

6δ4/3
(τDτ +Dττ)

)
σψ̌ − ihδ−1/3ψ̌

∣∣∣∣
2

dσdτ
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We shall estimate the double product:

2

∫
ℜ
{
i

(
(ihδ−1/3∂σ + η0h

2/3 +
τ2

2
+Rh − hδ′

6δ4/3
(τDτ +Dττ)

)
σψ̌hδ−1/3ψ̌

}
dσdτ

= 2h

∫
ℜ
{
i

(
ihδ−1/3∂σ − hδ′

6δ4/3
(τDτ +Dττ)

)
σψ̌δ−1/3ψ̌

}
dσdτ

We have:

−2h2

∫
ℜ
{
δ−1/3∂σ(σψ̌)ψ̌

}
dσdτ = O(h2)‖ψ̌‖2 − h2

∫
δ−1/3∂σ|ψ̌|2 dσdτ

= O(h2)‖ψ̌‖2.

Then, we write, thanks to the estimates of Agmon:

−2h2

∫
σδ−1/3δ′

6δ4/3
ℜ
{

((τ∂τ + ∂ττ)) ψ̌ψ̌
}
dσdτ = O(h2)‖ψ̌‖2.

We infer that:

∫
σ2

∣∣∣∣
(

(ihδ−1/3∂σ + η0h
2/3 +

τ2

2
+Rh − hδ′

6δ4/3
(τDτ +Dττ)

)
ψ̌

∣∣∣∣
2

dσdτ

(3.15)

=

∫ ∣∣∣∣
(

(ihδ−1/3∂σ + η0h
2/3 +

τ2

2
+Rh − hδ′

6δ4/3
(τDτ +Dττ)

)
σψ̌

∣∣∣∣
2

dσdτ

+O(h2)‖ψ̌‖2.

We have to control the following double product:

2

6
h2ℜ

{∫
iδ−1/3∂σ(σψ̌)δ−4/3δ′(τDτ +Dττ)ψ̌ dσdτ

}

We use the rough control (see Corollary 3.6):

‖h∂σψ̌‖ ≤ h2/3‖ψ̌‖

and the estimates of Agmon to get:

h2ℜ
{∫

iδ−1/3∂σ(σψ̌)δ−4/3δ′(τDτ +Dττ)ψ̌ dσdτ

}
= o(h5/3)‖ψ̌‖2.

The other terms in the double product can be estimated in the same way so that:

∫ ∣∣∣∣
(

(ihδ−1/3∂σ + η0h
2/3 +

τ2

2
+Rh − hδ′

6δ4/3
(τDτ +Dττ)

)
σψ̌

∣∣∣∣
2

dσdτ

=

∫ ∣∣∣∣
(

(ihδ−1/3∂σ + η0h
2/3 +

τ2

2
+ κ(0)τ3

)
σψ̌

∣∣∣∣
2

dσdτ + o(h5/3)‖ψ̌‖2.
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We can also erase the term in τ3:
∫ ∣∣∣∣
(

(ihδ−1/3∂σ + η0h
2/3 +

τ2

2
+Rh − hδ′

6δ4/3
(τDτ +Dττ)

)
σψ̌

∣∣∣∣
2

dσdτ

=

∫ ∣∣∣∣
(

(ihδ−1/3∂σ + η0h
2/3 +

τ2

2

)
σψ̌

∣∣∣∣
2

dσdτ +O(h5/3)‖ψ̌‖2.

Finally, one will need a last technical detail. We write:

∫ ∣∣∣∣
(

(ihδ−1/3∂σ + η0h
2/3 +

τ2

2

)
σψ̌

∣∣∣∣
2

dσdτ (3.16)

=

∫ ∣∣∣∣
(

(ihδ−1/6∂σδ
−1/6 − ih(δ−1/6)′ + η0h

2/3 +
τ2

2

)
σψ̌

∣∣∣∣
2

dσdτ

so that we make the self-adjoint operator δ−1/6Dσδ
−1/6 to appear. We deal with the

double products as previously to deduce:

∫ ∣∣∣∣
(

(ihδ−1/6∂σδ
−1/6 − ih(δ−1/6)′ + η0h

2/3 +
τ2

2

)
σψ̌

∣∣∣∣
2

dσdτ

=

∫ ∣∣∣∣
(

(ihδ−1/6∂σδ
−1/6 + η0h

2/3 +
τ2

2

)
σψ̌

∣∣∣∣
2

dσdτ + o(h5/3)‖ψ̌‖2.

We have now a nicer lower bound. There exist c > 0 and h0 > 0 such that, for

h ∈ (0, h0):

Q̌(ψ̌) ≥δ2/3
0 ν1(η0)h

4/3‖ψ̌‖2 + c‖hDτσψ̌‖2

+ c

∫ ∣∣∣∣
(

(ihδ−1/6∂σδ
−1/6 + η0h

2/3 +
τ2

2

)
σψ̌

∣∣∣∣
2

dσdτ +O(h5/3)‖ψ̌‖2.

Using the functional calculus applied to δ−1/6Dσδ
−1/6, we infer that:

Q̌(ψ̌) ≥ δ
2/3
0 ν1(η0)h

4/3‖ψ̌‖2 + cν1(η0)h
4/3‖σψ̌‖2 +O(h5/3)‖ψ̌‖2.

Jointly with the upper bound on λ, we deduce the result. �

Proposition 3.10 There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and for all

ψ̌ ∈ EN (h):
Q̌(σψ̌) ≤ Ch5/3‖ψ̌‖.

In particular, we have:

‖hDτ (σψ̌)‖2 ≤ Ch5/3‖ψ̌‖2, ‖hDσ(σψ̌)‖2 ≤ Ch5/3‖ψ̌‖2.

Proof: Let (λ, ψ) be an eigenpair of Lh,A. By the IMS formula, we can write:

Q̌(σψ̌) = λ‖σψ̌‖2 + ‖[P2(h), σ]ψ̌‖2.

An immediate computation provides:

‖[P2(h), σ]ψ̌‖2 ≤ Ch2‖ψ̌‖2.

It remains to use Proposition 3.9. �
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3.5.2 An improved lower bound

As a consequence of the localization estimates with respect to τ and of the localization

with respect to σ given by Proposition 3.9, we have a lower bound for Q̌:

Proposition 3.11 There exists h0 > 0 such that for h ∈ (0, h0) and ψ̌ ∈ EN (h):

Q̌(ψ̌) ≥δ2/3
0

∫
(1 + 2k0τδ

−1/3
0 )|(δ−1/6ih∂σδ

−1/6 + η0h
2/3 +

τ2

2
+ δ

−4/3
0 κ(0)τ3)ψ̌|2 dσdτ

+

∫
δ
2/3
0 |hDτ ψ̌|2 dσdτ +

2

3
δ
2/3
0 αν1(η0)h

4/3‖σψ̌‖2 + o(h5/3)‖ψ̌‖2.

Proof: The proof is essentially based on the same estimates as in the proof of Propo-

sition 3.7. Let us recall (3.8):

Q̌(ψ̌) ≥‖m̌(−hDσ − η0(δ(σ))1/3h2/3 + Ǎ(σ, τ) − h
1

6
δ′δ−1(τDτ +Dττ)ψ̌‖2

+ ‖δ1/3hDτ ψ̌‖2 + o(h5/3)‖ψ̌‖2.

We transform a little bit (3.9):

Q̌(ψ̌) ≥
∫
m̌−2

∣∣∣∣
(
−hDσ − η0δ

1/3h2/3 + δ1/3 τ
2

2
+ κ(0)δ−1

0 τ3

)
ψ̌

∣∣∣∣
2

dσdτ

+ h2‖δ1/3Dτ ψ̌‖2 + o(h5/3)‖ψ̌‖2

We improve now (3.10) by replacing m̌ by 1 − k0δ
1/3
0 τ thanks to the estimates of

Agmon with respect to τ and using the support of ψ̌ with respect to σ:

Q̌(ψ̌) ≥
∫

(1 + 2k0δ
1/3
0 τ)

∣∣∣∣
(
−hDσ − η0δ

1/3h2/3 + δ1/3 τ
2

2
+ κ(0)δ−1

0 τ3

)
ψ̌

∣∣∣∣
2

dσdτ

+ h2‖δ1/3Dτ ψ̌‖2 + o(h5/3)‖ψ̌‖2

It follows:

Q̌(ψ̌) ≥
∫
δ2/3(1 + 2k0δ

1/3
0 τ)

∣∣∣∣
(
−hδ−1/3Dσ − η0h

2/3 +
τ2

2
+ δ

−4/3
0 κ(0)τ3

)
ψ̌

∣∣∣∣
2

dσdτ

+ h2‖δ1/3Dτ ψ̌‖2 + o(h5/3)‖ψ̌‖2

We use now the Taylor expansion:

δ2/3 = δ
2/3
0

(
1 +

2

3
ασ2

)
+O(σ3).

One of the terms which we can neglect is:

∫
|σ|3|hDτ ψ̌|2 dσdτ ≤ Ch2/15

∫
|σ|2|hDτ ψ̌|2 dσdτ = o(h5/3)‖ψ̌‖2,
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where we have used Proposition 3.10. In the same way, we can write:

∫
|σ|3|(1 + 2k0δ

1/3
0 τ)|

∣∣∣∣
(
−hδ−1/3Dσ − η0h

2/3 +
τ2

2
+ δ

−4/3
0 κ(0)τ3

)
ψ̌

∣∣∣∣
2

dσdτ

= o(h5/3)‖ψ̌‖2.

It remains to analyze:

2α

3
δ
2/3
0

∫
σ2

∣∣∣∣
(
−hδ−1/3Dσ − η0h

2/3 +
τ2

2
+ δ

−4/3
0 κ(0)τ3

)
ψ̌

∣∣∣∣
2

dσdτ.

This can be done in the same way as in the proof of Proposition 3.9, see (3.15):

2α

3
δ
2/3
0

∫
σ2

∣∣∣∣
(
−hδ−1/3Dσ − η0h

2/3 +
τ2

2
+ δ

−4/3
0 κ(0)τ3

)
ψ̌

∣∣∣∣
2

dσdτ

2α

3
δ
2/3
0

∫ ∣∣∣∣
(
−hδ−1/3Dσ − η0h

2/3 +
τ2

2

)
σψ̌

∣∣∣∣
2

dσdτ + o(h5/3)‖ψ̌‖2.

We deduce:

Q̌(ψ̌) ≥
∫
δ
2/3
0

(
|hDτ ψ̌|2 + (1 + 2k0τδ

−1/3
0 )|(δ−1/3ih∂σ + η0h

2/3 +
τ2

2
+ δ

−4/3
0 κ(0)τ3)ψ̌|2

)
dσdτ

+
2

3
δ
2/3
0 αν1(η0)h

4/3‖σψ̌‖2 + o(h5/3)‖ψ̌‖2.

We replace δ−1/3∂σ by δ−1/6∂σδ
−1/6 as in (3.16) and the conclusion follows. �

3.5.3 Localization with respect to Dσ

In this subsection, we investigate a micro localization property with respect to Dσ:

Proposition 3.12 There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and for all

ψ̌ ∈ EN (h):
‖Dσψ̌‖ ≤ Ch−1/6‖ψ̌‖.

We introduce a new coordinate:

ς = f(σ) =

∫ σ

0
δ(σ)1/3 dσ.

The space L2(dσdτ) becomes L2(δ−1/3dςdτ). We can write:

∂σ = δ1/3(σ)∂ς .

We will denote by φ̌ the function ψ̌ in these new coordinates.
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Fourier transform We are led to introduce a weighted Fourier transform:

Fδ(φ̌)(µ) = F(δ−1/6φ̌). (3.17)

A straight forward computation provides:

Fδ((δ
1/6ih∂ςδ

−1/6)φ̌)(µ) = −µFδ(φ̌)(µ)

and:

DµFδ(φ̌)(µ) = −Fδ(ςφ̌)(µ).

Using the Parseval formula, we see that Fδ is unitary fromL2(δ−1/3dςdτ) toL2(dµdτ).
We can now prove a microlocal estimate with respect to δ−1/6Dσδ

−1/6 which implies

Proposition 3.12.

Proposition 3.13 There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and for all

ψ̌ ∈ EN (h):
‖δ1/6Dςδ

−1/6φ̌‖L2(δ−1/3dςdτ) ≤ Ch−1/6‖ψ̌‖.
Proof: We will need the following lemma:

Lemma 3.14 We have:

‖hDτ ((δ
−1/6∂σδ

−1/6)ψ̌)‖2 ≤ Ch4/3‖(δ−1/6∂σδ
−1/6)ψ̌‖2 + Ch4/3‖ψ̌‖2, (3.18)

‖hDσ((δ−1/6∂σδ
−1/6)ψ̌)‖2 ≤ Ch4/3‖(δ−1/6∂σδ

−1/6)ψ̌‖2 + Ch4/3‖ψ̌‖2. (3.19)

Proof: Let (λ, ψ) be an eigenpair of Lh,A. We use the IMS formula and we get:

Q̌((δ−1/6∂σδ
−1/6)ψ̌) = λ‖(δ−1/6∂σδ

−1/6)ψ̌‖2

− ‖[P1(h), (δ
−1/6∂σδ

−1/6)]ψ̌‖2 − ‖[P2(h), (δ
−1/6∂σδ

−1/6)]ψ̌‖2 +O(h2)‖ψ̌‖2.

A computation of the commutators provides:

‖[P1(h), (δ
−1/6∂σδ

−1/6)]ψ̌‖2 ≤ Ch4/3‖ψ̌‖2

‖[P2(h), (δ
−1/6∂σδ

−1/6)]ψ̌‖2 ≤ Ch4/3‖ψ̌‖2.

This implies:

Q̌((δ−1/6∂σδ
−1/6)ψ̌) ≤ λ‖(δ−1/6∂σδ

−1/6)ψ̌‖2 + Ch4/3‖ψ̌‖2.

We immediately deduce (3.18). For the proof of (3.19), we write:

‖P1(h)(δ
−1/6∂σδ

−1/6)ψ̌‖2 ≤ λ‖(δ−1/6∂σδ
−1/6)ψ̌‖2 + Ch4/3‖ψ̌‖2.

It remains to investigate the sizes of the different terms appearing in P1(h). We ob-

serve that (see Corollary 3.6):

‖τ2(δ−1/6∂σδ
−1/6)ψ̌‖2 ≤ Ch4/3‖(δ−1/6∂σδ

−1/6)ψ̌‖2 + Ch4/3‖ψ̌‖2.

and:

‖hδ′(τDτ +Dττ)(δ
−1/6∂σδ

−1/6)ψ̌‖2

≤ C‖hDτ (δ
−1/6∂σδ

−1/6)ψ̌‖2 + C‖hδ′(δ−1/6∂σδ
−1/6)ψ̌‖2

≤ Ch4/3‖(δ−1/6∂σδ
−1/6)ψ̌‖2 + Ch4/3‖ψ̌‖2,

where we have used (3.18). �

Let (λ, ψ) be an eigenpair of Lh,A.
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Microlocal estimate near the minimum We have (see Proposition 3.11 jointly

with Corollary 3.6):

Q̌(ψ̌) ≥
∫
δ
2/3
0

(
|hDτ ψ̌|2 + |(δ−1/6ih∂σδ

−1/6 + η0h
2/3 +

τ2

2
)ψ̌|2

)
dσdτ

− Ch5/3‖ψ̌‖2.

This becomes:

Q̌(ψ̌) ≥
∫
δ
2/3
0

(
|hDτ ψ̌|2 + |(−hµ+ η0h

2/3 +
τ2

2
)Fδ(φ̌)|2

)
dµdτ − Ch5/3‖ψ̌‖2.

We infer:

Q̌(ψ̌) ≥
∫
h4/3δ

2/3
0 ν1(η0 − h1/3µ)|Fδ(φ̌)|2 dµdτ − Ch5/3‖ψ̌‖2.

Let us fix ε0 > 0 small enough to have, for |h1/3µ| ≤ ε0:

ν1(η0 − h1/3µ) ≥ ν1(η0) +
ν ′′(η0)

4
h2/3µ2.

For this value of ε0, there exists c0 > 0 such that, for |h1/3µ| ≥ ε0:

ν1(η0 − h1/3µ) ≥ ν1(η0) + c0.

Let us recall that Q̌(ψ̌) ≤ (λ + O(h∞))‖ψ̌‖2 and that λ satisfies (3.11). Then, it

remains to split the integrals on |h1/3µ| ≤ ε0 and |h1/3µ| ≥ ε0 and we infer:

∫

|h1/3µ|≥ε0

|Fδ(φ̌)|2 dµdτ ≤ Ch1/3‖ψ̌‖2, (3.20)

∫

|h1/3µ|≤ε0

|µFδ(φ̌)|2 dµdτ ≤ Ch−1/3‖ψ̌‖2. (3.21)

Microlocal estimate away from the minimum Then, we want to obtain a con-

trol of: ∫

|h1/3µ|≥ε0

|µFδ(φ̌)|2 dµdτ.

For that purpose, we will use Lemma 3.14. Let us first write:

Q̌((δ−1/6∂σδ
−1/6)ψ̌) ≥‖P1(h)(δ

−1/6∂σδ
−1/6)ψ̌‖2 + h2‖δ1/3Dτ (δ

−1/6∂σδ
−1/6)ψ̌‖2

− Ch2‖(δ−1/6∂σδ
−1/6)ψ̌‖2.

We have immediately:

h2‖δ1/3Dτ (δ
−1/6∂σδ

−1/6)ψ̌‖2 ≥ δ
2/3
0 h2‖Dτ (δ

−1/6∂σδ
−1/6)ψ̌‖2.

Then, we write:

‖P1(h)(δ
−1/6∂σδ

−1/6)ψ̌‖2 ≥ ‖(m̌−1P + Ch)(δ−1/6∂σδ
−1/6)ψ̌‖2.
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where:

P = −hDσ − η0(δ(σ))1/3h2/3 + Ǎ(σ, τ) − h

6
δ′δ−1(τDτ +Dττ).

Expanding the square, we are led to estimate the following term:

ℜ〈m̌−1P (δ−1/6∂σδ
−1/6)ψ̌, Ch(δ−1/6∂σδ

−1/6)ψ̌〉

We have:

‖Ch(δ−1/6∂σδ
−1/6)ψ̌‖ ≤ Ch‖(δ−1/6∂σδ

−1/6)ψ̌‖
and:

‖m̌−1P (δ−1/6∂σδ
−1/6)ψ̌‖ ≤ C‖P (δ−1/6∂σδ

−1/6)ψ̌‖.
We get:

‖P (δ−1/6∂σδ
−1/6)ψ̌‖ ≤ Ch‖δ′(τDτ +Dττ)(δ

−1/6∂σδ
−1/6)ψ̌‖

and:

‖δ′(τDτ +Dττ)(δ
−1/6∂σδ

−1/6)ψ̌‖ (3.22)

≤ Ch‖(δ−1/6∂σδ
−1/6)ψ̌‖ + C‖δ′τDτ (δ

−1/6∂σδ
−1/6)ψ̌‖.

Using the support of ψ̌, we deduce:

‖δ′τDτ (δ
−1/6∂σδ

−1/6)ψ̌‖ ≤ Ch1/3‖Dτ (δ
−1/6∂σδ

−1/6)ψ̌‖. (3.23)

Therefore, with (3.18), we infer:

‖P1(h)(δ
−1/6∂σδ

−1/6)ψ̌‖2 ≥‖(m̌−1P )(δ−1/6∂σδ
−1/6)ψ̌‖2

− Ch5/3‖(δ−1/6∂σδ
−1/6)ψ̌‖2 − Ch5/3‖ψ̌‖2.

We write:

‖(m̌−1P )(δ−1/6∂σδ
−1/6)ψ̌‖2 ≥ δ

2/3
0 ‖(m̌−1δ−1/3P )(δ−1/6∂σδ

−1/6)ψ̌‖2.

We shall again expand the square and control the term:

‖τ2(δ−1/6∂σδ
−1/6)ψ̌‖ ≤ Ch2/3(‖(δ−1/6∂σδ

−1/6)ψ̌‖ + ‖ψ̌‖).

With (3.22), (3.23), (3.18) and (3.19), it follows that:

‖P1(h)(δ
−1/6∂σδ

−1/6)ψ̌‖2

≥ δ
2/3
0 ‖(m̌−1(−hδ−1/3Dσ − η0h

2/3 +
Ǎ

δ1/3
)(δ−1/6∂σδ

−1/6)ψ̌‖2

− Ch5/3‖(δ−1/6∂σδ
−1/6)ψ̌‖2 − Ch5/3‖ψ̌‖2.
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With the same arguments and using the Taylor expansion of Ǎ, we find:

‖P1(h)(δ
−1/6∂σδ

−1/6)ψ̌‖2

≥ δ
2/3
0 ‖(m̌−1(−hδ−1/3Dσ − η0h

2/3 +
τ2

2
)(δ−1/6∂σδ

−1/6)ψ̌‖2

− Ch5/3‖(δ−1/6∂σδ
−1/6)ψ̌‖2 − Ch5/3‖ψ̌‖2.

Let us notice that (see (3.19)):

∫
|τ ||(−hδ−1/3Dσ − η0h

2/3 +
τ2

2
)(δ−1/6∂σδ

−1/6)ψ̌|2 dσdτ (3.24)

≤ Ch1/3−γ

∫
|(−hδ−1/3Dσ − η0h

2/3 +
τ2

2
)(δ−1/6∂σδ

−1/6)ψ̌|2 dσdτ

≤ Ch5/3−γ‖(δ−1/6∂σδ
−1/6)ψ̌‖2 + Ch5/3−γ‖ψ̌‖2.

Using the Taylor expansion of m̌ and (3.24), we find:

Q̌((δ−1/6∂σδ
−1/6)ψ̌)

≥
∫
δ
2/3
0

(
|hDτ ψ̌|2 + |(δ−1/3ih∂σ + η0h

2/3 +
τ2

2
)(δ−1/6∂σδ

−1/6)ψ̌|2
)
dσdτ

− Ch5/3−γ‖(δ−1/6∂σδ
−1/6)ψ̌‖2 − Ch5/3−γ‖ψ̌‖2.

Replacing δ−1/3∂σ by δ−1/6∂σδ
−1/6 (modulo error terms which can be controlled

with the same arguments), we deduce:

Q̌((δ−1/6∂σδ
−1/6)ψ̌)

≥
∫
δ
2/3
0

(
|hDτ ψ̌|2 + |(δ−1/6ih∂σδ

−1/6 + η0h
2/3 +

τ2

2
)(δ−1/6∂σδ

−1/6)ψ̌|2
)
dσdτ

− Ch5/3−γ‖(δ−1/6∂σδ
−1/6)ψ̌‖2 − Ch5/3−γ‖ψ̌‖2.

We infer:

Q̌(ψ̌) ≥
∫
h4/3δ

2/3
0 ν1(η0 − h1/3µ)|µFδ(φ̌)|2 dµdτ − Ch5/3−γ‖(δ−1/6∂σδ

−1/6)ψ̌‖2

− Ch5/3−γ‖ψ̌‖2.

It follows:
∫

|h1/3µ|≥ε0

|µFδφ̌|2dµdτ ≤ Ch1/3−γ‖µFδφ̌‖2 + Ch1/3−γ‖ψ̌‖2.

Combining this last estimate with (3.21) , we get the conclusion. �
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4 Approximation by tensor products

We can now prove an approximation result for the eigenfunctions. Let us recall the

rescaled coordinates (see (2.3)):

σ = h1/6σ̂, τ = h1/3τ̂ . (4.1)

We recall that L̂(h) denotes Ľ(h) in the coordinates (σ̂, τ̂). We will use the notation

ÊN (h) to denote ÊN (h) after rescaling. We introduce the Feshbach-Grushin projec-

tion:

Π0φ = 〈φ, uη0
〉τ̂uη0

(τ̂).

We will need to consider the quadratic form:

Q̂0(φ) = δ
2/3
0

∫
|Dτ̂φ|2 +

∣∣∣∣
(
−η0 +

τ̂2

2

)
φ

∣∣∣∣
2

dσ̂dτ̂ .

Proposition 4.1 There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and for all

ψ̂ ∈ ÊN (h):

0 ≤ Q̂0(ψ̂) − δ
2/3
0 ν1(η0)‖ψ̂‖2 ≤ Ch1/6‖ψ̂‖2 (4.2)

and:

‖Π0ψ̂ − ψ̂‖ ≤ Ch1/12‖ψ̂‖ (4.3)

‖Dτ̂ (Π0ψ̂ − ψ̂)‖ ≤ Ch1/12‖ψ̂‖,
‖τ̂2(Π0ψ̂ − ψ̂)‖ ≤ Ch1/12‖ψ̂‖.

Proof: Let us consider ψ̂ ∈ ÊN (h) which is associated with a rescaled eigenvalue λ̂.

We have:

Q̂(ψ̂) ≤ (λ̂+O(h∞))‖ψ̂‖2.

We have:

‖P̂1(h)ψ̂‖2 + ‖P̂2(h)ψ̂‖2 ≤ (ν1(η0) + Ch1/3)‖ψ̂‖2.

We now use Proposition 3.11 to get (the term in τ3 and the term associated with m̌
are controlled by the estimates of Agmon):

Q̂(ψ̂) ≥
∫
δ
2/3
0

(
|Dτ̂ ψ̂|2 + |(δ̂−1/6ih1/6∂σ̂ δ̂

−1/6 − η0 +
τ̂2

2
)ψ̂|2

)
dσ̂dτ̂ + o(h1/3)‖ψ̂‖2.

We wish to make the term δ̂−1/6ih1/6∂σ̂ δ̂
−1/6 to disappear modulo some error term.

Expanding the square, we are led to estimate the double product:

2ℜ
〈(

−η0 +
τ̂2

2

)
ψ̂, δ̂−1/6ih1/6∂σ̂ δ̂

−1/6ψ̂

〉
.
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We have: ∥∥∥∥
(
−η0 +

τ̂2

2

)
ψ̂

∥∥∥∥ ≤ C‖ψ̂‖

and, with Proposition 3.12:

∥∥∥δ̂−1/6ih1/6∂σ̂ δ̂
−1/6ψ̂

∥∥∥ ≤ Ch1/6‖∂σ̂ δ̂
−1/6ψ̂‖ ≤ Ch1/6‖ψ̂‖.

It follows:

Q̂(ψ̂) ≥ Q̂0(ψ̂) − Ch1/6‖ψ̂‖2.

We deduce (4.2). We get (4.3) as a consequence of (4.2) in a standard way. �

Proposition 4.2 There exist h0 > 0 and C > 0 such that for h ∈ (0, h0) and for all

ψ̂ ∈ ÊN (h):

Q̂(ψ̂) ≥
∫
δ
2/3
0

(
|Dτ̂ ψ̂|2 + |(δ̂−1/6ih1/6∂σ̂ δ̂

−1/6 − η0 +
τ̂2

2
)ψ̂|2

)
dσ̂dτ̂

+
2

3
δ
2/3
0 αν1(η0)‖σ̂ψ̂‖2 + C0h

1/3‖ψ̂‖2 + o(h1/3)‖ψ̂‖2,

where C0 is defined in (1.10).

Proof: We use Proposition 3.11 to write:

Q̂(ψ̂) ≥ (4.4)

δ
2/3
0

∫ (
|hDτ̂ ψ̂|2 + |(δ̂−1/6ih1/6∂σ̂ δ̂

−1/6 − η0 +
τ̂2

2
+ δ

−4/3
0 κ(0)h1/3τ̂3)ψ̂|2

)
dσ̂dτ̂

+ 2h1/3k0δ
−1/3
0

∫
τ̂ |(δ̂−1/6ih1/6∂σ̂ δ̂

−1/6 − η0 +
τ̂2

2
+ δ

−4/3
0 κ(0)h1/3τ̂3)ψ̂|2 dσ̂dτ

+
2

3
δ
2/3
0 αν1(η0)‖σ̂ψ̂‖2 + o(h1/3)‖ψ̂‖2.

With the estimates of Agmon and Proposition 3.12, we get on the one hand:

∫
τ̂ |(δ̂−1/6ih1/6∂σ̂ δ̂

−1/6 − η0 +
τ̂2

2
+ δ

−4/3
0 κ(0)h1/3τ̂3)ψ̂|2 dσ̂dτ (4.5)

= h1/3

∫
τ̂

(
−η0 +

τ̂2

2

)2

|ψ̂|2 dσ̂dτ̂ + o(h1/3)‖ψ̂‖2

and on the other hand:

∫
|(δ̂−1/6ih1/6∂σ̂ δ̂

−1/6 − η0 +
τ̂2

2
+ δ

−4/3
0 κ(0)h1/3τ̂3)ψ̂|2 dσ̂dτ̂ (4.6)

=

∫
|(δ̂−1/6ih1/6∂σ̂ δ̂

−1/6 − η0 +
τ̂2

2
)ψ̂|2 dσ̂dτ̂

+ 2δ
−4/3
0 κ(0)h1/3

∫ (
−η0 +

τ̂2

2

)
τ̂3|ψ̂|2 σ̂dτ + o(h1/3)‖ψ̂‖2.
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It remains to approximate the quantities:

∫
τ̂

(
−η0 +

τ̂2

2

)2

|ψ̂|2 dσ̂dτ̂ ,
∫ (

−η0 +
τ̂2

2

)
τ̂3|ψ̂|2 σ̂dτ.

Let us analyze the first one. We consider:
∣∣∣∣∣

∫
τ̂

(
−η0 +

τ̂2

2

)2

(|ψ̂|2 − |Π0ψ̂|2) dσ̂dτ̂
∣∣∣∣∣

≤
∣∣∣∣∣

∫
τ̂

(
−η0 +

τ̂2

2

)2

(|ψ̂| − |Π0ψ̂|)(|ψ̂| + |Π0ψ̂|) dσ̂dτ̂
∣∣∣∣∣

≤
∫ ∣∣∣∣∣τ̂

(
−η0 +

τ̂2

2

)2
∣∣∣∣∣ (|ψ̂ − Π0ψ̂|)(|ψ̂| + |Π0ψ̂|) dσ̂dτ̂

≤ ‖ψ̂ − Π0ψ̂‖
(∫

τ̂2

(
−η0 +

τ̂2

2

)4

(|ψ̂| + |Π0ψ̂|)2 dσ̂dτ̂
)1/2

≤
√

2‖ψ̂ − Π0ψ̂‖
(∫

τ̂2

(
−η0 +

τ̂2

2

)4

(|ψ̂|2 + |Π0ψ̂|2) dσ̂dτ̂
)1/2

We infer:

(∫
τ̂2

(
−η0 +

τ̂2

2

)4

(|ψ̂|2 + |Π0ψ̂|2) dσ̂dτ̂
)1/2

≤
(∫

τ̂2

(
−η0 +

τ̂2

2

)4

|ψ̂|2 dσ̂dτ̂
)1/2

+

(∫
τ̂2

(
−η0 +

τ̂2

2

)4

|Π0ψ̂|2 dσ̂dτ̂
)1/2

Using the fact that uη0
is in the Schwartz class, we get:

∫
τ̂2

(
−η0 +

τ̂2

2

)4

|Π0ψ̂|2 dσ̂dτ̂ ≤ C

∫
〈ψ̂, uη0

〉2τ̂ dσ̂ ≤ C‖ψ̂‖2.

With the estimates of Agmon, we get:

∫
τ̂2

(
−η0 +

τ̂2

2

)4

(|ψ̂|2 + |Π0ψ̂|2) dσ̂dτ̂ ≤ C‖ψ̂‖2.

We deduce:
∣∣∣∣∣

∫
τ̂

(
−η0 +

τ̂2

2

)2

(|ψ̂|2 − |Π0ψ̂|2) dσ̂dτ̂
∣∣∣∣∣ ≤ Ch1/12‖ψ̂‖2.

In the same way, we get:

∣∣∣∣
∫ (

−η0 +
τ̂2

2

)
τ̂3(|ψ̂|2 − |Π0ψ̂|2) dσ̂dτ̂

∣∣∣∣ ≤ Ch1/12‖ψ̂‖2.
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Then, we can write:

∫
τ̂

(
−η0 +

τ̂2

2

)2

|Π0ψ̂|2 dσ̂dτ̂ =

(∫
τ̂

(
−η0 +

τ̂2

2

)2

|uη0
|2 dτ̂

)(∫
〈ψ̂, uη0

〉2τ̂dσ̂
)
.

We get:

∫
〈ψ̂, uη0

〉2τ̂dσ̂ =

∫ ∫
u2

η0
〈ψ̂, uη0

〉2τ̂dσ̂dτ̂ = ‖Π0ψ̂‖2 = (1 + o(1))‖ψ̂‖2.

We infer:

∫
τ̂

(
−η0 +

τ̂2

2

)2

|Π0ψ̂|2 dσ̂dτ̂ =

(∫
τ̂

(
−η0 +

τ̂2

2

)2

|uη0
|2 dτ̂

)
(1+o(1))‖ψ̂‖2

(4.7)

In the same way, we get:

∫
τ̂3

(
−η0 +

τ̂2

2

)
|Π0ψ̂|2 dσ̂dτ̂ =

(∫
τ̂3

(
−η0 +

τ̂2

2

)
|uη0

|2 dτ̂
)

(1+o(1))‖ψ̂‖2.

(4.8)

Gathering (4.4), (4.5), (4.6), (4.7) and (4.8) and the definition of C0 in (1.10), we get

the lower bound. �

After rescaling, we deduce the corollary:

Corollary 4.3 There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and ψ̌ ∈ EN (h):

Q̌(ψ̌) ≥
∫
δ
2/3
0

(
|hDτ ψ̌|2 + |(δ−1/6ih∂σδ

−1/6 − η0h
2/3 +

τ2

2
)ψ̌|2

)
dσdτ

+
2

3
δ
2/3
0 αν1(η0)h

4/3‖σψ̌‖2 + C0h
5/3‖ψ̌‖2 + o(h5/3)‖ψ̌‖2.

We use the weighted Fourier transform defined in (3.17) and we infer:

Corollary 4.4 There exist h0 > 0, C > 0 such that, for h ∈ (0, h0) and ψ̌ ∈ EN (h):

Q̌(ψ̌) ≥
∫
δ
2/3
0

(
|hDτ φ̌|2 + |(−hµ− η0h

2/3 +
τ2

2
)φ̌|2

)
dµdτ

+
2

3
δ
2/3
0 αν1(η0)h

4/3‖Dµφ̌‖2 + C0h
5/3‖φ̌‖2 + o(h5/3)‖φ̌‖2,

with φ̌ = Fδψ̌.

Conclusion: Proof of Theorem 1.10 Let us introduce the operator onL2(R2, dσdτ):

2

3
δ
2/3
0 αν1(η0)h

4/3D2
µ +δ

2/3
0

(
h2D2

τ +

(
−hµ− η0h

2/3 +
τ2

2

)2
)

+C0h
5/3. (4.9)

We denote by λ̃n(h) its n-th eigenvalue. From Corollary 4.4 and the min-max princi-

ple, we deduce:

λn(h) ≥ λ̃n(h) + o(h5/3). (4.10)
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The Born-Oppenheimer approximation (see [29]) provides the following estimate for

λ̃n(h):
λ̃n(h) = h2/3(θn

0 + h2/3θn
2 ) + o(h5/3). (4.11)

The estimates (4.10) and (4.11) provide the conclusion. Let us recall the spirit of the

Born-Oppenheimer approximation (see the historical reference [5]) without going into

the details. The principle consists of replacing, for fixed µ, the Montgomery operator

h2D2
τ +

(
−hµ− η0h

2/3 + τ2

2

)2
by its lowest eigenvalue h4/3ν1(η0 + µh1/6) and to

analyze the spectrum of the “Born-Oppenheimer approximation” defined by:

h4/3δ
2/3
0

(
2

3
αν1(η0)D

2
µ + ν1(η0 + µh1/6)

)
.

This (semiclassical) analysis can be done through standard techniques (see [22, 23]

and [13]). We can also refer two our recent works [4] and [35] where this idea appears.

It can be proved (through Agmon estimates with respect to µ and a Feshbach-Grushin

type argument) that the investigation reduces to the harmonic oscillator:

h4/3δ
2/3
0

(
2

3
αν1(η0)D

2
µ + ν1(η0) + h1/3 ν

′′
1 (η0)

2
µ2

)

and the estimate (4.11) follows.
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