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Abstract

In this paper, we tackle the problem of prediction and confidence intervals for time series
using a statistical learning approach and quantile loss functions. In a first time, we show
that the Gibbs estimator (also known as Exponentially Weighted aggregate) is able to
predict as well as the best predictor in a given family for a wide set of loss functions.
In particular, using the quantile loss function of Koenker and Bassett (1978), this allows
to build confidence intervals. We apply these results to the problem of prediction and
confidence regions for the French Gross Domestic Product (GDP) growth, with promising
results.

Keywords: Statistical learning theory, time series prediction, quantile regression, GDP
forecasting, PAC-Bayesian bounds, oracle inequalities, weak dependence, confidence inter-
vals, business surveys.

1. Introduction

Motivated by economics problems, the prediction of time series is one of the most emblematic
problem of statistics. Various methodologies are used that come from such various fields as
parametric statistics, statistical learning, computer science or game theory.

In the parametric approach, one assumes that the time series is generated according to
a parametric model, like ARMA or ARIMA processes, see e.g. Hamilton (1994); Brockwell
and Davis (2009). Such an assumption is unrealistic in many applications. However, un-
der this assumption, it is possible to estimate the parameters of the model, and to build
confidence intervals on the prevision.

In the statistical learning point of view, one usually tries to avoid such restrictive para-
metric assumptions - see, e.g., Cesa-Bianchi and Lugosi (2006); Stoltz (2010) for the online
approach dedicated to the prediction of individual sequences, and Modha and Masry (1998);
Meir (2000); Alquier and Wintenberger (2012) for the batch approach. However, in this
setting, a few attention has been paid to the construction of confidence intervals or to
any quantification of the precision of the prediction. This is a major drawback in many
applications.

In Biau and Patra (2011), a method was proposed for the online approach: the idea
is to minimize the cumulated risk corresponding to the quantile loss function defined by
Koenker and Bassett (1978). Some asymptotic results are provided.

In this paper, we propose to adapt this approach to the batch setting and provide
nonasymptotic results. We also apply these results to build quarterly prediction and confi-
dence regions for the French Gross Domestic Product (GDP) growth. Our approach is the
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following. We assume that we are given a set of basic predictors - this is a usual approach
in statistical learning, the predictors are sometimes referred as “experts”, e.g. Cesa-Bianchi
and Lugosi (2006). Following Alquier and Wintenberger (2012), we describe a procedure
of aggregation, usually referred as Exponentially Weigthed Agregate (EWA), Dalalyan and
Tsybakov (2008); Gerchinovitz (2011), or Gibbs estimator, Catoni (2004, 2007). It is in-
teresting to note that this procedure is also related to aggregations procedure in online
learning as the weighted majority algorithm of Littlestone and Warmuth (1994), see also
Vovk (1990). We give a PAC-Bayesian inequality that ensures optimality properties for this
procedure. In a few words, this inequality claims that our predictor performs as well as
the best basic predictor up to a remainder of the order K/y/n where n is the number of
observations and K measures the complexity of the set of basic predictors. This result is
very general, two conditions will be required: the time series must be weakly dependent in
a sense that we will make more precise in Section 4, and we need to have a Lipshitz loss
function. This includes, in particular, the quantile loss functions. This allows us to apply
this result to our problem of economic forecasting.

The paper is organized as follows. Section 2 provides the notations used in the whole
paper. Then, we give a description the Gibbs estimator in Section 3. The PAC-Bayesian
inequality, Theorem 4.1, is given in Section 4, and the application to quantile losses and GDP
forecasting in Section 5. Finally, the proof of Theorem 4.1 is postponed to the appendix.

2. The context

Let us assume that we observe Xq,...,X,, from a RP-valued stationnary time series X =
(Xt),ez defined on (€2, A, P). From now, ||.|| will denote the Euclidian norm on R?. Fix an in-
teger k and let us assume that we are given a family of predictors {fg : (RPYF — RP, 6 € @}:
for any 0 and any t, fy applied to the last past values (X;_1,...,X;_x) is a possible predic-
tion of X;. For the sake of simplicity, let us put for any ¢t € Z and any 0 € O,

XP = fo(Xio1,.. ., Xop).

We also assume that 6 — fy is linear. Note that we may want to include parametric models
as well as non-parametric prediction. In order to deal with various family of predictors, we
propose a model-selection type approach:

@:6@,

Jj=1

Example 2.1 A first example is the linear auto-regressive class of predictors. We can take
0= (90,01,...,0k) € 0 =R gnd

k
f@(Xt_l, ey thk) - 90 + Z HJXt_j
J=1

In this case we deal with only one model, m =1 and © = ©1.
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Example 2.2 We may generalize the previous example to non-parametric auto-regression,
for ezample using a dictionnary of functions (RP)* — RP, say (9;)32,. Then we can fiz
m =n, and take 0 = (01,...,0;) € ©;, =R’ and

J
fo(Xi—1,. ., Xig) = Z@'%(thl, ey Xiok)-
i=1

Finally, we have to define a quantitative criterion to evaluate the quality of the predictions.
Let ¢ be a loss function. More precisely, we will assume that ¢ satisfies the following
assumption.

Assumption LipLoss: ¢ is given by: ¢(z,z') = g(z — 2’) for some convex function g
satisfying ¢ > 0, g(0) = 0 and g is K-Lipshitz.

Definition 2.1 We put, for any 0 € O,
R(0) =E [ﬁ (Xf,Xt)] .
Note that because of the stationnarity, R(#) does not depend on t.

Example 2.3 A first example is {(x,2') = ||x — 2/||. In this case, the Lipshitz constant K
is 1. This example was studied in detail in Alquier and Wintenberger (2012). In Modha
and Masry (1998); Meir (2000), the loss function is the quadratic loss {(z,2') = ||z — 2'||%.
Note that it also satisfies our Lipshitz condition, but only if we assume that the time series
s bounded.

Example 2.4 When the time-series is real-valued, we can use a quantile loss function. The
class of quantile loss functions is defined as

t(z.y) = T(x —vy), ifr—y>0
Y —(1—=7)(x—vy), otherwise

where T € (0,1). It is motivated by the following remark: if U is a real-valued random
variable, then any value t* satisfying P(U < t*) = 7 is a minimizer of of t — E({(X —
t)); such a value is called quantile of order T of U. This loss function was introduced by
Koenker and Bassett (1978) for “quantile regression”, since then it became a classical tool
in statistics, see e.g. Koenker (2005) for a survey. Recently, Belloni and Chernozhukov
(2011) used it in the context of high-dimensional regression with the LASSO and by Biau
and Patra (2011) used it to build non-parametric confidence intervals on time-series.

3. Gibbs estimator

We introduce in this section the Gibbs estimator. As already mentionned in the introduc-
tion, such aggregated estimators were used in learning theory under the name weighted
majority aggregate, EWA...



Definition 3.1 We define, for any 6 € ©, the empirical risk

() = —— 3 (x0.x:).

1=k+1

Let 7 be a o-algebra on © and 7y be its restriction to ©, for any ¢ € {1,...,m}.
Let M (©) denote the set of all probability measures on (0, 7). Let 7 € M’ (©). This
probability measure is usually called the prior by analogy with Bayesian statistics. Actually,
it will be used as a tool to control the complexity of the set of predictors ©.

Remark 3.1 In the case where © = U;0; and the ©; are disjoint, we can write

w(d) =) pym;(d6)
j=1

where pj := 7(0;) and 7;(d0) := n(df)1le,(0)/p;. Note that m; can be interpreted as a
prior probability measure inside the model ©; and that the weights pi; can be interpreted as
a priori probability measure between the models.

Definition 3.2 We put, for any A > 0,

s = /@ 02 (d0)

where

. e (@ (dh)
p/\(de) = f 6_/\T"(9l)7r(d0/) .

Remark 3.2 Note that analogously to Bayesian estimator, the Gibbs estimator can is writ-
ten as an integral on the parameter space. It can thus be computed by Monte Carlo methods,
see Robert (1996); Marin and Robert (2007). This is the approach that we will use in this

paper.

Remark 3.3 The choice of the parameter X is discussed in the next section.

4. Theoretical results

In this section, we provide a PAC-Bayesian oracle inequality for the Gibbs estimator. PAC-
Bayesian were introduced in the context of supervised classification (using the 0/1-loss), see
the seminal papers Shawe-Taylor and Williamson (1997); McAllester (1999). More general
versions can be found in Catoni (2004, 2007). These results were generalized to different
contexts and loss functions, see Alquier (2008) for a presentation with a general loss function.
See also Audibert (2010) for a nice survey of the more recent advances. The idea is that
the risk of the Gibbs estimator will be close to infy R(f) up to a small remainder. More
precisely, we upper-bound it by

inf { / R(0)p(d0) + remainder(p,w)}

p

4
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where the inf is taken upon all the probability distributions on ©.

In order to be able to control the prevision risk of our estimator 6, R(éA), we will need

some hypothesis. The first hypothesis concerns the dependence of the process, it uses the
00,n(1)-coefficients of Dedecker et al. (2007). Such a condition is also used in Alquier and
Wintenberger (2012), and is more general than the mixing conditions used in Meir (2000);
Modha and Masry (1998).
Assumption WeakDep: we assume that the distribution P is such that the stationary
process (X;)icz is bounded, ie a.s. || Xollco < B < 00, and such that there is a constant C
with 05 (1) < C < oo for any k. We remind that for any o-algebra & C A, for any ¢ € N,
for any (RP)?-valued random variable Z defined on (2, .4, P), we put

0 (6, Z) = sup
fend

E[/(2)/6]-E[f(2))|

o0

where

[F Gy ev2g) = FGRL - 2)]
1 {f (R =R, =1 llzi = ] B }

and that
Hoo,k’(l) ‘= sup {HOO(U(Xtat < p)) (lea s anz))v p<j1<...<jgp,1<€< k}

Remark 4.1 Some examples of processes satisfying WeakDep are provided, for example,
in Alquier and Wintenberger (2012). It includes the large family of bounded causal Bernoulli
shifts, that is bounded processes of the form

Xp=H(&,6-1,8-2,--.)

where the “innovations” & are iid and bounded and H satisfies a Lipshitz-type condition. In
particular, this includes ARMA processes with bounded innovations. It also includes uniform
p-mizing processes, defined e.g. in Doukhan (1994); Rio (2000a), and some dynamical
systems.

Assumption Lip: for any § € © we assume that there are coefficients a; (0) for 1 < j <k
satisfying, for any x1, ..., zx and y1, ..., Yk, the relation

k
Ifo (v, vaw) = fo (s )l <> ag (0) [l — sl -
j=1

We define L := supgeg 25:1 a; (#) and assume that this value is finite.

Theorem 4.1 (PAC-Bayesian Oracle Inequality) Let us assume that assumptions Li-
pLoss, WeakDep and Lip are satisfied. Then, for any A > 0, for any € > 0,

. 2 2K 2log (2
P R(GA) < inf 20 (p,m) + 2log () >1—¢
peML(©)

Rdp + +
[ )

n




where k = k(K,L,B,C) := K(1 4 L)(B +C)/v2 and where we remind that K(p, ) is the
Kullback divergence between p and w, defined by

Jlog [37’1(9)} p(do) if p < m,
IC(,O, ™) =

+00 otherwise.

Remark 4.2 The choice of \ in practice may be a problem. In Catoni (2003, 2007) a
general method is proposed to optimize the bound with respect to . However, while adapted
in the iid case, this method is more difficult to use in the context of time series as it would
require the knowledge of k, and so the knowledge of 0 (1) - or at least the knowledge of
an explicit upper bound for 6 (1). In practice, however, some empirical calibration seems
to give good results, as shown in Section 5.

Remark 4.3 We want to mention that, at the price of a much more technical analysis,
this result can be extended to the case where the X; are not assumed to be bounded. In
the 1id case, it is possible to obtain results under the existence of moments of order 4 only,
see Audibert and Catoni; Catoni. In the context of time series, the results in Alquier and
Wintenberger (2012) require subGaussian tails for Xy, but suffer alog(n) loss in the learning
rate.

5. Application to French GDP and quantile prediction

We now in this section an application to data published by the INSEE (Institut National
de la Statistique et des Etudes Economiques, the French national bureau of statistics).

5.1. Uncertainty in GDP forecasting

Every quarter t, economic forecasters at INSEE are asked a prediction for the quarterly
growth rate of the French Gross Domestic Product (GDP). Since it involve a lot of informa-
tion, the “true value” of the growth rate log(GDP;/GDP;_1) is only known after two years,
but flash estimates of the growth rate, say AGDP,, are published 45 days after the end of
the current quarter . One of the most relevant economic information available at time ¢ to
the forecaster, apart from past GDP observations, are business surveys. Indeed, they are a
rich source of information, for at least two reasons. First, they are rapidly available, on a
monthly basis. Moreover, they provide information coming directly from the true economic
decision makers.

A business survey is traditionally a fixed questionnaire of ten questions sent monthly
to a panel of companies. This process is described in Devilliers (1984). INSEE publishes a
composite indicator called the French business climate indicator: it summarises information
of the whole survey. This indicator is defined in Clavel and Minodier (2009), see also Dubois
and Michaux (2006). All these values are available from the INSEE website

http://www.insee.fr/

Note that a quite similar approach is used in other countries, see also Biau et al. (2008) for
a prediction of the European Union GDP based on EUROSTATS data (EUROSTAT is the
EU bureau of statistics).
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It is however well known among economic forecasters that interval confidence or density
forecasts are to be given with the prediction, in order to provide an idea of the uncertainty
of the prediction. The ASA and the NBER started using density forecasts in 1968, see
Diebold et al. (1997); Tay and Wallis (2000) for historical surveys on density forecasting.
The Central Bank of England and INSEE, among others, provide their prediction with a
“fan chart”, Britton et al. (1998). However, it is interesting to note that the methdology
used is often very crude, see the criticism in Cornec (2010); Dowd (2004). For example, until
2012, the fan chart provided by the INSEE led to the construction of confidence intervals
with constant length. But there is an empirical evidence that it is more difficult to forecast
economic quantities during crisis (e.g. the subprime crisis in 2008). The Central Bank
of England fan chart is not reproducible as it includes subjective information. Recently,
Cornec (2010) proposed a clever density forecasting method based on quantile regressions
that gives satisfying results in practice. However, this method did not receive any theoretical
support up to our knowledge.

Here, we use the Gibbs estimator described in the previous sections to build a forecast-
ing of AGDPy, using the quantile loss function. This allows to return a prediction: the
forecasted median, for 7 = 0.5, that is theoretically supported. This also allows to provide
various confidence intervals corresponding to various quantiles.

5.2. Application of Theorem 4.1

At each quarter t, the objective is to predict the flash estimate of GDP growth, AGDP;.
As described previouly, the available information is AGDPy for ¢ < t and I for t' < t,
where for notational convenience, I;_1 is the climate indicator available to the INSEE at
time ¢ (it is the mean of the climate indicator at month 3 of quarter t — 1 and at month 1
and 2 of quarter t). The observation period is 1988-Q1 (1st quarter of 1988) to 2011-Q3.

We define X; = (AGDPy, I;)’ € R%. As we are not interested by the prevision of I; but
only by the prediction of the GDP growth, the loss function will only take into account
AGDP;. We use the quantile loss function of Example 2.4:

-((AGDPy, I), (A’GDPy, I}))

T (AGDPt — A/GDPt) R if AGDP; — A/GDPt >0
|- —7)(AGDP, — A’GDP,), otherwise.

In order to clearly know what is the value 7 we are dealing with, we will now add a
subscript 7 in the notation of the prevision risk:

R™(0) :=E[(; (AGDPy, fo(X;_1, X1_2))].

We also let r] denote the associated empirical risk.
Following Cornec (2010); Li (2010) we consider predictors of the form:

fo(Xi—1, Xi—2) = 00 + O1LAGDP,_1 + 0201 + 05(L1—1 — I;—2)|[1—1 — L;—2| (1)
where 6 = (6p, 01, 02,03) € O(B). For any B > 0 we define

3
O(B) = {9 = (0, 01,09,03) € R ||0]|; = Z 16;] < B} .

1=0



These predictors of Equation 1 correspond to the model used in Cornec (2010) for forecast-
ing, one of the conclusions of Cornec (2010); Li (2010) is that these family of predictors
allow to obtain a forecasting as precise as the INSEE one.

For technical reason that will become clear in the proofs, if one wants to achieve a
prediction performance comparable to the best § € ©(B), it is more convenient to define the
prior 7 as the uniform probability distribution on some slightly larger set, e.g. ©(B+1). We
will let I1g denote this distribution. We let PBA and 9} y denote repectively the associated
agregation distribution and the associated estimator, defined in Definition 3.2.

Remark that in this framework, Assumption Lip is satisfied with L = B + 1, and the
loss function is K-Lipshitz with K = 1 so Assumption LipLoss is also satisfied.

Theorem 5.1 Let us fir 7 € (0,1). Let us assume that Assumption WeakDep is satisfied,
and that n > max (10, /12/(332)). Let us fix X = v/3n/k. Then, with probability at least
1 — ¢ we have

R7(f5,) < inf {RT(Q) | 2V3n [2.25 +log <(B ha ?B\/ﬁ> | s (i‘)] } .

~ 0cO(B) N4D 3

A detailed proof is given in the appendix.

The choice of A proposed in the theorem may be a problem as in practice we will not
know k. Note that from the proof, it is obvious that in any case, for n large enough, when
A = /n we still have a bound

R™(0p,) < inf {RT(H) +

C(B,B,k,¢)
~ 0cO(B) ’

NG

However, in practice, we will work in an online setting: at each date ¢ we compute the
Gibbs estimator based on the observations from 1 to ¢ and use it to predict the GDP and
its quantiles at time ¢t 4+ 1. Let 9; ,[t] denote this estimator. We propose the following
empirical approach: we define a set of values A = {2F,k € N} N {1,...,n}. At each step t,
we compute éTB ,[t] for each X € A and use for prediction ég A [t] where A(t) is defined by

t—1
A(t) = arg {\1161[{1 z; t-(AGDP;, féTB,AU] (Xj-1,Xj-2)),
j:

namely, the value that is currently the best for online prediction. This choice leads to good
numerical results.

In practice, the choice of B has less importance. As soon as B is large enough, the
estimator does not really depend on B, only the theoretical bound does. As a consequence
we take B = 100 in our experiments.

5.3. Implementation

We use the importance sampling method to compute ég’)\[ﬂ (see, e.g., Robert (1996)). We

draw an iid sample 71, ..., Ty of vectors in R%, from the distribution A'(§7,vI) where v > 0
and 07 si simply the 7-quantile regression estimator of 6 in (1), as computed by the “quantile
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regression package” of the R software R Development Core Team (2008). Let g(-) denote
the density of this distribution. Then, by the law of large numbers we can approximate

i T; exp [_)‘Tt (T’Z)] 1®(B+1) (E) a.s. éT

exp[—Ar:(T};)]1 T - B,)\[t]'
i—1 9(T3) Zj\le Pl (gj()}j)@(BH)( D N

Remark that this is particularly convenient as we only simulate the sample 17, ..., Ty once
and we can use the previous formula to approximate 0%7 ,[t] for several different values of 7.

5.4. Results

The results are shown in Figure 1 for prediction, 7 = 0.5, in Figure 2 for confidence interval
of order 50%, i.e. 7 = 0.25 and 7 = 0.75 (left) and for confidence interval of order 90%,
ie. 7 =0.05 and 7 = 0.95 (right). We report only the results for the period 2000-Q1 to
2011-Q3 (using the period 1988-Q1 to 1999-Q4 for learning).

Out-of-sample forecasts

GDP growih rate(%)

—— GDP growth
Forecast
T T T T T T
2000 2002 2004 2006 2008 2010

-1.5

Figure 1: French GDP online prediction using the quantile loss function with 7 = 0.5.

Note that we can compare the ability of our predictor 593'3 with the predictor used in Li

(2010) that relies on a least square estimation of (1), that we will denote by 6*. Interestingly,
both are quite similar but @ﬁi is a bit more precise. We remind that

_1xwm
mean abs. pred. error = )"

AODE, = fyg jooct i)

mean quad. pred. error = 1Y%, [AGDPt — fa05 [t](Xt_l,Xt_g)]
BA(Y)

Predictor | Mean absolute prevision error | Mean quadratic prevision error
0%, 0.22360 0.08033
0, 0.24174 0.08178




Out-of-sample forecasts Out-of-sample forecasts
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2
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19 -
= 10
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=
i w
— GDP growth -~ ~| — GDP growth
-~ 25%-quantile forecast ---- 5%-quantile forecast
75%-quantile forecast 95%-quantile forecast
©
- T T T T T T T T T T T T
2000 2002 2004 2006 2008 2010 2000 2002 2004 2006 2008 2010

Figure 2: French GDP online 50%-confidence intervals (left) and 90%-confidence intervals
(right).

We also report the frequency of realizations of the GDP falling above the predicted
T-quantile for each 7. Note that this quantity should be close to 7.

Estimator | Frequency
0% 0.065
0% 0.434
0%, 0.608
%7 0.848
69,95 0.978

It can be seen that our method behaves quite well in practice. As the INSEE did, we
miss the value of the 2008 crisis. However, it is interesting to note that our confidence
interval shows that our prediction at this date is less reliable than the previous ones: so, at
this time, the forecaster could have been aware of some problems in their predictions.

6. Conclusion

We proposed some theoretical results to extend learning theory to the context of weakly
dependent time series. The method showed good results on an application to GDP fore-
casting. It would also be interesting to give theoretical results on the online risk of our
method, e.g. following tools in Catoni (2004); Gerchinovitz (2011). From both theoretical
and practical perspective, an adaptation with respect to the dependence coefficient O (1)
would also be really interesting but is probably a more difficult objective.

10
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Appendix A. Proofs

A.1. Some preliminary lemmas

First, we remind Rio’s Hoeffding type inequality.

Lemma 1 (Rio Rio (2000b)) Let h be a function (RP)" — R such that

V(215 ey Ty Yty o5 Un) € (REPA(zy, .o 2) — h(ys, - -y un)| < Z |z — il (2)
1=1

Then for any t > 0 we have

E<et{E[h(X1 ..... Xn)]—h(Xl,...,Xn)}) < ew

13



Note that others Hoeffding and Bernstein type inequalities could be used to obtain PAC-
Bounds in the context of time series. The monographs Doukhan (1994); Rio (2000a) provide
nice review of the results available for mixing time series. Note however that weak depen-
dence assumptions are usually more general, some inequalities are provided in Dedecker
et al. (2007), a nice review and new results are given in Wintenberger (2010). See also the
martingale approach in Seldin et al. (2011). However, Lemma 1 is particularly convenient
in this setting, and leads to particularly general hypothesis.
Using Lemma 1, we can prove the following lemma.

Lemma 2 Let us assume that Assumptions LipLoss, WeakDep and Lip are satisfied.
For any A\ > 0, for any 6 € ©, we have

2242 22,2

1E<6Auam—mnwn) < en(-8) and1E<eAvnw>—an) < en(-4)

where we remind that k = K(1+ L)(B+C)/V/2.

Proof Let us fix A > 0 and 6 € ©. Let us define the function h by:

n

1

h(:l)l, e ,xn) = m Z K(fg(xi_l, . ,xi_k),xi).
i=k+1
We now check that h satisfies (2),
h(z1,...,2n) —h(Y1,...Yn)
1 n
< lf(fe(%'—h o Tik), i) = C(fo(Yiz1,s -+ Yiok)s Yi)
e
1 n
< ’g(fG(wi—lv v i) — i) — 9(fo(Wi-1s - Yiok) — Yi)
K(1+1L) i:;i—l
1 n
< 5L Z H(fe(xz‘—h o tick) — @) — (fo(Yiz1, - Yiek) — ¥i) ‘
i=k+1

where we used Assumption LipLoss for the last inequality. So we have

’h(xlw..,xn)——h(ylw..yn)

- HlLizz:;l(Hfg(xi_l’ s Tiok) = folyiot, - ,yz;k)H + ’

)

Li —Yi
1 n k
111 > ajO)llzig = yizjll + i — il
i=k+1 \j=1
1 & b
= 1+ L 1+;“j(9) i — yill
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n
<l — il
=1

where we used Assumption Lip. So we can apply Lemma 1. Note that h(X1,...,X,) =

K?%fmrn(e), E(h(X1,...,X,)) = K’&;&)R(G) and we choose t = K (1 + L)\/(n — k), we

obtain:
A2 K2(14 L)% (B+600,n (1))?

E(e)\[R(G)frn(G)]> <e 2n(1-£)?

A2K2<1+L)2<62+c>2
<e 2n(17%)

because of Assumption WeakDep. This ends the proof of the first inequality. The reverse
inequality is obtained by replacing the function h by —h. |

We also remind the following classical result concerning the Kullback divergence function.

Lemma 3 (Legendre transform of the Kullback divergence function) Foranym €
ML (E), for any measurable function h : E — R such that w[exp(h)] < +oo we have:

lexp(h)] = exp ( sup . (p[h] - K(p, W))) : (3)

peM(

with convention co — oo = —oo. Moreover, as soon as h is upper-bounded on the support of
m, the supremum with respect to p in the right-hand side is reached for the Gibbs measure
m{h} defined by

M@ (dz)

7lexp(h)] |

Actually, it seems that in the case of discrete probabilities, this result was already known
by Kullback (Problem 8.28 of Chapter 2 in Kullback (1959)). For a complete proof in the
general case, we refer the reader for example to Catoni (2003, 2007). We are now ready to
state the following key result.

w{h}(dz) =

Lemma 4 Let us assume that Assumptions LipLoss, WeakDep and Lip are satisfied.
Let us fix A > 0. Let k be defined as in Lemma 2. Then,

Vp e ML (0), )
K(p,m)+log( =
JRdp < [rndp + (f“i)g 4 Mo 5(2)
P S >1—e.
and -
K(p,m)+log(2
Jradp < [ Rdp+ n(fzf + 2 )J; e(2)

Proof Let us fix # > 0 and A > 0, and apply the first inequality of Lemma 2. We have:

w2
ARO) =7 (0) - —25 =7

2
Efe (%) <1,
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and we multiply this result by £/2 and integrate it with respect to 7(d#). Fubini’s Theorem
gives:

w(df) | <

| ™

. / A[R(e))frn(e)]fn(ji“jfflog(é)
6 n

We apply Lemma 3 and we get:

. supp{/\f[R((’)m(@)]P(d@)n(f”’;)g10g(§)lC(PJr)}
6 n

<

DN ™

As e* > 1g_ (), we have:

A2 2
P {Slép {)\/ [R(6) — rn(0)] p(d6) — W — log (5) - ’C(PJT)} > 0} <

Now, we follow the same proof again but starting with the second inequality of Lemma 2.
We obtain:

2/‘62
P {sgp {A [ 1ral0) ~ RO pta0) - n(f_k) “log <2) - K(pm} > o} <

A union bound ends the proof. |

| ™

| ™

A.2. Proof of Theorems 4.1 and 5.1

Proof [Proof of Theorem 4.1] Remark that LipLoss, WeakDep and Lip are satisfied. We
apply the first inequality of Lemma 4. We obtain that with probability at least 1 — ¢, we
are on the event
K(p,m)+log(2
[ Rap < [radp+ s + onioal )
n(1—k
Vp e ML(©), and (4)
K(p,m)+log( 2
[rndp < [Rdp+ (5\51)2 n (pw)i Og(e)‘
n(1—k

We apply the first inequality of (4) to px(df#). We obtain:

/i2
P { [ rO)pm0) < [ra@man + — =+ Jiow (2) + K0 7r>} 1o

n(1-4)°

| ™

According to Lemma 3 we have:

[ a0+ 5Kr) =t ([ r0)0ta0) + 10,
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so we obtain

P{/R(G)ﬁ,\(de) < inf [/rn(e)p(dﬂ) Lo K ”)ilog(i)]} >1-5. (5)

p w5y’

We now want to bound from above r(0) by R(f). Applying the second inequality of (4)
and plugging it into Inequality 5 gives

2 2Ak2 2 2
Rdp+ =K e —— 1.
/ Pty (pyﬂ)+n(1_k)2+)\0g(€>]

We end the proof by the remark that 8 — R() is convex and so

()

[\V]

/R@mmms@

[ R0 = & ( [ opa0) = Rid),

Proof [Proof of Theorem 5.1] We can apply Theorem 4.1 with R = R,;. We have, with
probability at least 1 — ¢,

RT (07 inf
(0B < ettt o)

2\k> 2K (p, ) + 2log (g)]

R7dp + +
/ P -2y A

n

Now, let us fix 6 € (0,1] and 6 € ©(B). We define the probability distribution pg s as the
uniform probability measure on the set:

{TeR, |Io—T| <3},

Note that pps < 7p as wp is defined as uniform on ©(B + 1) D ©(B + ). Then:

R (0% A) < inf inf

R™d +
0cO(B 6>0/ P86

(6)

202 N 2K (po,5,7) + 21og (2)
n(1-2)? . |

n

Now, we have to compute or to upper-bound all the terms in the right-hand side of this
inequality. First, note that:

/ Rdpgs = / R™(T)dpys(T) < R (6) + 2BS max(r,1 — ) < R™(0) + 2B5. (7)
{llo-71: <5}

Then, let us remark that:

B+1
K(pe.s,7p) = 3log <5> . @
We plug (7) and (8) into (6) to obtain:
) 2 3log (BEL) 41
R (6f,) < infinf { B7(0) +2 | — +Bo+ og (B1) +1og (2)
’ 0 6 n(1-2) i




It can easily be seen that the minimum of the right-hand side w.r.t. § is reached for
d =3/(BX) (we will have to be careful with the choice of A to ensure that § < 1), and so:

O\ 2 6log (%) +2log (2)
+
n(1-32)° A

R (0 ,) < inf ¢ R7(6) +

We finally minimize the r.h.s. (roughly) with respect to A to propose: A\ = v/3n/k, this
leads to:

(g ; T 2v/3k 1 (B+1)Be [n log (2)
R <9B,A>slgf{R 0+ 202 [(1_2)2“@; (\/;>+3]}

Remark that the condition § < 1 is satisfied as soon as n > x2/(3B2%). Also, when n > 10
we have:

1 _35
_2\2 716
(1-3)

n

and we can re-organize the terms to obtain:

2v/3k (B+1)BynY | log(})
NG 2.25+10g( p >+ 3 ]}

R (03 ,) < inf {RT(H) +
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