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Abstract
It has been shown [6] that, within McAlister inverse monoid [9], whose

elements can be seen as overlapping one-dimensional tiles, the class of
languages recognizable by finite monoids is fairly smaller than the class
of languages definable in Monadic Second Order Logic (MSO).

In this paper, we aim at capturing the expressive power of MSO de-
finability of languages of tiles by means of a weakening of the notion
of algebraic recognizability we call quasi-recognizability. For that pur-
pose, since the collapse of algebraic recognizability is intrinsically linked
with the notion of monoid homomorphisms itself, we consider instead
prehomomorphisms. Introduced by McAlister and Reilly [11] these are
monotonic mappings over ordered monoids that are only required to be
sub-multiplicative with respect to the monoid product, i.e. mapping ϕ
such that for all x and y, ϕ(xy) ≤ ϕ(x)ϕ(y).

Doing so, we indeed obtain, with some extra but rather natural closure
conditions, the expected quasi-algebraic characterization of MSO defin-
able languages of positive tiles. This result is achieved via a non trivial
embedding of any (finite) monoid S into a (sufficiently well-behaved) or-
dered monoid Q(S).

1 Introduction
One-dimensional overlapping tiles, defined years ago in inverse semigroup theory
as elements of McAlister inverse monoid MA [9], seem to convey a considerable
but yet quite unexploited modeling potential in computer application fields (see
e.g. [5] for application in music modeling).

Indeed, despite a rich algebraic structure - overlapping tiles are equipped
with a product that allow the modeling of unbounded contextual compatibil-
ity constraints - it has been shown [6] that the class of Monadic Second Order
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(MSO) definable languages of such tiles is both robust - it is closed under prod-
uct, iterated products, residual and inverse operations - and simple - it essen-
tially consists of finite sums of cartesian products of regular languages of finite
words.

But how far languages of tiles and languages of words can be related ?
The class of regular languages of words is known to be especially robust.

It has many equivalent characterizations from finite state (or finite monoid)
recognizability up to logical definability to mention just a few. In contrast, for
languages of tiles, recognizability by finite monoid collapses [6].

More precisely, the rich structure of McAlister monoid, transfered via mor-
phisms to finite monoids, seems to induce far too strong constraints for pre-
serving a good expressive power. Inverse tiles, available in McAlister monoids
MA, somehow force the (underlying) finite state automaton to be inversible in
some [10, 16].

Moreover, even restricted to the submonoid of positive tiles TA ⊂MA, hence-
forth without inverse tiles, algebraic recognizability still collapses [6]. It occurs
that this collapse is intrinsically linked with the notion of monoid morphism
itself and the fact that some product of (even positive) tiles may equal zero
when compatibility constraints are violated.

1.1 Main result
In this paper, we aim at recovering for languages of tiles, as for languages of
words, the expressive power of MSO definability. For that purpose, we relaxe
the notion of recognizability by finite monoids into a weaker notion of quasi-
recognizability that turns out to be sufficiently expressive. This is done by
considering prehomomorphisms instead of homomorphisms.

More precisely, following McAlister and Reilly [11], prehomomorphisms are
defined as monotonic mappings between ordered monoids that are only required
to be sub-multiplicative only w.r.t. the monoid product, i.e.for all x and y we
must have ϕ(xy) ≤ ϕ(x)ϕ(y).

Doing so, we obtained the desire quasi-algebraic characterization of (a nat-
ural restriction of) the class of MSO definable languages of positive tiles by
means of (well-behaved) prehomomorphisms and (well-behaved) finite ordered
monoids.

This result is obtained via a non trivial embedding of any (finite) monoid
S into a sufficiently well-behaved (finite) ordered monoid Q(S). In some sense,
standard algebraic recognizability in A∗ is shifted up to quasi-algebraic rec-
ognizability in Q(A∗) with the monoid TA turning out to be a submonoid of
Q(A∗).

1.2 Related studies and further developments
In mathematics, the (well-behaved) ordered monoids we consider in this paper
seem to generalize two-sided version of Restriction or Ehresmann monoids [3].
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They also seem to be a particular case of U -semiadequate semigroups [8].
In this paper, our definitions are build in this paper upon ordered monoids.

It must be mentioned that in a complementary study [7], we give an equivalent
axiomatic (bi-unary) definition of the class of well-behaved ordered monoids.
There, the relationship with other known classes of monoids or semigroups are
studied. Anyhow, the status of our proposal in this especially rich research field
(see [4]) still need to be clarified.

In particular, the - presumably original - extension construction, presented
here, seems to induce an original expansion in the sense of Birget and Rhodes
[15] in the category of prehomomorphisms on ordered monoids. As such, it may
have many more interested consequences in that mathematical field.

In computer science, it also seems that the notion of well-behaved ordered
monoids (or quasi-inverse monoids as they are called in [7]) can be further
developed.

For instance, one may consider these monoids for a theoretical characteri-
zation of two-way automata over words. Following the work of Pécuchet [13],
it is already known that the domain of a partial run of a two-way automaton
can just be seen as a tile in McAlister monoid. It follows that inverse monoids
provide a natural algebraic framework for mimicking two-way runs with back
and forth readings of subwords. However, as already mentioned, this approach
is probably bound to fail since recognizability by finite inverse monoid does col-
lapse [10]. Alternatively, it may be the case however that any run of a two-way
automata can be defined by means of some combination of positive tiles only.
If so, our approach can then lead to a positive answer to the question raised by
Birget [1] for an algebraic characterization of two-way automata.

In the field of finite tree automata theory, it is also known that there is
a tight connection between regular (or MSO definable) languages of trees and
tree-walking automata (see e.g.[2]). Again, back and forth walks translated
in algebraic terms seems to require inverse monoids. However, tree walking
automata may not necessarily need such backward readings. More precisely,
it may be enough to allow these automata only to jump back to their last
branching moves position. If so, the notion of quasi-inverse monoids may just
be enough for characterizing these automata, backward jumps being modeled
by context operator applications.

1.3 Some notations
In the remainder of the text, given a monoid S with neutral 1 and zero 0, for
all x and y ∈ S, we generally write xy in place for the product x.y of x and y
in S.

Given X ⊆ S, and x ∈ S, we also write xX (resp. Xx) for the set xX =
{xy ∈ S : y ∈ X} (resp. Xx = {yx ∈ S : y ∈ X}).

The prefix preorder ≤p (resp. the suffix preorder ≤s) is defined, for all x
and y ∈ S by x ≤p y when xz = y for some z ∈ S (resp. x ≤s y when zx = y
for some z ∈ S). Under both prefix and suffix preorder, 1 is the least element
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of S and, when there is such, 0 is the greatest.
We also write x−1(y) = {z ∈ S : xz = y} and (y)x−1 = {z ∈ S : zx = y}.

This notation extend to sets as follows. For all x ∈ S and Y ⊆ S we write
x−1(Y ) = {z ∈ S : xz ∈ Y } and (Y )x−1 = {z ∈ S : zx ∈ Y }.

2 The monoids of positive tiles
We review here the definition of the monoid of positive tiles and we recall few of
its properties. We review then the characterization of MSO definable languages
we have already obtained. All proofs and many more properties of this monoid
and the associated languages can be found in [6].

In this section, for every two words u and v ∈ A∗+0 we shall write u−1(v) ∈
A∗ (resp. (v)u−1 ∈ A∗) the unique word, if it exists, such that v = uu−1(v)
(resp. v = (v)u−1u) or 0 otherwise. We also write u ∨p v (resp. u ∨s v) for the
smallest word w ∈ A∗ + 0 such that u ≤p w and v ≤p w (resp. u ≤s w and
v ≤s w).

A positive tile over the alphabet A is defined to be a triple of words u =
(u1, u2, u3) ∈ A∗ × A∗ × A∗. An extra tile, written 0 and called the undefined
tile, is also assumed to be.

For any two positive tiles u = (u1, u2, u3) and v = (v1, v2, v3), the sequential
product of u and v is defined to be

u.v = ((u1.u2 ∨s v1)u−1
2 , u2v2, v

−1
2 (u3 ∨p v2v3))

when the left matching constraint u1.u2 ∨s v1 6= 0, i.e.u1u2 and v1 are suffix one
of the other, and the right matching constraint u3 ∨p v2v3 6= 0, i.e. u3 and v2v3
are prefix one of the other, are both satisfied. This partial product is completed
by u.v = 0 when the matching constraint are not satisfied and by u.0 = 0.u = 0.

The monoid of positive tiles TA is defined as the set A∗×A∗×A∗+0 equipped
with the above product. The neutral tile (1, 1, 1) is written 1.

Monoid TA is conveniently seen as an ordered monoid with order relation
defined for all u ∈ TA by 0 ≤ u and for all u and v ∈ TA with u = (u1, u2, u3)
and v = (v1, v2, v3), by u ≤ v when v1 ≤s u1, v2 = u2 and v3 ≤p u3.

Defining, for all non zero tile u = (u1, u2, u3) ∈ TA, the left (resp. right)
context of tile u by uL = (u1u2, 1, u3) (resp. uR = (u1, 1, u2, u3)) and taking
0L = 0R = 0, we can prove that, for all u and v ∈ TA, u ≤ v if and only if
u = uRvuL.

It is also shown that TA is (isomorphic to) the submonoid of McAlister
monoid MA [9] induced by the (canonical) images of A∗ in MA and closed
under product, and left and right context operators with, for every positive tile
x ∈MA, xL = x−1x and xR = xx−1.

Given a language L ⊆ TA − 0, we define then the word congruence 'L as-
sociated to L as the greatest word congruence such that, for all u and v ∈
A∗, u 'L v when for all w1, w2 and w3 ∈ A∗, the following equivalences
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hold: (w1uw2, w3, w4) ∈ L ⇔ (w1vw2, w3, w4) ∈ L, (w1, w2uw3, w4) ∈ L ⇔
(w1, w2vw3, w4) ∈ L, and (w1, w2, w3uw4) ∈ L⇔ (w1, w2, w3vw4) ∈ L.

Although the class of MSO definable languages of positive tiles is closed un-
der product, iterated product, and even left and right residuals, these languages
remains simple. It is shown [6] that:

Theorem 1 For all language L ⊆ TA − 0, language L is MSO-definable if
and only if the associated word congruence 'L over A∗ is of finite index or,
equivalently, L = Σ(u,v,w)∈L[u]L × [v]L × [w]L and this sum is finite.

3 Well-behaved ordered monoids
Our aim is to provide an algebraic characterization of MSO definable languages
of positive tiles. It has been shown [6] that with monoid morphism this cannot
be achieved. As an alternative, well-behaved ordered monoids are presented in
this section. Well-behaved prehomomorphisms are then presented in the next
section.

3.1 Ordered monoids
The following definition is adapted from [14]. For technical reason, we also
assume that zero is always there and that it is the least element.

Definition 2 An ordered monoid is a monoid S with zero denoted by 0 equipped
with a partial order relation ≤ such that 0 is the least element and for all x, y
and z ∈ S, if x ≤ y then xz ≤ yz and zx ≤ zy, i.e. the order relation is stable
by product.

Any monoid S is trivially embedded in an ordered monoid by taking S0 =
S + 0 (with a new zero element) ordered by the order relation defined, for all x
and y ∈ S0, by x ≤ y when x = 0 or x = y. In the remainder of the text, S0 is
called the trivial ordered extension of S.

Definition 3 Let S be an ordered monoid and let U(S) = {x ∈ S : x ≤ 1}.
Elements of U(S) are called the subunits of S.

Lemma 4 If S is a ordered monoid then, by stability assumption, U(S) is a
submonoid of S. Moreover, if U(S) ⊆ E(S) (the idempotents of S) then U(S)
is a meet semi-lattice with, for all x and y ∈ U(S), x ∧ y = xy = yx.

Proof. (1) Let x and y ∈ U(S). By definition x ≤ 1 and y ≤ 1 hence, by
stability again, xy ≤ 1.

(2) Assume that all elements of U(S) are idempotent and let x and y ∈ U(S).
Since both x ≤ 1 and y ≤ 1 we have by stability xy ≤ x and xy ≤ y.
Let then z ∈ U(S) such that z ≤ x and z ≤ y. By stability, we have zz ≤ xy

hence by idempotence z ≤ xy.
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This proves that x∧y = xy and thus, by symmetrical argument, x∧y = yx.
2

Observe that even with U(S) ⊆ E(S) it still may happend that xy 6= yx for
some x and y ∈ E(S)−U(S). In the theory developed here, the fact that U(S)
is distinct from E(S) plays a central role, i.e. idempotents do not necessarily
commute.

3.2 Well behaved ordered monoid
An ordered monoid S with order ≤ is a well-behaved ordered monoid when the
following properties are satisfied:

(A1) U(S) ⊆ E(S), i.e. all subunits are idempotents,
(A2) for all x and y ∈ S, if x ≤ y then there is e and f ∈ U(S) such

that x = eyf , i.e. the order relation is a natural order,
(A3) for all x ∈ S, both sets Lx = {e ∈ U(S) : xe = x} and

Rx = {e ∈ U(S) : ex = x} have least element xL =
∧
Lx

and xR =
∧
Rx with xL ∈ Lx and xR ∈ Rx.

Observe that axiom (A2) really enforces an alternative (natural) definition of
the order relation. In fact, by stability hypothesis, whenever x = eyf for some
e and f ∈ U(S), one has x ≤ y, i.e. this axiom makes the order a two-sided
variation of Nambooripad’s natural order [12].

It is an easy observation that axiom (A3) also gives sort of canonical subunits
that characterizes the order relation. More precisely:

Lemma 5 For all x and y ∈ S, x ≤ y if and only if x = xRyxL.

Observe also that for all monoid S, the trivial extension S0 of S is a well-
behaved ordered monoid. One can also check that any inverse monoid, possibly
extended with 0, and ordered by the natural (inverse monoid) order is a well-
behaved ordered monoid.

In the last section, we will also show that any (finite) monoid S can be
embedded in a (finite) non trivial well-behaved ordered monoid Q(S).

Remark. The class of well-behaved monoids equipped with left and right
context operators have many more properties that are described in [7]. It par-
ticular, this class has many similarities with the class of (two sided version of)
Ehresmann monoids [3].

However, the resulting order in Ehresmann monoids is not in general well-
behaved. In our alternative bi-unary axiomatic presentation of well-behaved
monoids [7] we essentially add a single extra axiom to the axiomatization of
Ehresmann monoid that ensure stability of the order relation w.r.t. the product.

Last, we observe that left and right context operators are tightly related
with Green’s relations L and R, i.e. two elements x and y ∈ S are L-equivalent
(resp. R-equivalent) when both x ≤s y and y ≤s x (resp. both x ≤p y and
y ≤p x).
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Lemma 6 Let S be a well-behaved ordered monoid. For all x and y ∈ S, if x
and y are L-equivalent (resp. R-equivalent) then xL = yL (resp. xR = yR).

Proof. This immediately follows Lemma 5 and the fact that if x ≤p y (resp.
x ≤s y) then, for all e ∈ U(S), if x = ex (resp. x = xe) then y = ey (resp.
y = ye). 2

3.3 F ∗-property
Definition 7 A well-behaved ordered monoid S is said to be (stably) F ∗ when
it moreover satisfies the following properties:

(A4) any non zero element x ∈ S lies beneath a unique maximal
element x̂ ∈ S,

(A5) for all pair of non zero elements x and y ∈ S, x̂ŷ 6= 0 and̂̂xŷ = x̂ŷ.

Observe that when S satisfies the F ∗-property, for all x ∈ S, we have x =
xRx̂xL and Ŝ is a submonoid of S.

Lemma 8 A F ∗-well-behaved ordered monoid is a meet semi-lattice. For all x
and y ∈ S, either x ∧ y = 0 or 0 < x ∧ y = xRyxL = yRxyL.

Proof. Let x and y ∈ S.
If there is no non zero z ∈ S such that z ≤ x and z ≤ y. In that case

x ∧ y = 0.
Otherwise, let z such an element. By F ∗ property, we have ẑ = x̂ = ŷ hence

y = yRẑyL and x = xRẑyL.
Let then t = xRyxL. By commutation of idempotent, we also have t =

yRxyL.
We claim that t ≤ y. Indeed, xR ≤p t hence tRxR = tR. Likewise, xL ≤s t

hence tLxL = tL. But then, because t = xRyxL, we also have t = tRttL =
tRxRyxLtL = tRytL hence t ≤ y.

A symmetrical argument show that t ≤ x.
It remains to prove that z ≤ t. Since z ≤ x we have z = zRxzL, hence

xRzxL = z. But since z ≤ y we also have z = zRyzL hence z = xRzRyzLxR

hence z = zRtzL. 2

The formulation of the previous Lemma, distinguishing the cases x ∧ y is
zero or not, may seem a little strange. But we must put the emphasis on the
fact that in an F ∗-well-behaved monoid S, even when both xRyxL and yRxyL

are non zero for some x and y ∈ S, nothing ensure they are equal. Henceforth
it can still be the case that x ∧ y = 0. The well-behaved extension Q(S) of
arbitrary monoid S defined in the last section provides plenty of such examples.
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4 Prehomomorphisms and quasi-recognizability
We define in this section the notion of well-behaved prehomomorphism and the
notion quasi-recognizability it induces. Then we prove that quasi-recognizable
languages of positive tiles are definable in MSO.

4.1 Prehomomorphisms
The following definition is adapted from McAlister and Reilly [11].

Definition 9 Let S and T be two ordered monoids. A mapping ϕ : S → T is a
prehomomorphism when ϕ(0) = 0, ϕ(1) = 1, for all x and y ∈ S, if x ≤ y then
ϕ(x) ≤ ϕ(y) and, for all x and y ∈ S, ϕ(xy) ≤ ϕ(x)ϕ(y)

A prehomomorphism ϕ such that ϕ(xy) < ϕ(x)ϕ(y) if and only if xy = 0 is
called a trivial prehomomorphism.

Observe that given a prehomomorphism ϕ : S → T , (ϕ(S))∗ is a submonoid
of T while, in general, ϕ(S) may not be closed under product.

Lemma 10 For every prehomomorphism ϕ : S → T and ψ : T → U , the
mapping ϕψ : S → U defined for all x ∈ S by ϕψ(x) = ψ(ϕ(x)) is a prehomo-
morphism.

In other words, ordered monoids and prehomomorphisms forms a category.
The following lemma shows how prehomomorphisms behave with subunits and
idempotents.

Lemma 11 Let ϕ : S → T be a prehomomorphism with S and T two ordered
monoids. We have ϕ(U(S)) ⊆ U(T ) and ϕ(U(S) ∩ E(S)) ⊆ U(T ) ∩ E(T ).

Proof. Let x ∈ U(S). (1) By monotonicity argument, ϕ(x) ∈ U(T ). (2)
Assume x ∈ E(S). By idempotence and submultiplicativity, ϕ(x) ≤ ϕ(x)ϕ(x)
hence, by stability since ϕ(x) ≤ 1, ϕ(x)ϕ(x) ≤ ϕ(x) hence ϕ(x) = ϕ(x)ϕ(x). 2

This lemma says in particular that if U(S) ⊆ E(S) - as in well-behaved
ordered monoids - then, by Lemma 4, ϕ(U(S)) is a meet semi-lattice with, for
all x and y ∈ U(S), ϕ(xy) = ϕ(x) ∧ ϕ(y) within ϕ(U(S)). However, even if
U(T ) ⊆ E(T ), this does not imply that ϕ(xy) = ϕ(x)ϕ(y) since we can have
strict inclusion ϕ(U(S)) ⊂ U(T ). Again, this shows that, although U(S) is a
submonoid of S, its image ϕ(U(S)) is not necessarily a submonoid of T .

Observe also that under prehomomorphism ϕ, the image ϕ(e) of an idem-
potent e ∈ E(S)− U(S) that is not a subunit need not to be idempotent itself.
We only have ϕ(e) ≤ ϕ(e)ϕ(e).

More generally, the weakening of the morphism assumption ϕ(uv) = ϕ(u)ϕ(v)
into the weaker submultiplicativity assumption ϕ(uv) ≤ ϕ(u)ϕ(v) just breaks
many standard and useful properties of morphisms. In particular, the MSO
definability of ϕ(uv) by means of some MSO definable combination of the MSO
definability of ϕ(u) and ϕ(v) - the monoid version of Shela decomposition theo-
rem -, essential in standard algebraic recognizability, is just lost with prehomo-
morphism.
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4.2 Well-behaved prehomomorphisms
Definition 12 Let S and T be two F ∗-well-behaved ordered monoid. A preho-
momorphism ϕ : S → T is a well-behaved prehomomorphism when the following
condition are satisfied:

(P1) for all x and y ∈ Ŝ, ϕ(xy) ∈ T̂ ,

(P2) for all x, y and z ∈ Ŝ, ϕ(xLyzR) = (ϕ(x))Lϕ(y)(ϕ(z))R,

where Ŝ (resp. T̂ ) denotes the set of maximal elements of S (resp. T ).

In particular, as an immediate consequence of (P1) and (P2), for all non zero
element x ∈ S, if ϕ(x) 6= 0, we have ϕ̂(x) = ϕ(x̂) and, if x ∈ Ŝ, ϕ(xL) = (ϕ(x))L

and ϕ(xR) = (ϕ(x))R.

4.3 Quasi-recognizability
Definition 13 A set L ⊆ S is quasi-recognizable when there exists a finite T
and a well-behaved prehomomorphism ϕ : S → T such that L = ϕ−1(ϕ(L)).

Since any monoid S is embedded into is trivial ordered extension S0 with S
isomorphic with Ŝ0, this definition generalizes the definition of algebraic recog-
nizability.

Theorem 14 Let ϕ : TA → S be a well-behaved prehomomorphism with S
finite. Let X ⊆ S be some (finite) subset of S. Language L = ϕ−1(X) is
definable in monoid second order logic.

Proof. Let ϕ : TA → S be a well-behaved prehomomorphism with S finite.
Since S is finite, it suffices to show that, for all x ∈ S, ϕ−1(x) is MSO-definable.
Moreover, we can restrict to non zero elements since we have ϕ−1(0) = TA −⋃

x 6=0 ϕ
−1(x).

Let then T̂A = {(1, u, 1) ∈ TA : u ∈ A∗} the maximal elements of TA. Since
ϕ is a well-behaved prehomomorphism, we have ϕ(T̂A) ⊆ Ŝ and the restriction
ϕ̂ : T̂A → Ŝ of ϕ to maximal elements of TA is just a morphism. It follows that
for all x ∈ S, language ϕ−1(x) ∩ T̂A is MSO definable.

Now we conclude by observing that for all (u, v, w) ∈ TA, since (u, v, w) =
uLvCwR with uL = (u, 1, 1), vC = (1, v, 1) and wR = (1, 1, w), we have

ϕ((u, v, w) = (ϕ(uC))Lϕ(vC)(ϕ(wC))R

hence checking that ϕ((u, v, w)) = x for some non zero x ∈ S amounts to
check that there exists x1, x2 and x3 ∈ Ŝ such that x = (x1)Lx2(x3)R with
ϕ̂(uC) = x1, ϕ̂(vC) = x2 and ϕ̂(wC) = x3 which are, altogether, definable in
MSO. 2
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4.4 Context coherence
Does the converse of Theorem 14 hold ? The answer is no as it turns out, by
Lemma 6, that quasi-recognizability induces a normalization of languages of
tiles. More precisely, given a well-behaved prehomomorphism ϕ : TA → S, for
all u and v ∈ A∗, if ϕ(uC) and ϕ(vC) are L-equivalent (resp. R-equivalent) then
ϕ(uL) = ϕ(vL) (resp. ϕ(uR) = ϕ(vR)).

From an optimistic point of view, given a quasi-recognizable languages, im-
ages of context elements act as they are expected to : they just induce product
constraints. It follows that, in TA whenever two context elements induces equiv-
alent product constraints under a prehomomorphism defining L they are just
mapped to the same elements.

This observation leads us to the following definition.

Definition 15 Let L ⊆ TA be a language of positive tile and, for every word
u ∈ A∗, let [u] be the equivalence class of u under the word congruence 'L

induced by L. Language L is context-coherent when, for every non zero tile
(u, v, w) ∈ L, for every word u′ and w′ ∈ A∗, if A∗[u] = A∗[u′] and [w]A∗ =
[w′]A∗ then (u′, v, w′) ∈ L.

Our aim is now to prove, under the context coherence hypothesis, that MSO
definable and context-coherent languages of tiles are quasi-recognizable. This is
done in the next section via the non trivial ordered extension Q(S) of arbitrary
monoid S.

5 A well-behaved extension
In this section, we define from arbitrary monoid S, sort of a monoid of positive
tiles Q(S) much in the same way the monoid TA of positive tiles [6] over the
alphabet A is built upon A∗ with a canonical injection from S to Q(S). It
is then shown that any homomorphism ψ : A∗ → S can be lifted up to a
prehomomorphism ϕ : TA → Q(S). The expected converse of Theorem 14 can
then be proved.

5.1 Prefix and suffix upper sets
Let S be a monoid. Let Up(S) (resp. Us(S)) defined to be the set of non empty
upward closed subsets of S0 preordered by ≤p (resp. ≤s) the prefix (resp. suffix)
preorder.

More precisely, as S is a monoid hence with 1 ∈ S, Up(S) (resp. Us(S)) is
the set of non empty U ⊆ S such that US0 = U (resp. S0U = U).

For both x = p or x = s, elements of Ux(S) are from now on called x-upper
set. The set Ux(S) is turned into a monoid by taking ∩ as product.

Indeed, the intersection of two x-upper sets is a x-upper set and the neutral
(or maximal) element is S0 itself, and {0} is the absorbant (or minimal) element.
For convenience, we also write 0 for that zero.
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Remark. In semigroup theory elements of Up(S) (resp. Us(S)) are often
called right ideals (resp. left ideals) of S0. As ideals in order theory must satisfy
some extra condition we prefer to stick to the notion of p-upper or s-upper sets.

Lemma 16 Let S be some monoid and let x ∈ S. Set xS0 is a p-upper set
(resp. S0x a s-upper set) and, for every p-upper set (resp. s-upper set) U ⊆ S0:
(1) if x ∈ U then x−1(U) = S0 (resp. (U)x−1 = S0),

(2) xU is a p-upper set (resp. Ux is a s-upper set),

(3) x−1(U) is a p-upper set (resp. (U)x−1 is a s-upper sets),

(4) xx−1(U) ⊆ U ⊆ x−1(xU) (resp. (U)x−1x ⊆ U ⊆ (Ux)x−1),

Proof. Straightforward. 2

5.2 The extension ordered monoid
Definition 17 Let S be a monoid. The extension Q(S) of S is defined to
be Q(S) = (Us(S) − 0) × S × (Up(S) − 0) + 0 with, for all non zero element
u1 = (L1, x1, R1) and u2 = (L2, x2, R2) the product u1u2 defined by

u1u2 = (L1 ∩ (L2)x−1
1 , x1x2, R2 ∩ x−1

2 (R1))

when both compatibility contraints L1 ∩ (L2)x−1
1 6= 0 and R2 ∩x−1

2 (R1)) 6= 0 are
satisfied, and by u1u2 = 0 otherwise.

For all two non zero elements u = (L, x,R) and v = (M,y,N) ∈ Q(S), we
say that u ≤ v when L ⊆ M , x = y and R ⊆ N . This relation is extended to
zero by taking 0 ≤ u for all u ∈ Q(S).

Lemma 18 The extension monoid Q(S) ordered by the extension order is a
(stable) ordered monoid.

Proof. The fact that relation ≤ is a partial order is immediate from the
definition.

Let then u = (L1, x1, R1), v = (L2, x2, R2) and w = (M,y,N). Assume
u ≤ v. By definition, we have x1 = x2 from now on denoted by x and both
L1 ⊆ L2 and R1 ⊆ R2.

By definition of the product we have uw = (L1 ∩ (M)x−1, xy,N ∩ y−1(R1)
and vw = (L2 ∩ (M2)x−1, xy,N ∩ y−1(R2). Hence uw ≤ vw by definition of the
extension order and stability of the inclusion order by intersection and residual.

Symmetrical arguments show that wu ≤ wv. 2

Lemma 19 The mapping i : S0 → Q(S) that maps zero to zero and any non
zero element x ∈ S to i(x) = (S0, x, S0) is a one-to-one monoid morphism. The
image i(S) of S ⊆ S0 is a submonoid of Q(S) that contains exactly all maximal
elements of Q(S).

Moreover, the mapping π : Q(S) → S0 that maps 0 to 0 and any non zero
element (L, x,R) to π(L, x,R) = x is an onto well-behaved prehomomorphism
with π ◦ i = 1S0 .
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Proof. The fact that i is a monoid morphism is immediate and the product on
elements of i(S), all of the form (S0, x, S0), just mimics the product in S since,
for all x ∈ S, x−1(S0) = (S0)x−1 = S0.

Mapping π is obviously onto since π ◦ i = 1S0 . Then we check that it is a
(trivial) prehomomorphism, i.e. for all u1 and u2 ∈ Q(S) either u1u2 6= 0 and
then π(u1u2) = πS(u1)πS(u2) or u1u2 = 0 and thus π(u1u2) = 0. 2

Theorem 20 For all monoid S, the monoid Q(S) ordered by the extension
order ≤ is a F ∗-well-behaved ordered monoid.

Proof. This essentially follows from Lemma 18 that tells Q(S) is indeed
a (stable) ordered monoid, from Lemma 21 below that ensures subunits are
idempotents and from Lemma 22 below that show the extension order is natural.

Other axioms and F ∗-property immediately follows from definitions and
from the fact that over p-upper sets (resp. s-upper sets) intersection distribute
with left (resp. right) product and residual by an elements x ∈ S. 2

The set of subunits of Q(S) is, by definition of the extension order, the set
U(Q(S)) = 0 + {(L, x,R) ∈ Q(S) : x = 1}. The next lemma shows that these
indeed are idempotents elements.

Lemma 21 A non zero triple (L, x,R) ∈ Q(S) is idempotent if and only if
x ∈ S is idempotent, L ⊆ (L)x−1 and R ⊆ x−1(R).

Proof. Let (L, x,R) be an idempotent of Q(S). By definition of the product in
Q(S) this means that xx = x hence x is idempotent in S, L∩ (L)x−1 = L hence
L ⊆ (L)x−1 and R∩ x−1(R) = R hence R ⊆ x−1R. The converse is immediate.
2

Lemma 22 For all non zero u = (L, x,R) and v = (M,y,N) ∈ Q(S), if u ≤ v
then (L, x,R) = (L, 1, xR).(M,y,N).(Lx, 1, R).

Proof. Assume u ≤ v. By definition of the extension order this implies that
x = y and L ⊆M and R ⊆ N . Taking e = (L, 1, xR) and f = (Lx, 1, R) on has

evf = (L ∩M ∩ (Lx)y−1, y, y−1(xR) ∩N ∩R)

But, by assumption, L ⊆ M and R ⊆ N and, since x = y, we also have by
Lemma 16 L ⊆ (Lx)y−1 and R ⊆ y−1(xR) hence evf = u. 2

Last, the next Lemma shows that the elements used above are indeed the
left and right contexts elements associated with u.

Lemma 23 For all non zero u = (L, x,R), we have uL = (Lx, 1, R) and uR =
(L, 1, xR), i.e. uRu = u = uuL and these are the least subunits that satisfies
this properties.
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Proof. Let uL and uR be defined as in axiom (A3). Let u′L = (Lx, 1, R).
Observe first that we do have uu′L = u. In fact uu′L = (L ∩ (Lx)x−1, x,R with,
by Lemma 16, L ⊆ (Lx)x−1 hence uu′L = u. By definition of uL this means
uL ≤ u′L.

Let then e = (L′, 1, R′) be a subunit of Q(S) such that ue = u. This means
that (L∩ (L′)x−1, x,R′ ∩R) = (L, x,R) hence L ⊆ (L′)x−1 henceforth Lx ⊆ L′
and R ⊆ R′. It follows that u′L ≤ e. As this is true for all e as above, this means
that u′L ≤ uL.

Symmetrical arguments prove the claim for uR. 2

The following theorem says that our construction above essentially extend
to arbitrary monoid the construction of the monoid of positive tiles [6] from the
free monoid A∗.

Theorem 24 There is a one to one morphism i : TA → Q(A∗) such that,
moreover, for all u ∈ TA, i(uL) = (i(u))L and i(uR) = (i(u))R.

Proof. Observe that A∗ is totally ordered by ≤s and ≤p. It follows that for
x = p and x = s, the mapping ϕx : A∗ + 0 → Ux(A∗ + 0) defined, for every
u ∈ A∗ + 0, by ϕx(u) = {v ∈ A∗ + 0 : u ≤x v} is one-to-one.

Is is then an easy task to check that i : TA → Q(A∗ + 0) defined by i(0) = 0
and, for every tile (u, v, w) ∈ AT , i((u, v, w)) = (ϕs(u), v, ϕp(w)) is a one-to-one
morphism.

The last property is immediate. 2

5.3 More on maximal elements in the extension
We observe now that the extension monoid is a non trivial well-ordered monoid.

Lemma 25 For all u and v ∈ Q(S), if v is maximal then vR = uRvR (resp.
vL = vLuL) if and only if u ≤p v (resp. u ≤s v).

In particular, with v = 1 hence vR = vL = 1, we have uR = 1 (resp. uL = 1)
if and only uw = 1 (resp. wu = 1) for some w ∈ Q(S), i.e. u admits a right
(resp. left) group inverse.

Proof. Let then u = (L, x,R) hence uR = (L, 1, xR) and let v = (S0, y, S0)
some maximal element of Q(S).

If u ≤p v then we immediately have, by definition of the right context
operator uRvR = vR.

Assume that vR = uRvR henceforth, by commutation and right product by v,
uRv = v. By definition of the product, we have uRv = (L, y, y−1(xR)). It follows
that (a) S0 = L and that S0 = y−1(xR) with y−1(xR) = {z ∈ S0 : yz ∈ xR}.
Since 1 ∈ S0, this means that y ∈ xR and thus (b) y = xz for some z ∈ R.
Taking then w = (S0, z, S0) we have, by definition of the product,

uw = (L ∩ (S0)x−1, xz, S0 ∩ z−1(R)
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Now by (a) L = S0 and since x ∈ S, by Lemma 16, (S0)x−1 = S0. By (b)
xz = y and, since z ∈ R, again by Lemma 16, z−1(R) = S0. It follows that
uw = v henceforth u ≤p v.

The case of left context and suffix preorder is obtained by symmetrical ar-
guments. 2

5.4 Morphism extensions
We prove here that any morphism from A∗ to a monoid S can be lifted up to a
prehomomorphism from TA to Q(S). Aside of its interest in terms of structural
description of well-behaved ordered monoids, this result is essential in the proof
presented right after, that, under extra conditions, MSO definability implies
quasi-recognizability.

Theorem 26 Let ψ : A∗ → S be a monoid morphism. The extension mapping
ϕ : TA → Q(S) defined for every non zero tile (u, v, w) ∈ TA by ϕ((u, v, w)) =
(S0ψ(u), ψ(v), ψ(w)S0), is a well-behaved prehomomorphism.

Proof. In order to simplify notation, for all u ∈ A∗, we write [u] ∈ S for the
image of u by ψ in S. This notation is coherent with the fact that S can just
be restricted to be the quotient of A∗ by the congruence induced by ψ.

By construction, ϕ(1) = (S0, 1, S0) which is indeed the neutral element of
Q(S).

For every u ∈ A∗, let us write, ϕs(u) = S0[u] (resp. ϕp(u) = [u]S0). Map-
pings ϕs : A∗ → Us(S) and ϕp : A∗ → Up(S) are the left and right projection of
ϕ. In particular, both for x = p and x = s, for every u and v ∈ A∗, if u ≤x v
then ϕx(u) ⊇ ϕx(v) and, if u ∨x v 6= 0 then ϕx(u ∨x v) = ϕx(u) ∩ ϕx(v).

Let then u = (u1, u2, u3) and v = (v1, v2, v3) be two non zero positive tiles
in TA. By definition, ϕ(u) = (ϕs(u1), [u2], ϕp(u3)).

Assume for a while that u ≤ v. This means that v1 ≤s u1, v2 = u2 and
v3 ≤p u3. This means that [v1] ≤s [u1] hence ϕs(u1) ⊆ ϕs(v1), [u2] = [v2] and
[v3] ≤p [u3] hence ϕp(u3) ⊆ ϕp(v3). It follows, by definition of the extension
order, that ϕ(u) ≤ ϕ(v). This means that ϕ is monotonic.

Assume again that u and v are arbitrary. We need to prove that ϕ(uv) ≤
ϕ(u)ϕ(v). If u.v = 0 nothing has to be done since ϕ(0) is the smallest in Q(S)
hence the pre-homomorphism property is satisfied. Assume thus uv is non zero.
we have

uv = ((u1u2 ∨s v1)u−1
2 , u2v2, v

−1
2 (u1 ∨p v2v3))

since [u2v2] = [u2][v2], by definition of the product of ϕ(u)ϕ(v) in Q(S), by
definition of the extension order, we have to prove that

ϕs((u1u2 ∨s v1)u−1
2 ) ⊆ ϕs(u1) ∩ (ϕs(v1))[u2]−1

and
ϕp(v−1

2 (u3 ∨p v2v3)) ⊆ [v2]−1(ϕp(u3)) ∩ ϕp(v3)

By symmetry it suffices to prove it for the prefix case.
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Observe that since the product uv is non zero, we have u3 ∨p v2v3 6= 0.
The first case is when u3 ≤p v2v3. This means that v−1

2 (u3 ∨p v2v3) = v3
hence ϕp(v−1

2 (u3 ∨p v2v3)) = ϕp(v3). But this also means that [v2] ∈ ϕp(u3) =
[u3]S0 since [u3] ≤p [v2] hence, by Lemma 16, [v2]−1(ϕp(u3)) = S0. Observe
that in this case, we do have equality.

The second case is when v2v3 ≤p u3. This means that v−1
2 (u3 ∨p v2v3) =

v−1
2 (u3) = w for some w ∈ A∗ such that u3 = v2w. It follows that:

ϕp(v−1
2 (u3 ∨p v2v3)) = ϕp(v−1

2 (u3)) = [w]S0

and
[v2]−1(ϕp(u3)) = [v2]−1[v2w]S0 = [v2]−1([v2][w]S0)

hence, by Lemma 16, the result since [w]S0 ⊆ [v2]−1([v2][w]S0).
Observe that in that case, hence in general, we do not have equality. This

means that prehomomorphism ϕ from TA to Q(S) is not, in general, a trivial
prehomomorphism, i.e. it may happend that, for some u and v ∈ TA, ϕ(uv) <
ϕ(u)ϕ(v) with ϕ(uv) 6= 0. 2

We may ask if such an extension morphism could not be extended a little
more to become a prehomomorphism from Q(A∗) to Q(S). If so, then our
extension construction is a expansion in the sense of Birget and Rhodes [15]
in the category of well-behaved ordered monoids with (well-behaved) prehomo-
morphisms.

5.5 From MSO-definability to quasi-recognizability
We conclude here by showing that, under context coherence hypothesis, any
MSO definable languages of tiles is quasi-recognizable.

Theorem 27 If L ⊆ TA is MSO definable and context coherent then L is quasi-
recognizable.

Proof. Let L ⊆ TA be an MSO definable language of positive tiles and
let S = A∗/ 'L be the finite monoid defined by the quotient of A∗ under the
(finite index) word congruence induced by L. For every word u ∈ A∗, let us
write [u] ⊆ A∗ the class of words of A∗ equivalent under 'L to u.

Let define ϕ : TA → Q(S) by taking, for every non zero positive tile u =
(u1, u2, u3) ∈ TA, ϕ(u) = (S0[u1], [u2], [u3]S0). By Theorem 26 above, we know
that ϕ is a well-behaved prehomomorphism. Moreover, by construction, L ⊆
ϕ−1(ϕ(L)). The converse inclusion is then just ensured by the fact that L is
context coherent. 2

An attentive reader can observe that this last statement is slightly frustrat-
ing. More precisely, there are languages of tiles that are quasi-recognizable and
not context coherent. In other words, context coherence is a little too strong
restriction.

In some sense, we fail so far to identify an adequate notion of syntactic quasi-
congruence that would play for quasi-recognizability the same role syntactic
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congruence plays for recognizability. Indeed, as already mentioned, the notion
of quasi-recognizability is still a theory to be developed. . .
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