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Abstract

It has been shown [6] that, within the McAlister inverse monoid [9], whose
elements can be seen as overlapping one-dimensional tiles, the class of lan-
guages recognizable by finite monoids collapses compared with the class of
languages definable in Monadic Second Order Logic (MSO).

This paper aims at capturing the expressive power of the MSO definability
of languages of tiles by means of a weakening of the notion of algebraic recog-
nizability which we shall refer to as quasi-recognizability. For that purpose,
since the collapse of algebraic recognizability is intrinsically linked with the
notion of monoid morphism itself, we propose instead to use premorphisms,
monotonic mappings on ordered monoids that are only required to be sub-
multiplicative with respect to the monoid product, i.e. mapping ϕ so that for
all x and y, ϕ(xy) ≤ ϕ(x)ϕ(y).

In doing so, we indeed obtain, with additional but relatively natural clo-
sure conditions, the expected quasi-algebraic characterization of MSO defin-
able languages of positive tiles. This result is achieved via the axiomatic
definition of an original class of well-behaved ordered monoid so that quasi-
recognizability implies MSO definability. An original embedding of any (finite)
monoid S into a (finite) well-behaved ordered monoid Q(S) is then used to
prove the converse.

1 Introduction
This paper is rooted in formal language theory where, classically, the object of study
are sets (languages) of words (or strings) over a finite alphabet A, that is, subsets
of the free monoid A∗. A main topic of research is the characterization of various
classes of languages and, for this, there are a number of approaches: recognition
by automata of various kinds, recognition by monoids, definability through various
logical systems. The vast theoretical corpus that has been developed has inspired
the study of languages (subsets) in monoids other than free monoids. A notable
example is the theory of trace languages [2] where traces model concurrent behaviors.
Another example is the study of subsets of free inverse monoids [16].

In this paper, the monoid that replaces the free monoid is the monoid TA of
positive overlapping tiles. This monoid extends the free monoid A∗ by adjoining left
and right compatibility constraints to words which define whether the concatenation
product is legal or not. The resulting objects are triples of words extended with 0
to complete the product. Indeed, the product of incompatible tiles is set to 0.



Our interest in languages of tiles originally stems from computational music
theory [5] where the monoid of positive tiles is defined as an abstraction of sequential
combinations of musical sequences with overlapping anacrusis or conclusions.

It is also possible to generalize these modeling perspectives. Indeed, overlapping
tiles can be seen as extended models of guarded processes. The left compatibility
constraint of a tile can be seen as a sequence of actions that must occur before a
process is executed. Symmetrically, the right compatibility constraint of a tile can
be seen as a sequence of actions that must occur after a process is executed. The
behavior of a complex sequential process, with both past and future guards for each
executions, can thus be modeled as the set of its possible guarded executions. This
is a language of non zero tiles.

The study of languages of tiles have already been the subject of research on
our part [6]. The class of languages of tiles definable in Monadic Second Order
Logic (MSO) is shown to be simple, i.e. these languages are finite sums of cartesian
products of regular languages of words. Since non zero tiles are just triples of
words this result is not a surprise. This class is also shown to be robust. It is not
only closed under boolean operators and projections, but also under (tiles) product,
iterated product and left and right residuals. Since the product of tiles involves
arbitrarily long pattern matching contraints, this good property was less expected.

Aiming at identifying efficient mechanism to manipulate these languages of tiles,
we also have studied recognition by monoids. However, despite interesting math-
ematical properties related with covers of bi-infinite periodic words [6], the class
of languages of tiles recognizable by finite monoids is shown to collapse. It thus
provides no interesting notion of automata. Of course, we may try to define, by
brute force, finite state machines for MSO definable languages of tiles. However,
in order to be truly useful, this notion of machine needs to be compositional with
respect to the product of (languages of) tiles. Since compositionality is guaranteed
by algebraic approaches, we rather seek to identify ways of remedying the collapse
of recognition by monoids.

Within the context of tiles, morphisms, in that they preserve products, convey
far too much structure to induce enough expressive power. We thereby seek to
identify a relaxation of the notion of morphism itself.

In this paper, we introduce the notion of quasi-recognizability: recognizability
by means of premorphisms instead of morphisms. Defined on ordered monoids,
premorphisms are mappings that are only required to be sub-multiplicative w.r.t.
the monoid product [11], i.e. ϕ(xy) ≤ ϕ(x)ϕ(y) instead of ϕ(xy) = ϕ(x)ϕ(y).

But this proposal comes with a price: in general, quasi-recognizability does not
imply MSO definability. This means that our proposal is necessarily two-fold. On
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the one hand, we need to find an adequate restriction of the category of ordered
monoids and premorphisms that preserves MSO definability. On the other, we
need the induced subcategory to be as large as possible in order to recover our
expressiveness yardstick : MSO definability.

Is such a delicate balance achievable? The answer to this question is as yet
unknown and may well be negative but we provide here a solution that essentially
fulfills these goals.

1.1 Main results
We define the subclass of strongly well-behaved ordered monoids and the subclass
of well-behaved premorphisms. In the associated category, we prove that all quasi-
recognizable languages of tiles are definable, i.e. QREC ⊆ MSO, i.e. Theorem 9.
Our first goal is achieved. Conversely, provided languages of tiles satisfy a context-
coherence closure property (CC), we prove that MSO definable languages of tiles
are quasi-recognizable, i.e. MSO ∩ CC ⊆ QREC, i.e. Theorem 20. Our second
goal is essentially achieved

As far as we can see, the context-coherence closure property seems inherently
linked with the notion of overlapping tiles itself. Moreover, the class QREC is much
larger than the class REC of (classically) recognizable languages of tiles. Indeed,
the class QREC contains all (embeddings of) regular word languages. It thus truly
generalizes the class of recognizable languages of words. In contrast, as far as the
embedding of languages of words is concerned, it can be shown [6] that the classical
recognizability over tiles leads to finite boolean combination of languages of words
of the form u(vu)k(vu)∗ with u ∈ A∗, v ∈ A+ and k ∈ IN . This class is even smaller
than the related case of languages of words defined by finite inverse monoids [10].

Of course, our proposal may seem technical. These are new ideas and meth-
ods. Their presentation has not as yet benefited from the fine-tuning that tried
and tested practice brings. Setting up an adequate subcategory also requires the
definition of a non trivial subclass of ordered monoids. Further still, our proof that
context-coherent MSO-definable languages are quasi-recognizable relies on a orig-
inal embedding of any monoid S into a well-behaved ordered monoid Q(S). The
mathematical elegance of this construction justifies, a posteriori, the technicalities
that led to its definition.
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1.2 Related works
Must we necessarily therefore conclude that our proposal is totally disconnected
from former studies?

In mathematics, it results that the (well-behaved) ordered monoids, considered in
this paper, generalize the two-sided version of Restriction or Ehresmann monoids [3].
Further still, it results that well-behaved ordered monoids coincide with a stable
order restriction of Lawson’s U -semiadequate monoids [8].

More precisely, the definitions advanced in this paper are based on ordered
monoids. In another paper [7], we set forward an equivalent axiomatic (bi-unary)
definition of the class of well-behaved ordered monoids. In doing so, the relationship
with other known classes of monoids or semigroups is made clear in this particu-
larly rich field of research of semigroups with local units (see [4]) at the frontier
with the even richer inverse semigroup theory. Furthermore the main construction,
the embedding of any monoid S into a well-behaved ordered monoid Q(S), proves
to be an expansion in the sense of Birget and Rhodes [15] within the category of
premorphisms on ordered monoids [7]. As such, it may have many more interesting
consequences in that specific mathematical field.

In computer science itself, though more implicitly, the notion of tiles and the
related notion of concatenation products has been a subject of research for many
years. In his study of two-way automata, Pécuchet [13] implicitly defines partial runs
as (positive or negative) overlapping tiles and combining two partial runs amounts
to making the product of the underlying tiles. Later, Birget proposes an algebraic
reduction of two-way automata into finite monoids [1] where these ideas are further
developed. However, despite many attempts since then, the question raised by
Birget: does a true algebraic characterization of two-way automata in fact exist,
remains unanswered so far.

Altogether, overlapping tiles are partial runs of two-way automata. We do pro-
vide an algebraic setting for these languages. And even the context coherence
requirement no longer stands when two special letters mark (as for two-way au-
tomata) the beginning and the end of the word upon which given tiles are consid-
ered. Thereby, our proposal may constitute a first step towards a positive answer
to Birget’s long standing question.

1.3 Some notations
For every monoid S, for every x and y ∈ S, we often write xy for the product x.y
of x and y in S. By extension, given X ⊆ S, and x ∈ S, let xX (resp. Xx) be the
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set xX = {xy ∈ S : y ∈ X} (resp. Xx = {yx ∈ S : y ∈ X}).
The prefix preorder ≤p (resp. the suffix preorder ≤s) is defined, for all x and

y ∈ S by x ≤p y when xz = y for some z ∈ S (resp. x ≤s y when zx = y for some
z ∈ S). Under both prefix and suffix preorder, the neutral element 1 is the least
element of S, and the absorbant element 0 (if there is such) is the greatest. We also
write x−1(y) = {z ∈ S : xz = y} and (y)x−1 = {z ∈ S : zx = y}. This notation
extends to sets as follows: for all x ∈ S and Y ⊆ S we write x−1(Y ) = {z ∈ S :
xz ∈ Y } and (Y )x−1 = {z ∈ S : zx ∈ Y }.

The free monoid A∗ on the alphabet A is extended with 0 with, for all u ∈ A∗,
u0 = 0u = 0. Then, for every two words u and v, u−1(v) (resp. (v)u−1) is defined
as the unique word, if it exists, such that v = uu−1(v) (resp. v = (v)u−1u) or 0
otherwise. Last, we write u∨p v (resp. u∨s v) for the smallest word w ∈ A∗+ 0 such
that both u ≤p w and v ≤p w (resp. u ≤s w and v ≤s w). In other words, u ∨s v
(resp. u∨pv) equals the greatest word among u or v when they are suffix-comparable
(resp. prefix-comparable) or it equals 0 otherwise.

2 Monoids and languages of positive tiles
We review here the definition of the monoid of positive tiles. We also review how
it can be seen as an ordered monoid with many additional properties. Our former
characterization of MSO definable languages of tiles is then presented [6]. Here,
this characterization is used as an alternative and simpler definition of this class of
languages of tiles.

2.1 Positive tiles
The set TA of positive tile on the alphabet A is defined as the set of triples of words
u = (u1, u2, u3) ∈ A∗ × A∗ × A∗ extended with an extra tile 0 called the undefined
tile.

For all non zero tiles u = (u1, u2, u3) and v = (v1, v2, v3), the sequential product
of u and v is defined to be u.v = ((u1.u2 ∨s v1)u−1

2 , u2v2, v
−1
2 (u3 ∨p v2v3)) when both

the left matching constraint u1.u2 ∨s v1 6= 0 (u1u2 and v1 are suffix-comparable) and
the right matching constraint u3 ∨p v2v3 6= 0 (u3 and v2v3 are prefix-comparable)
are satisfied. This definition is illustrated by the following figure where matching
constraints are modeled, on the vertical dimension, by letter to letter equality.
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u1 u3u2

v1 v3v2

w1 w3w2

(u)

(v)

(u.v)

The product is completed by u.v = 0 when the matching constraint is not satis-
fied. For instance, with a, b and c three distinct letters, we have (a, b, c).(b, c, a) =
(a, bc, a), (a, b, c).(a, b, c) = 0 and (b, 1, ac).(ab, 1, a) = (ab, 1, ac).

Set TA equipped product of tiles is a monoid from now on called the monoid of
positive tiles. The neutral element (1, 1, 1) is denoted by 1.

2.2 Natural order
Monoid TA is conveniently seen as an ordered monoid with the natural order relation
defined for all u ∈ TA by 0 ≤ u and for all u and v ∈ TA with u = (u1, u2, u3) and
v = (v1, v2, v3), by u ≤ v when v1 ≤s u1, v2 = u2 and v3 ≤p u3.

The following lemma, proved in [6], summarizes some properties of the natural
order proved. For all non zero tile u = (u1, u2, u3), let uL = (u1u2, 1, u3) and let
uR = (u1, 1, u2u3). This notation is extended to 0 by setting 0L = 0R = 0.

Lemma 1 The set U(TA) = {t ∈ TA : t ≤ 1} of subunits of TA, is a commutative
monoid of idempotent elements and, ordered by the natural order, it is a lattice with
product as meet. Moreover, for all u ∈ TA, uL = ∧{x ∈ U(TA) : ux = u} and
uR = ∧{x ∈ U(TA) : xu = u}, and, for all v ∈ TA, u ≤ v if and only if u = uRvuL.

The natural order also induces a structure theorem.

Theorem 2 Monoid TA is completely determined by the submonoid T̂A of its max-
imal elements (isomorphic to A∗) and the lattice U(TA) of its subunits.

Proof. For all u ∈ A∗, let uC = (1, u, 1). The mapping u 7→ uC from A∗ to
TA is a one-to-one morphism. These canonical images of words into tiles form
the submonoid T̂A of maximal elements w.r.t. the natural order of TA. Staying
coherent with notations above, for all u ∈ A∗, let also uL = (u, 1, 1) = (uC)L and
uR = (1, 1, u) = (uC)R. Both uL and uR ∈ U(TA). Moreover, for all non zero tile
(u, v, w) ∈ TA we have (u, v, w) = uLvCwR. 2

2.3 MSO definable languages of tiles
Given a language L ⊆ TA − 0, the word congruence 'L associated to L is defined
to be the greatest word congruence such that, for all u and v ∈ A∗, u 'L v when
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for all w1, w2 and w3 ∈ A∗, the following equivalences hold: (w1uw2, w3, w4) ∈
L ⇔ (w1vw2, w3, w4) ∈ L, (w1, w2uw3, w4) ∈ L ⇔ (w1, w2vw3, w4) ∈ L, and
(w1, w2, w3uw4) ∈ L ⇔ (w1, w2, w3vw4) ∈ L. In [6], this word congruence is shown
to capture, in the following sense, MSO definable languages.

Theorem 3 For all language L ⊆ TA− 0, L = Σ(u,v,w)∈L[u]L× [v]L× [w]L with, for
all u ∈ A∗, [u]L = {v ∈ A∗ : u 'L v}. Moreover, L is MSO-definable if and only
if the associated word congruence 'L over A∗ is of finite index and thus L equals a
finite sum of Cartesian products of regular languages.

3 Well-behaved ordered monoids and premorphisms
We provide in this section, the foundation of quasi-recognizability. It is based on
the notion of well-behaved ordered monoids - an abstract generalization of the
monoid of positive tiles, defined from the class of (stable) ordered monoid with
zero [14] - and the notion of premorphisms. However, the adequate definition of
quasi-recognizability itself is postponed to the next section.

3.1 Well-behaved ordered monoids
Let S be an ordered monoid and let U(S) = {x ∈ S : x ≤ 1}. Elements of U(S)
are called the subunits of S. Monoid S is a well-behaved ordered monoid when it
satisfies the following axioms:

(A0) 0 ∈ U(S), i.e. 0 is a subunit,
(A1) for all x, y and z ∈ S, if x ≤ y then xz ≤ yz and zx ≤ zy, i.e. the

order relation is stable by product,
(A2) for all x ∈ U(S), x.x = x, i.e. subunits are idempotents,
(A3) for all x and y ∈ S, if x ≤ y then there is e and f ∈ U(S) such

that x = eyf , i.e. the monoid order is the two-sided variant of
Nambooripad’s natural order [12].

(A4) for all x ∈ S, both sets Lx = {e ∈ U(S) : xe = x} and Rx = {e ∈
U(S) : ex = x} have least element xL = ∧

Lx and xR = ∧
Rx with

xL ∈ Lx and xR ∈ Rx.

Mappings x 7→ xL and x 7→ xR from S to U(S) are respectively called the left and the
right context operators on S. One can check that these mappings are projective onto
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mappings, i.e. for all x ∈ U(S), xL = xR = x. As they capture the order relation
(see Lemma 4 below), this leads us, in [7], to propose an equivalent axiomatization
of well-behaved monoids based on these left and right context operators.

But does there exist any well-behaved monoid? Actually yes, many! In par-
ticular, every monoid S can be completed into a well-behaved ordered monoid S0.
Indeed, let S0, called the trivial ordered extension of S, be defined by S0 = S + 0
(with a new zero element) and the order relation defined, for all x and y ∈ S0,
by x ≤ y if and only if x = 0 or x = y. The fact that S0 is well-behaved is
straightforward.

One can also check that the monoid of positive tiles is a well-behaved ordered
monoid. The next two Lemmas illustrate how well-behaved monoids generalize the
monoid of positive tiles.

Lemma 4 Let S be a well-behaved ordered monoid. Then 0 is the least element of S
and U(S) is a submonoid of S, U(S) ordered by natural order is a meet semi-lattice
with product as meet, and, in particular, U(S) is a commutative submonoid.

Proof. The fact that 0 is the least element easily follows from axioms (A0) and
(A1). Properties of U(S) follows from axioms (A1), (A2) and reflexivity of the order
relation. 2

We observe that, in well-behaved ordered monoids, idempotents do not necessarily
commute. More precisely, given E(S) the set of idempotents of S, axiom (A2)
tells that U(S) ⊆ E(S) but still, it may happen that xy 6= yx for some x and
y ∈ E(S) − U(S). In the theory developed here, the distinction made between
subunits and idempotents is essential.

Lemma 5 Let S be a well-behaved ordered monoid. Then for all x and y ∈ S,
x ≤ y if and only if there exists e ∈ U(S) and f ∈ U(S) such that x = eyf if and
only if x = xRyxL.

Proof. Let x and y ∈ S. Assume x ≤ y. By axiom (A3) there are e and f ∈ U(S)
such that x = eyf . Now, by subunits idempotence (axiom A2), we have ex = x
hence, by (A4) xR ≤ e and thus, by Lemma 4, xRe = xR. By symmetrical argument
we also have fxL = xL and thus x = xReyfxL hence x = xRyxL. The converse
immediately follows from definition (both xR and xL ∈ U(S)) and stability axiom
(A4). 2
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3.2 Prehomomorphisms
The following definition is adapted from McAlister and Reilly [11]. Let S and T
be two ordered monoids. A mapping ϕ : S → T is a premorphism when ϕ(0) = 0,
ϕ(1) = 1, for all x and y ∈ S, if x ≤ y then ϕ(x) ≤ ϕ(y) and, for all x and y ∈ S,
ϕ(xy) ≤ ϕ(x)ϕ(y).

Well-behaved ordered monoids and premorphisms forms a category. Indeed, for
every premorphism ϕ : S → T and ψ : T → U , the mapping ϕψ : S → U defined
for all x ∈ S by ϕψ(x) = ψ(ϕ(x)) is a premorphism.

As a particular case, a premorphism ϕ such that ϕ(xy) < ϕ(x)ϕ(y) if and only
if xy = 0 is called a trivial premorphism. These premorphisms are already worth
being studied as illustrated by the following lemma.

Lemma 6 Let A be a finite alphabet and let L ⊆ A∗ be a regular language. Let
B = A + ]1 + ]2 with ]1 and ]2 two distincts new letters. Let M = {(1, ]1u]2, 1) ∈
TB : u ∈ L}. Then there is a finite monoid S and a trivial premorphism ψ : TB → S0

such that M = ψ−1(ψ(M)).

Proof. Since L ⊆ A∗ is recognizable so if L′ = ]1L]2 ⊆ B∗. It follows that there is
a finite monoid S and a morphism ϕ : B∗ → S such that L′ = ϕ−1(ϕ(L′)). Let then
ψ : TB → S0 defined, for all (u, v, w) ∈ TB by ψ((u, v, w)) = ϕ(v) when uvw ∈ ]1A∗]2
and ψ((u, v, w)) = 0 otherwise. Then one can easily check that M = ψ−1(ϕ(L′))
hence the claim. 2

This Lemma tells us that with pre-images of pre-morphism from monoids of
positives tiles to finite well-behaved ordered monoid, words being models as maximal
tiles, we indeed generalize classical recognizability. However, we cannot take this as
a definition of quasi-recognizability!

Indeed, the weakening of the morphism axiom ϕ(uv) = ϕ(u)ϕ(v) into the pre-
morphism axiom ϕ(uv) ≤ ϕ(u)ϕ(v) just breaks many standard and useful properties
of morphisms. For instance, ϕ(S) is not in general a submonoid of S since nothing
ensures it is closed under product, i.e. (ϕ(S))∗ is the submonoid induced by ϕ(S).
Even worse, over tiles, MSO definability just fails without extra hypothesis. These
extra axioms are proposed in the next section.

4 From Quasi-recognizability to MSO definability
In this section, within the category of well-behaved monoid and premorphisms,
we want to settle our definition of quasi-recognizability in such a way that quasi-
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recognizability implies MSO definability. This is achieved by paying a special atten-
tion to maximal elements and the way premorphisms behave on them.

4.1 Strongly well-behaved ordered monoids
A well-behaved ordered monoid S is said to be strongly well-behaved when it satisfies
the following additional axioms:

(A5) for all non zero x ∈ S there is a unique maximal element x̂ ∈ S
such that x ≤ x̂, i.e. S is closed in some order theoretical sense,

(A6) for all pair of non zero elements x and y ∈ S, x̂ŷ 6= 0 and ̂̂xŷ = x̂ŷ,
i.e. maximal elements form a submonoid.

Theorem 7 Every strongly well-behaved ordered monoid S is completely determined
by the submonoid Ŝ of its maximal elements and the semi-lattice U(S) of its subunits.

Proof. By axiom (A5) and Lemma 5, for all x ∈ S, x = xRx̂xL with both xR and
xL ∈ U(S). 2

The monoid TA of positive tiles is strongly well-behaved and Theorem 7 generalizes
to strongly well-behaved ordered monoids what Theorem 2 says about monoid TA.

We review here more properties of these monoids.

Lemma 8 Every strongly well-behaved ordered monoid S is a meet semi-lattice. For
all x and y ∈ S, either x ∧ y = 0 or 0 < x ∧ y = xRyxL = yRxyL.

Proof. Let x and y ∈ S and let z ∈ S such that z ≤ x and z ≤ y. If this holds
only for z = 0 then x ∧ y = 0 and we are done. Otherwise, assume z is non zero.
By axiom (A5), we have ẑ = x̂ = ŷ hence y = yRẑyL and x = xRẑyL.

Let then t = xRyxL. By commutation of subunits, we also have t = yRxyL. We
claim that t ≤ y. Indeed, xR ≤p t hence tRxR = tR. Likewise, xL ≤s t hence tLxL =
tL. But then, because t = xRyxL, we also have t = tRttL = tRxRyxLtL = tRytL
hence t ≤ y. A symmetrical argument show that t ≤ x.

It remains to prove that z ≤ t. Since z ≤ x we have z = zRxzL, hence xRzxL = z.
But since z ≤ y we also have z = zRyzL hence z = xRzRyzLxR hence z = zRtzL. 2

The formulation of the previous Lemma, distinguishing between the cases x ∧ y
is zero or not, may seem a little strange. But we must put the emphasis on the
fact that in an strongly well-behaved monoid S, even when both xRyxL and yRxyL

are non zero for some x and y ∈ S, nothing ensures they are equal. Henceforth it
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may still be the case that x ∧ y = 0. The well-behaved extension Q(S) of arbitrary
monoid S defined in the last section provides plenty of such examples.

The behavior of premorphisms on maximal elements is then restricted as follows.
A premorphism ϕ : S → T is a well-behaved premorphism when both S and T are
strongly well-behaved monoids and the following condition are satisfied:

(P1) for all x and y ∈ Ŝ, ϕ(xy) ∈ T̂ ,
(P2) for all x, y and z ∈ Ŝ, ϕ(xLyzR) = (ϕ(x))Lϕ(y)(ϕ(z))R,

where Ŝ (resp. T̂ ) denotes the set of maximal elements of S (resp. T ).

4.2 Quasi-recognizable languages
We say that L ⊆ S is quasi-recognizable (QREC) when there is a well-behaved
premorphism ϕ : S →M with finite M such that L = ϕ−1(ϕ(L)).

Theorem 9 Quasi-recognizable subsets of TA are definable in MSO, i.e. QREC ⊆
MSO.

Proof. (sketch of) Let ϕ : TA → S be a well-behaved premorphism with S finite.
It suffices to show that, for all x ∈ S, ϕ−1(x) is MSO-definable. Moreover, we can
restrict to non zero elements since we have ϕ−1(0) = TA −

⋃
x 6=0 ϕ

−1(x) and MSO
definable languages are closed under finite boolean combination.

Let (u, v, w) ∈ TA. By Theorem 2, (u, v, w) = uLvCwR with uL = (u, 1, 1), vC =
(1, v, 1) and wR = (1, 1, w). It follows, by applying axiom (P2), that ϕ((u, v, w)) =
(ϕ(uC))Lϕ(vC)(ϕ(wC))R. In other words, given ϕC : A∗ → S defined, for all u ∈ A∗,
by ϕC(u) = ϕ(uC), for all non zero x ∈ S,

ϕ−1(x) =
⋃
{ϕ−1

C (y)× ϕ−1
C (y′)× ϕ−1

C (y′′) ⊆ TA : (y, y′, y′′) ∈ Ŝ, x = (y)Ly
′(y′′)R}

Since S is finite, this union is finite. Moreover, axiom (P1) ensures that ϕC is a
morphism (since T̂A = {uC ∈ TA : u ∈ A∗}) hence, for all y ∈ Ŝ, ϕ−1

C (y) ⊆ A∗ is a
regular language. We conclude by applying Theorem 3. 2

Does the converse of Theorem 9 hold ? In general no. But this comes from
a rather welcome property: left and right constraints in tiles are. . . just product
constraints. It follows that quasi-recognizable languages satisfy a closure property
on left and right constraints that is studied below.
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4.3 Context coherence closure property
The following lemma tells that quasi-recognizable languages are closed w.r.t. to
equivalent left and right constraints.

Lemma 10 Let ϕ : TA → S be a well-behaved premorphism with finite S. For all
x ∈ S, for all (u, v, w) ∈ ϕ−1(x), for all u′ and w′ ∈ A∗, if ϕ(u) is L-equivalent with
ϕ(u′) and ϕ(w) is R-equivalent with ϕ(w′), then (u′, v, w′) ∈ ϕ−1(x).

Proof. Let us first recall that two elements x and y ∈ S are L-equivalent (resp.
R-equivalent) when both x ≤s y and y ≤s x (resp. both x ≤p y and y ≤p x).

Since ϕ((u, v, w)) = (ϕ(uC))Lϕ(vC)(ϕ(wC))R, the statement then follows from
the easy observation that, for all x and y ∈ S, since S is well-behaved, if x and y
are L-equivalent (resp. R-equivalent) then xL = yL (resp. xR = yR). 2

Observe that the underlying closure property is rather subtle. Indeed, we still
lack of explicit canonical minimal structures (as syntactical monoids) that charac-
terize quasi-recognizable languages of tiles. This means we still do not have a way
to define that closure property in a minimal way. However, the word congruence 'L

associated to every language of tiles still gives us a canonical definition instead.
A language of tiles L ⊆ TA is context-coherent when, given the induced word

congruence 'L associated to L, for all tiles (u, v, w) ∈ L, for all u′ and v′ ∈ A∗, if
u and u′ are L-equivalent with respect to 'L and w and w′ are R-equivalent with
respect to 'L, then (u′, v, w′) ∈ L.

Is this closure property a real loss in expressive power? We have seen in Lemma 6
that plugs can be used on words so that R-equivalence on right constraints and
L-equivalence on left constraints trivialize in some sense. It follows that, from a
modeling perspective, the context-coherence constraint is just a matter of modeling
choice! In particular, as already mentioned in the introduction, this is probably
enough in order to model the behavior of two-way automata on words where left
and right plugs are classically used to mark words’ extremities.

5 From MSO-definability to quasi-recognizability
Given a MSO definable language L ⊆ TA, assumed to be context-coherent, we need
now to provide a finite strongly well-behaved monoid that quasi-recognizes L.

By Theorem 3, since L is MSO definable, the word congruence 'L associated
to L is finite. Our point is then to built from S = A∗/ 'L (the finite monoid
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induced by that congruence) a strongly well-behaved ordered monoid Q(S) that
quasi-recognizes L itself. This well-behaved extension Q(S) of S, is presented in
this section.

We will show that this extension is made in such a way that the monoid of
positive tiles TA itself becomes a submonoid of the well-behaved extension Q(A∗) of
the free monoid A∗. In other words, any morphism ϕ : A∗ → S can be lifted to a
well-behaved premorphism from Q(ϕ) : Q(A∗)→ Q(S).

5.1 Prefix and suffix upper sets
Let S be a monoid. Let Up(S) (resp. Us(S)) be defined as the set of upward closed
subsets of S preordered by ≤p (resp. ≤s) the prefix (resp. suffix) preorder. More
precisely, as S is a monoid hence with 1 ∈ S, Up(S) (resp. Us(S)) is the set of
subsets U ⊆ S such that US = U (resp. SU = U).

For both x = p or x = s, elements of Ux(S) are from now on called x-upper
set. The set Ux(S) is turned into a monoid by taking ∩ as product. Indeed, the
intersection of two x-upper sets is a x-upper set and the neutral (or maximal) element
is S itself, and ∅ is the absorbant (or minimal) element.

In semigroup theory, non empty elements of Up(S) (resp. Us(S)) are often called
right ideals (resp. left ideals) of S. As ideals in order theory must satisfy some extra
condition we prefer to stick to the notion of p-upper or s-upper sets.

Lemma 11 Let S be some monoid and let x ∈ S. Set xS is a p-upper set (resp.
Sx a s-upper set) and, for every p-upper set (resp. s-upper set) U ⊆ S:

(1) if x ∈ U then x−1(U) = S (resp. (U)x−1 = S),

(2) xU is a p-upper set (resp. Ux is a s-upper set),

(3) x−1(U) is a p-upper set (resp. (U)x−1 is a s-upper sets),

(4) xx−1(U) ⊆ U ⊆ x−1(xU) (resp. (U)x−1x ⊆ U ⊆ (Ux)x−1),

5.2 The strongly well-behaved extension
Let S be a monoid. The extensionQ(S) of S is defined to beQ(S) = (Us(S)−∅)×S×
(Up(S)−∅) + 0 with, for all non zero element u1 = (L1, x1, R1) and u2 = (L2, x2, R2)
the product u1u2 defined by u1.u2 = (L1 ∩ (L2)x−1

1 , x1x2, R2 ∩ x−1
2 (R1)) when both

compatibility contraints L1 ∩ (L2)x−1
1 6= ∅ and R2 ∩ x−1

2 (R1) 6= ∅ are satisfied, and
by u1.u2 = 0 otherwise.
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The expected natural order is defined as follows. For all pairs of non zero elements
u1 = (L1, x1, R1) and u2 = (L2, x2, R2) ∈ Q(S), we say that u1 ≤ u2 when L1 ⊆ L2,
x1 = x2 and R1 ⊆ R2. This relation is extended to zero by taking 0 ≤ u for all
u ∈ Q(S).

As an ordered monoid, we already have:

Lemma 12 The mapping i : S0 → Q(S) that maps zero to zero and any non
zero element x ∈ S to i(x) = (S, x, S) is a one-to-one monoid morphism. The set
i(S), isomorphic to S, is the submonoid of Q(S) that contains exactly all maximal
elements of Q(S). The mapping π : Q(S)→ S0 that maps 0 to 0 and any non zero
element (L, x,R) to π(L, x,R) = x is an onto trivial premorphism with π ◦ i = IS0,
the identity mapping in S0.

Proof. The fact that i is a monoid morphism is immediate and the product on
elements of i(S), all of the form (S, x, S), just mimics the product in S since, for all
x ∈ S, x−1(S) = (S)x−1 = S.

Mapping π is obviously onto since π ◦ i = IS0 . Then we check that it is a
(trivial) premorphism, i.e. for all u1 and u2 ∈ Q(S) either u1u2 6= 0 and then
π(u1u2) = πS(u1)πS(u2) or u1u2 = 0 and thus π(u1u2) = 0. 2

Moreover, as intended:

Theorem 13 For all monoid S, the monoid Q(S) ordered by the extension order
≤ is a strongly well-behaved ordered monoid.

Proof. This essentially follows from Lemma 14 that tells Q(S) is indeed a (stable)
ordered monoid, from Lemma 15 that ensures subunits are idempotents and from
Lemma 16 that show the extension order is natural.

Other axioms immediately follows from definitions and from the fact that over p-
upper sets (resp. s-upper sets) intersection distribute with left (resp. right) product
and residual by an elements x ∈ S. 2

Lemma 14 The extension monoid Q(S) ordered by the extension order is a (stable)
ordered monoid.

Proof. The fact that relation ≤ is a partial order is immediate from the definition.
Let then u = (L1, x1, R1), v = (L2, x2, R2) and w = (M, y,N). Assume u ≤ v.
By definition, we have x1 = x2 from now on denoted by x and both L1 ⊆ L2 and
R1 ⊆ R2. By definition of the product we have uw = (L1∩ (M)x−1, xy,N ∩ y−1(R1)
and vw = (L2 ∩ (M2)x−1, xy,N ∩ y−1(R2). Hence uw ≤ vw by definition of the
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extension order and stability of the inclusion order by intersection and residual.
Symmetrical arguments show that wu ≤ wv. 2

The set of subunits of Q(S) is, by definition of the extension order, the set
U(Q(S)) = 0 + {(L, x,R) ∈ Q(S) : x = 1}. The next lemma shows that these
indeed are idempotents elements.

Lemma 15 A non zero triple (L, x,R) ∈ Q(S) is idempotent if and only if x ∈ S
is idempotent, L ⊆ (L)x−1 and R ⊆ x−1(R).

Proof. Let (L, x,R) be an idempotent of Q(S). By definition of the product in
Q(S) this means that xx = x hence x is idempotent in S, L ∩ (L)x−1 = L hence
L ⊆ (L)x−1 and R ∩ x−1(R) = R hence R ⊆ x−1R. The converse is immediate. 2

Lemma 16 For all non zero u = (L, x,R) and v = (M, y,N) ∈ Q(S), if u ≤ v
then (L, x,R) = (L, 1, xR).(M, y,N).(Lx, 1, R).

Proof. Assume u ≤ v. By definition of the extension order this implies that x = y
and L ⊆M and R ⊆ N . Taking e = (L, 1, xR) and f = (Lx, 1, R) on has

evf = (L ∩M ∩ (Lx)y−1, y, y−1(xR) ∩N ∩R)

But, by assumption, L ⊆M and R ⊆ N and, since x = y, we also have by Lemma 11
L ⊆ (Lx)y−1 and R ⊆ y−1(xR) hence evf = u. 2

Last, the next Lemma shows that the elements used above are indeed the left
and right contexts elements associated with u.

Lemma 17 For all non zero u = (L, x,R), we have uL = (Lx, 1, R) and uR =
(L, 1, xR), i.e. uRu = u = uuL and these are the least subunits that satisfies this
properties.

Proof. Let uL and uR be defined as in axiom (A3). Let u′L = (Lx, 1, R). Observe
first that we do have uu′L = u. In fact uu′L = (L∩ (Lx)x−1, x, R with, by Lemma 11,
L ⊆ (Lx)x−1 hence uu′L = u. By definition of uL this means uL ≤ u′L.

Let then e = (L′, 1, R′) be a subunit of Q(S) such that ue = u. This means
that (L∩ (L′)x−1, x, R′ ∩R) = (L, x,R) hence L ⊆ (L′)x−1 henceforth Lx ⊆ L′ and
R ⊆ R′. It follows that u′L ≤ e. As this is true for all e as above, this means that
u′L ≤ uL.

Symmetrical arguments prove the claim for uR. 2

Last, the following theorem says that our construction above essentially extends
to arbitrary monoids the way the monoid of positive tiles is built from the free
monoid A∗.
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Theorem 18 There is a one to one morphism i : TA → Q(A∗) such that, for all
u ∈ TA, i(uL) = (i(u))L and i(uR) = (i(u))R.

Proof. Observe that A∗ is totally ordered by ≤s and ≤p. It follows that for x = p
and x = s, the mapping ϕx : A∗+0→ Ux(A∗) defined, for every u ∈ A∗, by ϕx(u) =
{v ∈ A∗ : u ≤x v} is one-to-one. It is then an easy task to check that i : TA → Q(A∗)
defined by i(0) = 0 and, for every tile (u, v, w) ∈ AT , i((u, v, w)) = (ϕs(u), v, ϕp(w))
is a one-to-one morphism. The last property is immediate. 2

5.3 More on maximal elements in the extension
We observe now that the extension monoid is a non trivial well-ordered monoid.

Lemma 19 For all u and v ∈ Q(S), if v is maximal then vR = uRvR (resp. vL =
vLuL) if and only if u ≤p v (resp. u ≤s v).

In particular, with v = 1 hence vR = vL = 1, we have uR = 1 (resp. uL = 1) if
and only uw = 1 (resp. wu = 1) for some w ∈ Q(S), i.e. u admits a right (resp.
left) group inverse.

Proof. Let then u = (L, x,R) hence uR = (L, 1, xR) and let v = (S, y, S) some
maximal element of Q(S).

If u ≤p v then we immediately have, by definition of the right context operator
uRvR = vR.

Assume that vR = uRvR henceforth, by commutation and right product by v,
uRv = v. By definition of the product, we have uRv = (L, y, y−1(xR)). It follows
that (a) S = L and that S = y−1(xR) with y−1(xR) = {z ∈ S : yz ∈ xR}. Since
1 ∈ S, this means that y ∈ xR and thus (b) y = xz for some z ∈ R. Taking then
w = (S, z, S) we have, by definition of the product,

uw = (L ∩ (S)x−1, xz, S ∩ z−1(R)

Now by (a) L = S and since x ∈ S, by Lemma 11, (S)x−1 = S. By (b) xz = y and,
since z ∈ R, again by Lemma 11, z−1(R) = S. It follows that uw = v henceforth
u ≤p v.

The case of left context and suffix preorder is obtained by symmetrical argu-
ments. 2
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5.4 From MSO-definability to quasi-recognizability
We are now ready to make the picture complete. More precisely:

Theorem 20 If L ⊆ TA is MSO definable and context coherent then L is quasi-
recognizable.

Proof. Let L ⊆ TA be an MSO definable language of positive tiles and let
S = A∗/ 'L be the finite monoid defined by the quotient of A∗ under the (finite
index) word congruence induced by L. For every word u ∈ A∗, let us write [u] ∈ S
the class of words of A∗ equivalent under 'L to u.

Let define ϕ : TA → Q(S) by taking, for every non zero positive tile u =
(u1, u2, u3) ∈ TA, ϕ(u) = (S[u1], [u2], [u3]S). By Lemma 21 below, we know that ϕ
is a well-behaved premorphism. Moreover, by construction, L ⊆ ϕ−1(ϕ(L)). The
converse inclusion follows from the fact that L is context coherent. 2

Lemma 21 Let ψ : A∗ → S be a monoid morphism. The extension mapping
ϕ : TA → Q(S) defined for every non zero tile (u, v, w) ∈ TA by ϕ((u, v, w)) =
(Sψ(u), ψ(v), ψ(w)S), is a well-behaved premorphism.

Proof. Let ψ : A∗ → S and ϕ : TA → Q(S) as above.
In order to simplify notation, for all u ∈ A∗, we write [u] ∈ S for the image of u

by ψ in S. This notation is coherent with the fact that S can just be restricted to
be the quotient of A∗ by the congruence induced by ψ.

By construction, ϕ(1) = (S, 1, S) which is indeed the neutral element of Q(S).
For every u ∈ A∗, let us write, ϕs(u) = S[u] (resp. ϕp(u) = [u]S). Mappings

ϕs : A∗ → Us(S) and ϕp : A∗ → Up(S) are the left and right projection of ϕ. In
particular, both for x = p and x = s, for every u and v ∈ A∗, if u ≤x v then
ϕx(u) ⊇ ϕx(v) and, if u ∨x v 6= 0 then ϕx(u ∨x v) = ϕx(u) ∩ ϕx(v).

Let then u = (u1, u2, u3) and v = (v1, v2, v3) be two non zero positive tiles in TA.
By definition, ϕ(u) = (ϕs(u1), [u2], ϕp(u3)).

We now prove monotonicity. If u ≤ v we have v1 ≤s u1, v2 = u2 and v3 ≤p u3.
This means that [v1] ≤s [u1] hence ϕs(u1) ⊆ ϕs(v1), [u2] = [v2] and [v3] ≤p [u3] hence
ϕp(u3) ⊆ ϕp(v3). It follows, by definition of the extension order, that ϕ(u) ≤ ϕ(v).
Since u and v are arbitrary, this means ϕ is monotonic.

We now prove that ϕ(uv) ≤ ϕ(u)ϕ(v). If uv = 0 nothing has to be done since
ϕ(0) is the smallest in Q(S) hence the premorphism property is satisfied. Assume
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thus uv is non zero. we have

uv = ((u1u2 ∨s v1)u−1
2 , u2v2, v

−1
2 (u1 ∨p v2v3))

since [u2v2] = [u2][v2], by definition of the product of ϕ(u)ϕ(v) in Q(S), by definition
of the extension order, we have to prove that

ϕs((u1u2 ∨s v1)u−1
2 ) ⊆ ϕs(u1) ∩ (ϕs(v1))[u2]−1

and
ϕp(v−1

2 (u3 ∨p v2v3)) ⊆ [v2]−1(ϕp(u3)) ∩ ϕp(v3)
By symmetry it suffices to prove it for the prefix case.

Observe that since the product uv is non zero, we have u3 ∨p v2v3 6= 0.
The first case is when u3 ≤p v2v3. This means that v−1

2 (u3 ∨p v2v3) = v3 hence
ϕp(v−1

2 (u3 ∨p v2v3)) = ϕp(v3). But this also means that [v2] ∈ ϕp(u3) = [u3]S since
[u3] ≤p [v2] hence, by Lemma 11, [v2]−1(ϕp(u3)) = S. Observe that in this case, we
do have equality.

The second case is when v2v3 ≤p u3. This means that v−1
2 (u3∨pv2v3) = v−1

2 (u3) =
w for some w ∈ A∗ such that u3 = v2w. It follows that:

ϕp(v−1
2 (u3 ∨p v2v3)) = ϕp(v−1

2 (u3)) = [w]S

and
[v2]−1(ϕp(u3)) = [v2]−1([v2w]S) = [v2]−1([v2][w]S)

hence, by Lemma 11, the result since [w]S ⊆ [v2]−1([v2][w]S).
Observe that in that case, hence in general, we do not have equality. This means

that premorphism ϕ from TA to Q(S) is not, in general, a trivial premorphism, i.e.
it may happend that, for some u and v ∈ TA, ϕ(uv) < ϕ(u)ϕ(v) with ϕ(uv) 6= 0. 2
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