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Chirping the probe pulse in a coherent transients experiment
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Coherent transients occur when a chirped pump pulse excites a two-level transition. They have
been observed with an ultrashort probe pulse. Several studies have been dedicated to using various
pump shapes. Here, we reverse the roles of the pump and the probe pulses. We show that, with a
Fourier limited pump followed by a chirped probe pulse, similar effects can be observed. Finally, we
consider the case of two pulses with opposite chirps.

PACS numbers: 42.65.Re; 32.80.Qk; 42.50.Md; 32.80.Rm

I. INTRODUCTION

For now more than twenty years, the pump-probe tech-
nique has been one of the most powerful experimental
techniques to elucidate time-resolved dynamics using ul-
trashort lasers [1]. In a typical pump-probe experiment,
the pump laser initiates the dynamics by exciting a com-
bination of states. To measure the temporal evolution,
a probe pulse is used to lead the system in a final state
producing a signal which reveals the dynamics induced
as a function of the pump-probe delay. Quite early some
works have been done theoretically [2] as well as experi-
mentally to emphasize the role of the probe. In particular
it has been shown that a careful adjustment of the wave-
length in wavepackets dynamics studies can give access
to different pathway dynamics [3–5]. Also, changing the
probe polarization allows one to observe different dynam-
ics [6, 7]. In parallel, the advent of pulse shaping [8] has
led to fascinating results in coherent control [9–11]. Many
of these results have been obtained by manipulating the
shape of the pump pulse [12–19]. Some results have been
obtained by shaping the spectral phase of the probe in or-
der to select the final state in Li2 [20] or to exhibit vibra-
tional dynamics in liquid phase [21]. Moreover, shaping
the probe in phase and/or in polarization has been widely
implemented in CARS experiments [22–24] to drastically
reduce the non resonant background as well as to signif-
icantly enhance the resonant CARS signal. This leads
also to a huge improvement of both the sensitivity and
the spectral resolution. Interesting implementations have
been performed including both coherent control and in-
terferometry techniques to simplify the CARS set-up by
single pulse phase control non linear Raman spectroscopy
[24]. In the same way, people have used chirped probe
to improve the spectral resolution [25] using their time-
spectral homothetic transformation properties [26]. At
the same time, we have studied in great details the in-
teraction of a chirped pump with a two-levels systems
[27]. The evolution of the population amplitude has been
studied using an ultrashort probe. Contrary to CARS

∗sebastien.weber@irsamc.ups-tlse.fr

scheme, here we consider a two-photon transition with
an intermediate state close to the one-photon transition.
We propose to study the effect of a chirped probe in such
scheme. A detailed comparative analysis is performed be-
tween the normal chirped pump - FT limited probe case
and the reversed case with a FT limited pump pulse and
a chirped probe pulse. Thus we emphasize that the probe
plays a crucial role in the dynamic not only by fixing the
analysis resolution but also by determining the temporal
evolution behavior itself. Finally we demonstrate that for
particular values of the probe and pump spectral phases,
one can obtain a short dynamic even pump and probe are
long. Moreover this can be a way to measure the spectral
phase of the electric field.

II. PRINCIPLE

In this paper, we consider the pump-probe scheme
within a three-level system. Each pulse is resonant with
only one transition. The two transitions are excited suc-
cessively by two pulses. These pulses can in general be
shaped. However, only the cases where one of the pulses
is Fourier transform limited and the other one is highly
chirped is considered in this section. To understand these
dynamics, we first recall the interaction of a chirped pulse
with a two-level system (subsection II A). The evolution
of the excited state probability amplitude is described
during this interaction. Then, we examine the case of
a chirped pump pulse followed by an ultrashort pulse
(already addressed in previous studies [26–30]) (subsec-
tion II B) which probe the dynamic in the excited state.
Finally the case of a chirped probe preceded by an ultra-
short pump pulse, which triggers the dynamic, (subsec-
tion II C) is studied. We show that although the physical
situations are different, these two cases lead to similar
behaviors as a function of the delay.
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FIG. 1. Evolution of the upper state population under the
excitation of a chirped pulse. (a): Probability exhibiting co-
herent transient; (b): Probability amplitude in the complex
plane. The symbols correspond to different values of time
τ : −1000fs (triangle), 0fs (circle), 480fs (diamond), 1090fs
(square), 1840fs (star), 4000fs (cross) used for the simulations
in fig. 4.

A. Interaction of a two-level system with a chirped

pulse

In the temporal domain, the chirped pulse of duration
TC and angular frequency ωC is written as :

EC(t) = E0

√

T0

TC
e−t2/T 2

C e−i(ωCt−αt2) (1)

where TC and α, are related to the chirp rate φ′′ by :

TC = T0

√

1 +

(

2φ′′

T 2
0

)2

, α =
2φ′′

T 4
0 + (2φ′′)2

. (2)

T0 is the duration of the corresponding Fourier limited
pulse.

The lower and upper states are denoted |g〉 and |e〉
(named ground and excited state) respectively. First or-
der perturbation theory gives the excited state probabil-
ity amplitude during the resonant interaction (ωC ≃ ωeg)
with the chirped pulse:

ae(t) = −µeg

2~

t
∫

−∞

Ec(t) eiωegt′dt′ (3)

= −µeg

2~

t
∫

−∞

E0

√
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Tp
e−t′2/T 2

C ei(ωeg−ωC)t′ e−iαt′2dt′

The result of this interaction has been studied in de-
tail [27] and is sketched in Fig. 1. The probability
amplitude during this interaction follows a Cornu spi-
ral (equivalent to the diffraction by a knife edge) in the
complex plane (Fig. 1(b)). The excitation probability
(Fig. 1(a)) presents a large increase when the instan-
taneous frequency goes through resonance. It is followed
by oscillations which can be interpreted as beats between
the atomic dipole excited at resonance and the instanta-
neous frequency which is shifting away from resonance.
These oscillations are due to the quadratic phase which
appears in the integral given by equation 4.

B. Chirped Pump pulse - Fourier Limited Probe

pulse

In the scheme studied in previous works, this dynamics
is observed in real time with a second ultrashort pulse
as a probe. We consider therefore the simplest pump-
probe scheme within a three-level system. These levels
are named ground, excited and final state and denoted
|g〉, |e〉 and |f〉 as shown in Fig. 2. The two sequential
transitions |g〉 → |e〉 and |e〉 → |f〉 are respectively ex-
cited by a pump pulse Epu(t) of carrier angular frequency
ωpu close to resonance (δpu = ωeg − ωpu, |δpu| ≪ ωeg),
centered on t = 0 and by a probe pulse Epr(t) of carrier
angular frequency ωpr close to resonance (δpr = ωfe−ωpr,
|δpr| ≪ ωfe) and centered on t = τ . The fluorescence
arising from the |f〉 state can be recorded as a function
of the pump-probe delay τ . The observed signal is pro-
portional to the population |af (τ)|2 in the final state |f〉.
The general expression of the probability amplitude af (τ)
to find the system in the final state is given by second
order perturbation theory :

af (τ) = −µfeµeg

4~2

+∞
∫

−∞

dt′Epr(t
′ − τ)eiωfe(t′−τ) · · ·

×
t′
∫

−∞

dtEpu(t)eiωegt (4)

In the first case, the pump pulse is chirped Epu(t) =
EC(t). The probe pulse is ultrashort and Fourier limited.
This scheme is depicted in Fig. 2(a). The interaction
takes place from the beginning of the chirped pulse until
time τ when the ultrashort probe is applied. For a probe
much shorter than the dynamics induced in the system,
we can consider it as a Dirac Epr(t − τ) ∝ δ(t − τ) and
simplify Eq. (4). We obtain an expression similar to the
resonant interaction of a chirped pulse with a two-level
system (Eq. (4)) except that τ is now the pump-probe
delay instead of the real time of the chirped pulse. One
gets :

af (τ) ≃ −µfeµeg

4~2

τ
∫

−∞

dtEpu(t)eiωegt (5)

The final state population |af (τ)|2 as a function of the
pump-probe delay τ is therefore similar to the real-time
temporal evolution of the level |e〉 in the two-level case,
as displayed in Fig. 1 and already widely studied [27]
and manipulated [18, 26, 28].

C. Fourier Limited Pump pulse - Chirped Probe

pulse

We consider here the case of an ultrashort FT limited
pump pulse followed by a chirped probe pulse. The ultra-
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FIG. 2. Principle of the excitation scheme : (a) In the case
of a chirped pump and a short probe, the probe ”freezes” the
interaction at time τ . (b) In the case of a short pump and a
chirped probe, the pump triggers at time −τ (with respect to
the chirped pulse) the interaction between the chirped pulse
and the upper two levels.

short pump pulse can also be approximated by a Dirac
so that

af (τ) ≃ −µfeµeg

4~2

+∞
∫

−∞

dt′Epr(t
′ − τ)eiωfe(t′−τ) · · ·

×
t′
∫

−∞

dtδ(t)eiωegt (6)

with,

t′
∫

−∞

dtδ(t)eiωegt =
1 : t′ > 0
0 : t′ < 0

then,

af (τ) ≃ −µfeµeg

4~2

+∞
∫

0

dt′Epr(t
′ − τ)eiωfe(t′−τ)

≃ −µfeµeg

4~2

+∞
∫

−τ

dt′Epr(t
′)eiωfe(t′) (7)

which means that in this case the dynamics induced
by the chirped pulse between the two upper levels is trig-
gered by the pump (cf figure 2(b)). Although Eq. (7)
is similar to the previous case (Eq. (5)), the interpreta-
tion of the observed oscillations is less straightforward.
Indeed, the observed signal is not directly related to the
dynamics of the upper level (here |f〉) excited by the
chirped pulse. Modifying the value of τ changes only the
starting time of the dynamics. The measured signal is
the final result, at the end of these dynamics.

To better explain the difference between the delay τ
and the real time t in this situation, Figure 3 presents a
2D plot of the |f〉 state population as a function of time
t and delay τ . A horizontal cut corresponds to the real-
time dynamics in the upper state. Several of such cuts

(along the horizontal dashed lines in Fig. 3)correspond
to the temporal evolution for a given pump-probe delay.
They are displayed in the left hand side of Fig. 4. A
vertical cut at a time longer than the chirped pulse du-
ration corresponds to the final population as a function
of the delay τ (see Fig. 3, right hand side). The same
oscillations as with usual Coherent Transients are pre-
dicted. Indeed, Eq. (5) and (7) are completely similar if
the pump and probe spectral phases are inverted.

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

FIG. 3. 2D mapping of the final state population (normalized
to the population at long time and delay) : the vertical axis
is the delay between the pump and the probe, the horizontal
axis is the time evolution. A vertical cut at 6 ps is plotted on
the right side. It corresponds to the evolution of the asymp-
totic value of the final population. This is the one which is
measured via the experiment. Several horizontal dashed lines
are plotted. They correspond to the different cases presented
on figure 4.

Another way to understand these predictions is to plot,
in the complex plane, the temporal evolution of the prob-
ability amplitudes in the |f〉 state (right hand panels
of Fig. 4) for various delays. For the largest delay
τ = 4000 fs (Fig. 4(f)), the pump pulse arrives long
before the chirped pulse so that the whole dynamics can
take place. One sees again the Cornu spirals, starting
from the origin and finishing at the asymptotic value
which corresponds to the measured quantity. On the
left-hand panel, the population exhibits the same coher-
ent transients as in the usual situation (see Fig. 1). At
the opposite, for large negative values of τ , the probe
arrives before the pump and the signal (left) is negligi-
ble. Moving now from large positive values to shorter
delays (τ = 1840 fs, 1090 fs and 480 fs for Fig. 4(e), 4(d)
and 4(c) respectively), a progressively larger fraction of
the leading part of the chirped pulse is inactive. Thus
part of the beginning of the spiral is suppressed. In the
complex plane, the curve starts always from the origin.
Therefore the truncated spiral needs to be shifted. The
new starting points are shown by red symbols on Fig.
1(b). The remaining curve is therefore shifted. The fi-



nal point is alternatively further, closer and further from
the origin, corresponding to maxima and minima of the
asymptotic values and therefore of the upper state pop-
ulation (left). One should notice that although having
strong similarities with CT, these curves are not CT. In
particular small oscillations are observed before the rising
edge (see for instance Fig. 4(d)). This is a consequence
of the truncated spiral. At τ = 0, the pump pulse is
at the maximum of the chirped pulse. Exactly half of
the spiral is left. The final probability amplitude is half
the one reached for largest values of τ and the popula-
tion is one fourth. Finally, for negative delays, very weak
oscillations are observed.

(a)

(b)

(c)

(d)

(e)

(f)

τ= -1000 fs

τ= 1090 fs

τ= 0 fs

τ= 480 fs

τ= 1840 fs

τ= 4000 fs

FIG. 4. Left: Temporal evolution of the final population dur-
ing the probe pulse (normalized to the population at long
time and delay); Right: Corresponding probability amplitude
plotted in the complex plane. Pump-probe delays are −1000fs
(a), 0fs (b), 480fs (c), 1090fs (d), 1840fs (e), 4000fs (f)

Another way to explain these behaviors is to notice
that the population is simply the square of the distance
between the starting and final point of the evolution of
the probability amplitude. Therefore only the relative

evolution is meaningful and it is not necessary to cen-
ter the starting point of the truncated spiral at the ori-
gin. Each curve on Fig. 4 (left) is therefore obtained by
plotting the square of the distance between an arbitrary
origin on the spiral (corresponding to the value of the
delay τ) and a point moving on the spiral. This explains
more clearly why oscillations are obtained before the ris-
ing edge, when both starting and final points are within
the same part of the spiral Fig. 4(d) (left).

When considering the asymptotic value (in other
words, the observed pump-probe signal), it is also sim-
pler to consider that the final point of the spiral is fixed.
Thus, changing the delay τ (from +∞ to −∞) is simply
equivalent to removing progressively larger parts of the
spiral. One fully understands why the situation (for the
pump-probe signal) is exactly symmetric to the first case
when the pump is chirped.

III. EXPERIMENTAL RESULTS

To illustrate this point, an experiment has been per-
formed in an atomic Rb vapor (figure 5). The Rb (5s -
5p (P1/2)) transition (at 795 nm) is almost resonantly ex-
cited with an ultrashort pump pulse (The laser spectrum
is centered around 808 nm with a FWHM of 24 nm).

τ
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FIG. 5. Experimental set-up : G2: gratings with 600
grooves/mm G1:gratings with 2000 grooves/ mm; NOPA :
Non colinear Optical Parametric Amplifier.

The transient excited state population is probed ”in
real time” on the (5p - (8s, 6d)) transitions with a pulse
produced by a home-made NOPA (603 nm, 25 fs). This
probe pulse is negatively chirped (φ′′

pr = −1.4 105 fs2) by
a pair of gratings, recombined with the pump pulse and
sent into a sealed rubidium cell with fused silica Brewster-
window ends [18, 27, 28]. The pump can be shaped us-
ing a high resolution pulse shaper [31] formed by a double
LC-SLM (640 pixels) placed in a Fourier plane of a highly
dispersive 4f line. One takes care to block the red part



of the spectrum in order to avoid any two-photon transi-
tion (at 778 nm) and spin-orbit oscillations (at 780 nm)
[32]. The pump-probe signal is detected by monitoring
the fluorescence at 420 nm due to the radiative cascade
(ns, n′d) → 6p → 5s. As expected, strong oscillations
appear clearly on the black dots curve in Fig. 6 when
the probe is chirped. These oscillations are similar to the
coherent transients observed previously with the chirped
pump [27]. The contrast is excellent and experimental
data (black dots) fit well with theoretical data (gray solid
line) obtained by analytical resolution of Eq. (4).

FIG. 6. Experimental Coherent Transients on Rb (5s-5p at
795 nm), for a chirp of φ′′

pr = 1.4 105 fs2 on the probe (black
dots) and the corresponding simulation obtained by numerical
resolution of the Schrodinger equation (solid line).

To demonstrate drastically the interplay of the pump
and probe role, different amount of chirp are applied on
the pump pulse using the shaper. Eq. 4 can be calcu-
lated exactly and leads to a rather complex expression in
the general case of non-zero detunings (which is the case
here) [33]:

af (τ) ∝ 1
√

βpuβpr

[

1 − erf

(

−γ
√

βpu + βpr

2
√

βpuβpr

)]

(8)

γ =
i (βpuδpr − βprδpu) − 2βpuβprτ

βpu + βpr

with βk = 1
T 2

C,k

+ iαk, δk (k = pu, pr) is the detuning

of the two pulses with respect to their transition fre-
quencies and erf is the error function. The complex
part of the argument of the erf function is responsible of
the oscillations while the real part sets the rising time.
Setting fixed the chirp of the probe and varying the one
of the pump, the evolution of the final state could be
drastically changed (see Fig. 7).

An interesting case is the one where chirp on pump and
probe are opposite and fulfill φ′′

k ≫ T 2
0,k. One gets the

simplified expression for identical bandwidths (T0,pu =
T0,pr = T0) :

af (τ) ∝ T0 TC

[

1 − erf

(

− τ√
2T0

+ η

)]

(9)

η = −
(φ′′

puδpr + φ′′

prδpu)√
2T0

+ i
T0

2
√

2
(δpr − δpu)

Two comments can be addressed:

• For zero detuning δk = 0, the evolution of af (τ) is

a simple step with a rising time equal to
√

2T0. The
oscillations are vanishing. The obtained dynamic is
the same as with two Fourier Limited pulses.

√
2T0

is their crosscorrelation duration.

• In the general case with detuning, η (Eq. 9) is a
complex number. Its real part delays the step while
its complex part gives a sharp peak around τ = 0
well known as crosscorrelation peak [34] (see Fig. 7
(d)).

Experimental data are presented in Fig. 7 with φ′′

pr =

−1.4 105 fs2 (TC ≃ 10 ps) on the probe and φ′′

pu = 0

fs2 (a), φ′′

pu = 1.0 105 fs2 (b), φ′′

pu = 1.2 105 fs2 (c),

φ′′

pu = 1.4 105 fs2 (d) and φ′′

pu = 1.5 105 fs2 (e). Due to
laser constraint, there is a large detuning on the pump.
However one can see that the oscillations of the tran-
sients are vanishing when chirps on pump and probe be-
come opposite (case (d) and (e)). As predicted by Eq. 9,
the cancelation of the chirps leads to the shortest rising
time of the pump probe signal, of the order of 60 fs (case
(d)). For case (e), the evolution is a simple step with
no peak and no oscillations despite the large detuning
of the laser. This behavior can be explained, especially
the absence of the sharp peak, by a fine balance between
chirp and detuning in the complex time dependant part
of γ (Eq. 8). Thus the best criterion for a chirp com-
pensation is not the cancelation of the oscillations but
the sharpness of the slope. The sensitivity of the coher-
ent transients could thus be used as a fine adjustment of
the pump chirp. This value is determined here with an
accuracy of 10%, but this can certainly be improved.

This method could be used to determine the spectral
phase of an unknown pulse. This approach will be partic-
ularly appropriate when one of the pulse is in a spectral
range where it cannot be easily characterized. Further
work is under study to see how the combination of com-
plex spectral phases for both pump and probe pulses can
be used as a useful tool for time resolved spectroscopies.
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FIG. 7. Experimental Coherent Transients measured for a
chirp of φ′′

pr = −1.4 105 fs2 on the probe and sequential chirp
values for the pump (φ′′

pu). The (a) black dot-solid curve cor-
respond to transients obtained with a FL pump (see Fig. 6)
plotted here for comparison. In blue, curve (b) φ′′

pu = 1.0 105

fs2 ; in red, curve (c) φ′′

pu = 1.2 105 fs2 ; in green, curve (d)
φ′′

pu = 1.4 105 fs2 ; in purple, curve (e) φ′′

pu = 1.5 105 fs2.
The increasing chirp of the pump gives less oscillations in the
transients. For opposite chirps (curve d), the oscillations are
completely removed (such as curve (e)) but the rising time
obtained is here the shortest. It is equivalent to the FL cross-
correlation duration. The sharp peak around τ = 0 is due to
the detuning of the central laser wavelength with respect to
the resonance wavelength.

IV. CONCLUSION

In this paper we have demonstrated how the phase of
the probe pulse could affect significantly the pump-probe
signal, in an equivalent way as the phase of the pump. An
illustrative experiment has been performed in rubidium
vapor. Indeed, the spectral phases of the two pulses con-
tribute equally. This was clearly demonstrated with two
pulses of opposite chirp. A pump-probe signal with a very
short rising time followed by a plateau has been obtained
even with strongly chirped pump and probe pulses. This
opens the route towards new pump-probe schemes where
both pump and probe spectral phases can be shaped.
It should be noted that this situation is opposite to the
sum-frequency generation. Indeed, it was observed in
this latter case [35, 36] that a long pulse with narrow
bandwidth is generated. The presence of the resonant
intermediate level creates the short transient.

We sincerely acknowledge Elsa Baynard for her techni-
cal help and Chris Meier and Sébastien Zamith for fruit-
ful discussions.
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