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Abstract: Cops and robber games concern a team of cops that must capture a robber moving in a graph. We
consider the class of k-chordal graphs, i.e., graphs with no induced cycle of length greater than k, k ≥ 3. We prove
that k−1 cops are always sufficient to capture a robber in k-chordal graphs. This leads us to our main result, a new
structural decomposition for a graph class including k-chordal graphs.

We present a quadratic algorithm that, given a graph G and k ≥ 3, either returns an induced cycle larger
than k in G, or computes a tree-decomposition of G, each bag of which contains a dominating path with at most
k− 1 vertices. This allows us to prove that any k-chordal graph with maximum degree ∆ has treewidth at most
(k−1)(∆−1)+2, improving the O(∆(∆−1)k−3) bound of Bodlaender and Thilikos (1997). Moreover, any graph
admitting such a tree-decomposition has hyperbolicity ≤ b 3

2 kc.
As an application, for any n-node graph admitting such a tree-decomposition, we propose a compact rout-

ing scheme using routing tables, addresses and headers of size O(logn) bits and achieving an additive stretch of
O(k log∆). As far as we know, this is the first routing scheme with O(logn)-routing tables and small additive
stretch for k-chordal graphs.
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k-Chordal Graphs: from Cops and Robber to Compact Routing via
Treewidth

Résumé : Nous présentons un algorithme quadratique qui, étant donné un graphe G et un entier k ≥ 3, certifie
que G contient un cycle induit de longueur > k, ou calcule une décomposition arborescente de G dont chaque
“sac” induit un k-caterpillar (graphe qui contient un chemin dominant, de longueur au plus k− 2). Entre autre,
ce résultat implique que les graphes k-cordaux (sans cycle induit de longueur > k) de maximum degree ∆ ont
une largeur arborescente O(k ·∆), ce qui améliore la borne ∆(∆− 1)k−3 de Bodlaender et Thilikos (1997). De
plus, l’hyperbolicité d’un graphe admettant une telle décomposition est ≤ b 3

2 kc. Pour tout graphe qui admet une
telle décomposition, nous proposons un algorithme de routage compact utilisant des adresses, en-têtes et tables
de routage de taille O(k logn) bits et de stretch O(k · log∆). Au passage, nous montrons que k− 1 policiers sont
suffisants pour capturer un voleur dans un graphe k-cordal.

Mots-clés : Cordalité, hyperbolicité, décomposition arborescente, routage compact, un peu de gendarmes et
voleur.
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1 Introduction

Because of the huge size of real-world networks, an important current research effort concerns exploiting their
structural properties for algorithmic purposes. Indeed, in large-scale networks, even algorithms with polynomial-
time in the size of the instance may become unpractical. Therefore, it is important to design algorithms depending
only quadratically or linearly on the size of the network when its topology is expected to satisfy some properties.
Among these properties, the chordality of a graph is the length of its longest induced (i.e., chordless) cycle. The
(Gromov) hyperbolicity of a graph reflects how the metric (distances) of the graph is close to the metric of a tree.
More precisely, a graph has hyperbolicity ≤ δ if, for any u,v,w ∈ V (G) and for any shortest paths Puv,Pvw,Puw

between these three vertices, any vertex in Puv is at distance at most δ from Pvw ∪Puw [Gro87]. Intuitively, in a
graph with small hyperbolicity, any two shortest paths between the same pair of vertices are close to each other.
Several recent works take advantage of such structural properties of large-scale networks for algorithm design (e.g.,
routing [KPBV09, CSTW09]). Indeed, Internet-type networks have a so-called high clustering coefficient (see
e.g. [WS98, OP09]), leading to the existence of very few long chordless cycles, whereas their low (logarithmic)
diameter implies a small hyperbolicity [dMSV11].

Another way to study tree-likeness of graphs is by tree-decompositions. Introduced by Robertson and Sey-
mour [RS84], such decompositions play an important role in design of efficient algorithms. Roughly speaking, a
tree-decomposition maps each vertex of a graph to a subtree of the decomposition tree in a way that the subtrees
assigned to adjacent vertices intersect [RS84, Bod98]. The nodes of the decomposition tree are called bags, and
the size of a bag is the number of vertices assigned to it (assigned subtrees intersect the bag). The width of a tree-
decomposition is the maximum size over its bags, and the treewidth of a graph is the smallest width over its tree-
decompositions. By using dynamic programming based on a tree-decomposition, many NP-hard problems have
been shown to be linear time solvable for graph with bounded treewidth [CM93]. In particular, there are linear-time
algorithms to compute an optimal tree-decomposition of a graph with bounded treewidth [Bod93, BK96]. How-
ever, from the practical point of view, this approach has several drawbacks. First, all above-mentioned algorithms
are linear in the size of the graph but (at least) exponential in the treewidth. Moreover, due to the high clustering
coefficient of large-scale networks, their treewidth is expected to be large [dMSV11]. Hence, to face these prob-
lems, it is important to focus on the structure of the bags of the tree-decomposition, instead of trying to minimize
their size. For instance, several works study the diameter of the bags [DG07, Lok10]. In this work, we consider
tree-decompositions in which each bag admits a particular small dominating set. Such decompositions turn out to
be applicable to a large family of graphs (including k-chordal graphs).

1.1 Our results
Our results on tree decomposition are inspired by a study of the so called cops and robber games. The aim of such
a game is to capture a robber moving in a graph, using as few cops as possible. This problem has been intensively
studied in the literature, allowing for a better understanding of the structure of graphs [BN11].

Outline of the paper. We start by presenting our results for the cops and robber problem in Section 2. Next,
using these results, in Section 3 we provide a new type of efficiently computable tree-decomposition which we
call good tree decomposition. Our tree decomposition turns out to be applicable to many real-world graph classes
(including k-chordal graphs), and has several algorithmic applications. Finally, we focus on the applications of this
decomposition to the compact routing problem, a research area in which tree decompositions have already proved
useful [Dou05]. The objective of compact routing is to provide a scheme for finding a path from a sender node
to a known destination, taking routing decisions for the packet at every step using only very limited information
stored at each node. In Section 4, we show how to use our tree decomposition to minimize the additive stretch of
the routing scheme (i.e., the difference between the length of a route computed by the scheme and that of a shortest
path connecting the same pair of nodes) in graphs admitting with k-good tree-decomposition for any given integer
k ≥ 3 (including k-chordal graphs), assuming logarithmic size of packet headers and routing tables stored at each
node.

RR n° 7888
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The necessary terminology concerning cops and robber games, tree decompositions, and compact routing, is
introduced in the corresponding sections.

Main contributions. Our main contribution is the design of a quadratic algorithm that, given a n-node graph G
and an integer k≥ 3, either returns an induced cycle of length at least k+1 in G or computes a tree-decomposition
of G with each bag having a dominating path of order≤ k−1. More precisely, each bag of our tree-decomposition
contains a chordless path with at most k−1 vertices, such that any vertex in the bag is either in the path or adjacent
to some vertex of the path. In the case when G admits such a decomposition, this ensures that G has treewidth at
most (k− 1)(∆− 1)+ 2 (where ∆ is the maximum degree), tree-length at most k and hyperbolicity at most b 3

2 kc.
In particular, this shows that the treewidth of any k-chordal graph is upper-bounded by O(k ·∆), improving the
exponential bound of [BT97]. The proposed algorithm is mainly derived from our proof of the fact that k−1 cops
are sufficient to capture a robber in k-chordal graphs (generalizing some results in [AF84, CN05]).

Our tree-decomposition may be used efficiently for solving problems using dynamic programming in graphs
of small chordality and small maximum degree. In particular, we present a compact routing scheme that uses our
tree-decomposition and that achieves an additive stretch ≤ 2k(dlog∆e+ 9

4 )−4 with routing tables, addresses and
message headers of O(max{k · log∆, logn}) bits. An earlier approach of Dourisboure achieved stretch k+ 1, but
with routing tables of size O(log2 n).

1.2 Related Work

Chordality and hyperbolicity. Chordality and hyperbolicity are both parameters measuring the tree-likeness
of a graph. Some papers consider relations between them [BC03, WZ11]. In particular, the hyperbolicity of a
k-chordal graph is at most k, but the gap may be arbitrary large (take a 3× n-grid). The seminal definition of
hyperbolicity is the following. A graph G is δ-hyperbolic provided that for any vertices x,y,u,v ∈ V (G), the two
larger of the three sums d(u,v)+ d(x,y),d(u,x)+ d(v,y) and d(u,y)+ d(v,x) differ by at most 2δ [Gro87]. This
definition is equivalent to the one we use in this paper, using so called thin triangles, up to a constant ratio. No
algorithm better than the O(n4)-brute force algorithm (testing all 4-tuples in G) is known to compute hyperbolicity
of n-node graphs. The problem of computing the chordality of a graph G is NP-complete since it may be related
to computing a longest cycle in the graph obtained from G after subdividing all edges once. Finding the longest
induced path is W [2]-complete [CF07] and the problem is Fixed Parameter Tractable in planar graphs [KK09]. It
is coNP-hard to decide whether an n-node graph G is k-chordal for k = Θ(n) [Ueh99].

Treewidth. It is NP-complete to decide whether the treewidth of a graph G is at most k [ACP87]. For chordal
graphs, cographs [BM93], circular arc graphs [SSR94], chordal bipartite graphs [KK95] and etc., the treewidth
problem is polynomially solvable. Bodlaender and Thilikos proved that the treewidth of a k-chordal graph with
maximum degree ∆ is at most ∆(∆− 1)k−3 which implies that treewidth is polynomially computable in the class
of graphs with chordality and maximum degree bounded by constants [BT97]. They also proved that the treewidth
problem is NP-complete for graphs with small maximum degree [BT97].

Compact routing. In [AGM+08], a universal name-independent routing scheme with stretch linear in k and
n1/k polylog(n) space is provided. There are weighted trees for which every name-independent routing scheme
with space less than n1/k requires stretch at least 2k+1 and average stretch at least k/4 [AGD06]. Subsequently,
the interest of the scientific community was turned toward specific properties of graphs. Several routing schemes
have been proposed for particular graph classes: e.g., trees [FG01], bounded growth [AM05], bounded doubling
dimension [AGGM06,KRX06], excluding a fixed graph as a minor [AGM05,AG06], etc. The best compact routing
scheme in k-chordal graphs (independent from the maximum degree) is due to Dourisboure and achieves a stretch
of k + 1 using routing tables of size O(log2 n) bits [Dou05]. A routing scheme achieving stretch k− 1 with a
distributed algorithm for computing routing tables of size O(∆ logn) bits has been proposed in [NSR12].

RR n° 7888
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2 A detour through Cops and Robber games

Let us formally define a cops’ strategy to capture a robber. Given a graph G, a player starts by placing k ≥ 1 cops
on some vertices of G, then a visible robber is placed on one vertex of G. Alternately, the cop-player may move
each cop along one edge, and then the robber can move to an adjacent vertex. The robber is captured if, at some
step, a cop occupies the same vertex.

Aigner and Fromme introduced the notion of cop-number of a graph G, i.e., the fewest number of cops
required to capture a robber in G, denoted by cn(G) [AF84]. A long standing conjecture due to Meyniel states
that cn(G) = O(

√
n) for any n-node graph G [Fra87]. To tackle this question, many researchers have focused on

particular graph classes and provided many nice structural results (see the recent book [BN11]). For any n-node
graph G, cn(G) = O( n

2(1−o(1))
√

logn ) [LP10, SS11], cn(G)≤ 3 in any planar graph G [AF84], cn(G)≤ 3+ 3
2 g in any

graph G with genus at most g [Sch01], cn(G)=O(m) in any graph G excluding a m-edge graph as a minor [And86],
etc. Bounded hyperbolicity graphs have been considered in [CCNV11]. The cop number of graphs with minimum
degree d and smallest induced cycle (girth) at least 8t−3 is known to be Ω(dt) [Fra87]. Strangely, few is known
when related to the largest induced cycle (chordality): in [AF84], it is shown that cn(G) ≤ 3 any 2-connected
5-chordal graph G. In this section, we consider the class of k-chordal graphs.

Theorem 1. Let k≥ 3. For any k-chordal connected graph G, cn(G)≤ k−1, and there exists a strategy where all
k−1 cops always occupy a chordless path.

Proof. Let v ∈ V be any vertex and place all cops at it. Then, the robber chooses a vertex. Now, at some step,
assume that the cops are occupying {v1, · · · ,vi} which induce a chordless path, i ≤ k−1, and it is the turn of the
cops (initially i = 1). Let N = ∪ j≤iN[v j], if the robber occupies a vertex in N, it is captured during the next move.
Else, let R 6= /0 be the connected component of G\N occupied by the robber. Finally, let S be the set of vertices in
N that have some neighbor in R. Clearly, while R is not empty, then so does S.

Now, there are two cases to be considered.

• If N(v1)∩S ⊆ ∪1< j≤iN[v j]. This case may happen only if i > 1. Then, ”remove” the cop(s) occupying
v1. That is, the cops occupying v1 go to v2. Symmetrically, if N(vi)∩ S ⊆ ∪1≤ j<iN[v j], then the cops
occupying vi go to vi−1. Then, the cops occupy a shorter chordless path while the robber is still restricted
to R.

• Hence, there is u ∈ (N(v1)∩S)\ (∪1< j≤iN[v j]) and v ∈ (N(vi)∩S)\ (∪1≤ j<iN[v j]). First, we show that
this case may happen only if i < k−1. Indeed, otherwise, let P be a shortest path between such u and v
with all internal vertices in R (possibly, P is reduced to an edge). Such a path exists by definition of S.
Then, v1, · · · ,vi,v,P,u is a chordless cycle of length at least i+2. Since G is k-chordal, this implies that
i+2≤ k.

Then, one cop goes to v = vi+1 while all the vertices in {v1, · · · ,vi} remain occupied. Since v ∈ S, it
has some neighbor in R, and then, the robber is restricted to occupy R′ the connected component of
G\ (N∪N[v]) which is strictly contained in R.

Therefore, proceeding as described above strictly reduces the area of the robber (i.e., R) after < k steps and then
the robber is eventually captured.

Note that previous Theorem somehow extends the model in [CN05] where the authors consider the game
when two cops always reminding at distance at most 2 from each other must capture a robber.

Now, we improve a bit the previous theorem in case of 4-chordal graphs.

Theorem 2. For any 4-chordal connected graph G, then cn(G)≤ 2 and there always exists a winning strategy for
the cops such that they are always at distance at most one from each other.

RR n° 7888
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Proof. Initially, place the cops on any two adjacent vertices. At some step of the strategy, let us assume that the
cops are on two adjacent vertices a and b (or a = b) and it is the turn of the cops. If the robber stands at some
vertex in N = N[a]∪N[b], then it is captured during the next move. Hence, let C be the connected component of
G\N where the robber stands. Let S ⊆ N be the set of the vertices adjacent to a or b and at least one vertex of C,
i.e., S is an inclusion-minimal separator between {a,b} and C.

We will prove that there is z ∈ {a,b} and a vertex c in S∩N(z), such that, S ⊂ N[z]∪N[c] = N′. Since c ∈ S,
N(c)∩V (C) 6= /0. Hence, if the cops move from a,b to c,z, which can be done in one step, then the robber is
constrained to occupy a vertex of C′ where C′ is the connected component of G\N′ which is strictly contained in
C. Note that, C′ is a proper subgraph of C. Iterating such moves, the robber will eventually be captured.

It remains to prove the existence of z ∈ {a,b} and c ∈ S∩N(z), such that, S⊆ N[z]∪N[c].

• If there is z ∈ {a,b} such that S⊆ N[z], then any vertex in N(z)∩S satisfies the requirements.

• Else, let c ∈ S\N(b) (such a vertex exists because otherwise we would be in the previous case). Clearly,
S∩N(a) ⊆ N[a]∪N[c]. Now, let x ∈ S \N(a). By definition of S, there is a path P from x to c in C.
Moreover, all internal vertices of P are at distance at least two from a and b, c is not adjacent to b and
x is not adjacent to a. Hence, considering the cycle a,b,x,P,c, there must be an edge between x and c
because G is 4-chordal. Therefore, S⊆ N[a]∪N[c].

The bound provided by this theorem is tight because of the cycle with 4 vertices.

Theorem 1 relies on chordless paths P in G such that N[P] is a separator of G. In next section, we show how
to adapt this to compute particular tree-decompositions.

3 Structured Tree-decomposition

In this section, we present our main contribution, that is, an algorithm that, given a n-node graph G and an integer
k ≥ 3, either returns an induced cycle of length at least k+ 1 in G or computes a tree-decomposition of G with
interesting structural properties. First, we need some definitions.

A tree-decomposition of a graph G = (V,E) is a pair ({Xi|i ∈ I},T = (I,M)), where T is a tree and {Xi|i ∈ I}
is a family of subsets, called bags, of vertices of G such that (1) V = ∪i∈IXi; (2) ∀{uv} ∈ E there is i ∈ I such that
u,v ∈ Xi; and (3) ∀v ∈V , {i ∈ I|v ∈ Xi} induces a (connected) subtree of T . The width of a tree-decomposition is
the size (minus 1) of its largest bag and its `-width is the maximum diameter of the subgraphs induced by the bags.
The treewidth denoted by tw(G), resp., tree-length denoted by tl(G), of a graph G is the minimum width, resp.,
`-width, over all possible tree-decompositions of G [RS84, DG07].

Let k ≥ 2. A k-caterpillar is a graph that has a dominating set, called backbone, which induces a chordless
path of order at most k−1. That is, any vertex of a k-caterpillar either belongs to the backbone or is adjacent to a
vertex of the backbone. A tree-decomposition is said to be k-good if each of its bags induces a k-caterpillar.

Theorem 3. There is a O(m2)-algorithm that takes a m-edge graph G and an integer k ≥ 3 as inputs and:

• either returns an induced cycle of length at least k+1;

• or returns a k-good tree-decomposition of G;

Proof. The proof is by induction on |V (G)| = n. We prove that either we find an induced cycle larger than k, or
for any chordless path P = {v1, . . . ,vi} with i ≤ k− 1, there is a k-good tree-decomposition for G with one bag
containing NG[P]. Obviously, it is true if |V (G)|= 1. Now we assume that it is true for any graph G with n′ nodes,
1≤ n′ < n, and we show it remains true for n-node graphs.

Let G be a connected n-node graph, n > 1. Let P = {v1, . . . ,vi} be any chordless path with i ≤ k−1 and let
N = NG[P], N j = NG[v j] for j = 1, . . . , i and G′ = G\N. There are three cases to be considered:

RR n° 7888
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Case 1. G′= /0. In this case, we have G=N. The desired tree-decomposition consists of one node, corresponding
to the bag N.

Case 2. G′ is disconnected. Let C1, . . . ,Cr, r ≥ 2, be the connected components of G′ For any j ≤ r, let G j be
the graph induced by C j ∪N. Note that any induced cycle in G j, j ≤ r, is an induced cycle in G. By the
induction hypothesis, either there is an induced cycle C larger than k in G j, then C is also an induced
cycle larger than k in G, or our algorithm computes a k-good tree-decomposition T D j of G j with one bag
X j containing N. To obtain the k-good tree-decomposition of G, we combine the T D j’s, j≤ r, by adding
a bag X = N adjacent to all the bags X j for j = 1, . . . ,r. It is easy to see that this tree-decomposition
satisfies our requirements.

Case 3. G′ is connected. We consider the order of the path P = {v1, . . . ,vi}. In the following proof, first we
prove that if the order of path P, i = k−1, then we can find either an induced cycle larger than k or the
required tree-decomposition for G. Subsequently, we prove it is also true for path with length i < k−1
by reversed induction on i. More precisely, if i < k−1, either we find directly the desired cycle or tree-
decomposition, or we show that there exists a vertex vi+1 such that P′ = P∪{vi+1} is a chordless path
with order i+1. By reverse induction on i we can find either an induced cycle larger than k or a k-good
tree-decomposition of G with one bag containing NG[P′]⊇ NG[P].

(a) If i = k−1, then we consider the following two cases.

• Assume first that there is u∈NG(P)∪{v1,vi} (in particular, u /∈ P\{v1,vi}) such that NG(u)⊆
NG[P \ {u}]. Let G̃ = G \ u. Then G̃ is a graph with n′ = n− 1 vertices. By the induction
hypothesis on n′ < n, the algorithm either finds an induced cycle larger than k in G̃, then it is
also the one in G; Otherwise our algorithm computes a k-good tree-decomposition T̃ D of G̃
with one bag X̃ containing NG̃[P \ {u}]. To obtain the required tree-decomposition of G, we
just add vertex u into the bag X̃ . The tree-decomposition is still k-good.

• Otherwise, there exist two distinct vertices v0 ∈ NG(v1) and vi+1 ∈ NG(vi) and there are ver-
tices u1,u2 ∈ V (G′) (possibly u1 = u2) such that {v0,u1} ∈ E(G) and {vi+1,u2} ∈ E(G). If
{v0,vi+1} ∈ E(G), P∪{v0,vi+1} is an induced cycle with k+1 vertices. Otherwise, let Q be a
shortest path between u1 and u2 in G′ (Q exists since G′ is connected). So P∪{vi+1,u2}∪Q∪
{u1,v0} is an induced cycle with at least k+1 vertices in G.

(b) If i < k− 1, we proceed by reverse induction on i. Namely, assume that, for any chordless path
Q with i+1 vertices, our algorithm either finds an induced cycle larger than k in G or computes a
k-good tree-decomposition of G with one bag containing N[Q]. Note that the initialization of the
induction holds for i = k− 1 as described in case (b). We show it still holds for a chordless path
with i vertices. We consider the following two cases.

• Either there is u ∈ NG(P)∪{v1,vi} (in particular, u /∈ P \ {v1,vi}) such that NG(u) ⊆ NG[P \
{u}]. That is, we are in the same case as the first item of (a). We proceed as above and the
result holds by induction on n.

• Or there is w ∈ NG(v1)∪NG(vi)\P such that P∪{w} is chordless (i.e., w is a neighbor of v1

or vi but not both). Therefore, we apply the induction hypothesis (on i) on P′ = P∪{w}. By
the assumption on i, either our algorithm returns an induced cycle larger than k or it computes
a k-good tree-decomposition of G with one bag containing NG[P′]⊇ NG[P].

To conclude, we describe the algorithm and study its complexity. Let G be a m-edge n-node graph with maximum
degree ∆. Roughly, the algorithm proceeds by steps. At each step, one vertex is considered and the step takes O(m)

time. We prove that at each step (but the initial step), at least one edge will be considered and that all edges are
considered at most once. This implies a time-complexity of O(m2) for the algorithm.

RR n° 7888
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The algorithm starts from an arbitrary vertex v ∈V (G) and computes the connected components C1, · · · ,C j of
G\N[v] ( j ≥ 1) in time O(m). We start with the k-good tree-decomposition for the induced graph of N[v] in G that
consists of a bag B = N[v] adjacent to, for any i≤ j, each bag Bi = {v}∪{w ∈ N(v) : N(w)∩Ci 6= /0}. This takes
time O(m).

Now, at some step of the strategy, assume that we have built a k-good tree-decomposition (T,X ) of a connected
subgraph G0 of G. Let C1, · · · ,C j ( j ≤ 1) be the connected components of G\G0, and, for any i≤ j, let Si be the
set of the vertices of G0 that are adjacent to some vertex of Ci. Assume finally that, for any i ≤ j, there is a leaf
bag Bi ⊃ Si of (T,X ) where Pi = Bi \Si is a chordless path dominating Bi.

For any e ∈ E(G), we say that e = {x,y} is alive if there is i≤ j such that x ∈ Si∪Ci and y ∈Ci. Note that, if
an edge is alive, such an integer i is unique. An edge that is not alive is said dead. Note also that, after the initial
step, all edges in the bag B are dead and other edges are alive.

The next step consists of the following. Choose any i≤ j and let w be any vertex of Si such that Q = Pi∪{w}
is a chodless path. Note that by definition of Si, there is at least one edge from w to Ci and that such an edge is alive
before this step. We add the bag B′ = Q∪Bi∪ (N(w)∩Ci) adjacent to Bi. If Q is larger than k, by the above proof,
the algorithm finds a large cycle. Otherwise, the connected components C′1, · · · ,C′r of Ci∪Bi \B′ are computed in
time O(m). Let S′h, h ≤ r, be the subset of the vertices of Si that are adjacent to some vertex in C′h, and let Qh be
the smallest subpath of Q dominating S′h. Computing the sets S′1, · · · ,S′r only requires a time O(m) since we have
only to check the edges in B′. For any h≤ r, add a bag B′h = Qh∪S′h adjacent to B′.

It is easy to check that this algorithm follows the above proof and that it eventually computes the desired
tree-decomposition or returns a large cycle.

To conclude, it is easy to check that the set of edges alive after one step is contained in the set of edges alive
before this step, and that, at each step at least one edge (the one(s) from w to Si) become dead. Therefore, at each
step, the number of alive edges strictly decreases and the algorithm terminates when there are no more. Since each
step takes time O(m) and there are at most m steps, the result follows.

From the above theorem, it is easy to get the following corollaries.

Theorem 4. Let G be a graph that admits a k-good tree-decomposition. Then tw(G) ≤ (k−1)(∆−1)+2 where
∆ is its maximum degree, and tl(G)≤ k.

Proof. It directly follows the fact that, in a k-good tree-decomposition, each bag has a dominating path with < k
vertices.

Theorem 5. Any graph G that admits a k-good tree-decomposition has hyperbolicity at most b 3
2 kc.

Proof. Let G = (V,E) be a graph that admits a k-good tree-decomposition ({Xi|i∈ I},T = (I,M)). Let T be rooted
at bag X0, 0 ∈ I. For any u,v ∈ V , let us denote the distance between u and v by d(u,v) in G. By definition of a
k-good decomposition, for any i ∈ I and for any u,v ∈ Xi, d(u,v)≤ k.

Let x,y,z ∈V and let P1,P2,P3 be any three shortest paths in G between x and y, y and z, x and z respectively.
Let u ∈V (P1). To prove the Theorem, we show that there is v ∈V (P2)∪V (P3) such that d(u,v)≤ b 3

2 kc.
First, let us assume that there is i ∈ I such that u ∈ Xi and there is v ∈ (V (P2)∪V (P3))∩Xi 6= /0. In that case,

d(u,v)≤ k and the result holds.
Otherwise, let Tu be the subtree of T induced by {i ∈ I : u ∈ Xi}. Similarly, let Tx be the subtree of T induced

by {i∈ I : x∈ Xi} and Ty be the subtree of T induced by {i∈ I : y∈ Xi}. Let P be the path in T between Tx and Ty.
Note that P may be empty if V (Tx)∩V (Ty) 6= /0. Let j ∈V (Tx)∪V (Ty)∪V (P) that is closest to Tu in T . Note that
j /∈V (Tu) because otherwise we would be in the first case. Note also that either X j is a separator between x and u
or x ∈ X j, and either X j is a separator between y and u or y ∈ X j. Let Pxu and Puy be the subpaths of P1 from x to u
and from u to y respectively. By remark above, there exist vertices w ∈V (Pxu)∩X j and t ∈V (Puy)∩X j. Possibly,
w = t. Then d(w,u)+d(u, t) = d(w, t) because P1 is a shortest path, therefore, d(w,u)+d(u, t) = d(w, t) ≤ k. So
there is ` ∈ X j with d(u, `)≤ b k

2c.
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Finally, let us show that there is h ∈ V (P2 ∪P3)∩X j. If x ∈ X j or y ∈ X j, it is obvious. Otherwise, this is
because X j separates x and y in G, and therefore, z cannot be in both the component of G\X j containing x and of
the one containing y, therefore, one of the paths P2 or P3 should path trough X j.

To conclude, d(u,h)≤ d(u, `)+d(`,h)≤ b k
2c+ k ≤ b 3

2 kc.

Corollary 1. Any k-chordal graph G with maximum degree ∆ has treewidth at most (k−1)(∆−1)+2, tree-length
at most k and hyperbolicity at most b 3

2 kc.

Proof. By definition of k-chordal graph and Theorem 3, any k-chordal graph admits a k-good tree-decomposition.
The result follows Theorems 4 and 5.

Corollary 2. There is an algorithm that, given a m-edge graph G and k ≥ 3, states that either G has chordality at
least k+1 or G has hyperbolicity at most b 3

2 kc, in time O(m2).

4 Application of k-good tree-decompositions for routing

In this section, we propose a compact routing scheme for any n-node graph G that admit a k-good tree-decomposition
(this includes k-chordal graphs). ∆ denotes the maximum degree of G and, for any v ∈V (G), dv is its degree.

4.1 Model and performance of the routing scheme

We propose a labelled routing scheme which means that we are allowed to give one identifier, name(v), of O(logn)
bits to any vertex v of G. Moreover, following [FG01], we consider the designer-port model, which allows us
to give a label of O(logdv) bits to any edge of G incident to v ∈ V (G). More precisely, in our case, for any
e ∈ E(G) and any v ∈ V (G) incident to e, e receives one port-number qe,v ∈ {1, · · · ,dv} plus one bit. Finally,
to any node v ∈ V (G), we assign a routing table, denoted by Table(v), where are stored local information of size
O(max{k · log∆, logn}) bits. Any message has a header that contains the address name(t) of the destination t, three
modifiable integers pos ∈ {1, · · · ,k},cntd ,cnt ′d ∈ {−1, · · · ,∆+ 1}, two bits start ∈ {−1,0,1} and some memory
path of size O(k · log∆) bits.

Following our routing scheme, a message at some node v uses its header, name(v), Table(v) and the port-
numbers of the edges incident to v to compute its new header and to choose an edge e = {v,u} along which is goes.
Arriving at u, the message also knows by which edge it arrived. The length of the path followed by a message from
a source s ∈ V (G) to a destination t ∈ V (G), using the routing scheme, is denoted by |P(s, t)|, and the stretch of
the scheme is maxs,t∈V (G) |P(s, t)|−d(s, t) where d(s, t) is the distance between s and t in G.

To design our routing scheme, we combine the compact routing scheme in trees of [FG01] together with
the k-good tree-decomposition. Roughly, the scheme consists in following the paths in a BFS-tree F of G, using
the scheme in [FG01], and uses one bag of the tree-decomposition as a short-cut between two branches of F .
Intuitively, if the source s and the destination d are ”far apart”, then there is a bag X of the tree-decomposition that
separates s and d in G. The message follows the path in F to the root of F until it reaches X , then an exhaustive
search is done in X until the message finds an ancestor y of d, and finally it follows the path from y to d in F using
the scheme of [FG01]. The next theorem summarize the performances of our routing scheme.

Theorem 6. For any n-node m-edge graph G with maximum degree ∆ and admitting a k-good tree-decomposition,
there is a labelled routing scheme R with the following properties. R uses addresses of size O(logn) bits, port-
numbers of size O(log∆) bits and routing tables of size O(max{k · log∆, logn}) bits. The routing tables, addresses
and port-numbers can be computed in time O(m2). Except the address of the destination (not modifiable), the
header of a message contains O(k · log∆) modifiable bits. The header and next hop is computed in time O(1) at
each step of the routing. Finally, the additive stretch is ≤ 2k(dlog∆e+ 9

4 )−4.

The remaining part of this Section is devoted to the proof of Theorem 6.
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4.2 Data structures

4.2.1 Routing in trees [FG01].

Since, we use the shortest path routing scheme proposed in [FG01] for trees, we start by recalling some of the data
structures they use. Let T be a tree rooted in r ∈V (T ). For any v ∈V (T ), let Tv be the subtree of T rooted in v and
let wT (v) = |V (Tv)| be the weight of v. Consider a Depth-First-Search (DFS) traversal of T , starting from r, and
guided by the weight of the vertices, i.e., at each vertex, the DFS numbering visits first the largest subtree, then
the second largest subtree, and so on. For any v ∈V (T ), let IdT (v) ∈ {1, · · · ,n} be the rank of v in the DFS. It is
important to note that, for any u,v ∈V (T ), v ∈V (Tu) if and only if IdT (u)≤ IdT (v)≤ IdT (u)+wT (u)−1.

For any v∈V (T ) and any e incident to v, the edge e receives a port-number pT (e,v) at v as follows. pT (e,v) =
0 if v 6= r and e leads to the parent of v in T , i.e., e is the first edge of the path from v to r. Otherwise, let u1, · · · ,ud

be the children of v (d = dv if v = r and d = dv− 1 otherwise) ordered by the size of their weight, i.e., such that
wT (u1)≥ ·· · ≥ wT (ud). Then, let pT ({ui,v},v) = i, for any i≤ d.

Finally, each vertex v ∈ V (T ) is assigned a routing table RTT (v) and an address `T (v) of size O(logn) bits
allowing a shortest path routing in trees (see details in [FG01]).

4.2.2 Our data structures.

Let G be a graph with the k-good tree-decomposition (T = (I,M),{Xi|i ∈ I}). Let r ∈V (G). Let F be a Breadth-
First-Search(BFS) tree of G rooted at r. Let T be rooted in b ∈ I such that r ∈ Xb.

We use (some of) the data structures of [FG01] for both trees F and T . More precisely, for any v ∈V (G), let
IdF(v),wF(v), `F(v) and RTF(v) defined as above for the BFS-tree F . Moreover, for any edge e ∈ E(G) incident
to v, let pe,v =−1 if e /∈ E(F) and pe,v = pF(e,v) is defined as above if e ∈ E(F). These structures will be used to
route in F .

For any i∈ I, let IdT (i) and wT (i) be defined as above for the tree T . For any v∈V (G), let Bv ∈ I be the bag of
T containing v, i.e., v∈XBv , and that is closest to the root b of T . To simplify the notations, we set IdT (v) = IdT (Bv)

and wT (v) = wT (Bv). These structures will be used to decide “where” we are in the tree-decomposition when the
message reaches v ∈V (G).

For any v ∈V (G), let {u1, · · · ,udv}= N(v) be its neighborhood ordered such that IdF(u1)< IdF(u2)< · · ·<
IdF(udv). We give a second port-number to any edge. More precisely, for any e = {v,ui}, i ≤ dv, let qe,v = i.
This ordering will allow to decide quickly, in time O(log∆) by binary search, whether a vertex has some particular
vertex in its neighbors.

Finally, for any i ∈ I, let Pi = (v1, · · · ,v`) be the backbone of Bi with ` ≤ k−1 (recall we consider a k-good
tree decomposition). Let {e1, · · · ,e`−1} be the set of edges of Pi in order. We set Backbonei = {qe1,v1 ,qe1,v2 ,qe2,v2 ,

· · · , ,qe`−1,v`−1 ,qe`−1,v`}. For any v such that IdT (v) = i ∈ I, if v = v j ∈ Pi, then back(v) = ( /0, j) and if v /∈ Pi, let
back(v) = (qe,v, j) where e = {v,v j} and v j ( j ≤ `) is the neighbor of v in Pi with j minimum. This information
will be used to cross a bag (using its backbone) of the tree-decomposition.

We are now ready to define the address name(v) and the routing table Table(v) of any v ∈V (G).
Now for every v ∈ V (G), we define the address name(v) = 〈`F(v), IdT (v)〉. Note that, in particular, `F(v)

contains IdF(v). We also define the routing table of v as Table(v) = 〈RTF(v),wT (v),Backbone(v),back(v)〉.
Next table summarizes all these data structures.
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storage description
address `F(v) the address of v in tree F [FG01]
name(v) idT (v) the identifier of the highest bag Bv containing v in T

RTF(v) the routing table used of v for routing in F [FG01]
routing table wT (v) the weight of the subtree of T rooted in Bv

Table(v) Backbone(v) information to navigate in the backbone of Bv

back(v) information to reach the backbone of Bv from v

Clearly, name(v) has size O(logn) bits and Table(v) has size O(max{k · log∆, logn}) bits.
Moreover, any edge e incident to v receives two port-numbers pe,v and qe,v of size O(log∆) bits. Actually,

we can replace pe,v by one bit be,v that equals 1 if e ∈ E(F) and be,v = 0 otherwise. Indeed, if u1, · · · ,udv are
the neighbors of v ordered by increasing IdF , (pe′1,v

, · · · , pe′
d′ ,v

) is the subsequence of (qe1,v, · · · ,qedv ,v) (where
ei = {v,ui}, i ≤ dv) obtained by keeping only the edges e′ with be′,v = 1. Therefore, it is possible to compute pe,v

using the port-numbers q and the bits b. In the sequels, we use pe,v and qe,v for an easier description.

4.3 Routing algorithm in k-good tree-decomposable graphs

Let us consider a message that must be sent to some destination t ∈ V (G). Initially, the header of the message
contains name(t), the three counters pos,cntd , cnt ′d =−1, the bit start = 0 and the memory path = /0.

Let v ∈ V (G) be the current node where the message stands. First, using IdF(t) in `F(t) ∈ name(t), IdF(v)
in name(v) and wF(v) in RTF(v) ∈ Table(v), it is possible to decide in constant time if v is an ancestor of t in F
(which is the case iff IdF(v)≤ IdF(t)≤ IdF(v)+wF(v)−1). Similarly, using IdT (t) in name(t), IdT (v) in name(v)
and wT (v) in Table(v), it is possible to decide if the highest bag Bv containing v is an ancestor of Bt in T .

There are several cases to be considered.

• If v is the ancestor of t in F then, using RTF(v) and the scheme in trees of [FG01], the message follows
the edge leading to the child w of v in F on the shortest path in F toward t.

Since w is still an ancestor of t (or w = t) and F is a BFS-tree, the message will go on in that manner
until it reaches t via a shortest path from v to t in G.

• Else, if path = /0, then

– if neither Bv is an ancestor of Bt in T nor Bt = Bv, then the message follows the edge leading to the
parent of v in F , i.e., the edge with port-number pe,v = 0.
Note that, going on that way, the message will eventually reach a node w such that either w is an
ancestor of t in F or Bw is an ancestor of Bt in T since, by this rule, the message goes toward the
root r of F (via a shortest path) and because Br is the ancestor of any bag in T .

– Else, Backbone(v) is first copied in path in the header of the message.
The goal of it is to explore the bag Bv using its backbone P = {v1, · · · ,v`} (` < k), until the message
finds an ancestor of t. Clearly, an ancestor of t belongs to Bv since either Bv = Bt , or Bv is an
ancestor of Bt and therefore, Bv is a separator between r and t, or r ∈ Bv.
The first phase of the exploration of Bv is to reach its closer end among v1 and v`. To do so, the
message uses back(v) = (q, j) ∈ Table(v). First, pos is set to j. Then, if v /∈ P, i.e., q 6= /0, the
message uses the port-number q. Doing so, it reaches the node v j ∈ P. Finally, if j = 1, start is set
to 1 and, if j = `, then start = −1. In both cases, cnt = 0 and cnt ′ = dv j + 1. This last operation
means that the message can start the exploration of Bv from v1 or v`. (We distinguish that it is v1 or
v` by the value of start with 1 or −1.) Note that, from now, path 6= /0 and pos 6=−1.
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• Else, if start = 0, then the message is at v = v j ∈ P\{v1,v`} where P = {v1, · · · ,v`} is the backbone of
some bag of the tree-decomposition. Moreover, in the field path of the header, there are the port-numbers
allowing to follow P. If j ≤ `

2 , then the message follows the corresponding port-number to reach v j−1.
pos = j− 1. If j− 1 = 1, then cnt = 0, cnt ′ = dv1 + 1 and start is set to 1. Otherwise j > `

2 , then the
message follows the corresponding port-number to reach v j+1. pos = j+ 1. If j+ 1 = `, then cnt = 0,
cnt ′ = dv` +1 and start is set to −1.

• Else, if start 6= 0, then the exploration of a bag containing an ancestor of t has begun. The key point is
that any ancestor w of t in F is such that IdF(w) ≤ IdF(t) ≤ IdF(w)+wF(w)− 1. Using this property,
in each vertex v j of the backbone P = {v1, · · · ,v`}, the message explores the neighbors of v j by binary
search.

– If cntd = cnt ′d − 1, the neighborhood of the current node v = v j, where j = pos, has already been
explored and no ancestor of t has been found. In that case, using path, the message goes to v j+start

the next vertex in the backbone. pos = j+ start.

– Otherwise, let pn = b cnt ′d+cntd
2 c. The message takes port-number r in v (considering the port-

numbers q, i.e., considering all neighbors of v) toward vertex w. If w is an ancestor of t, we go
to the first case of the algorithm. Otherwise, the message goes back to v = v j. This is possible
because our model allows a message to remember the port-number by which it arrived to a node.
Moreover, if IdF(w)< IdF(t)+wF(w)−1, then cntd is set to pn and cnt ′d is set to pn otherwise.

The fact that the message eventually reaches its destination follows the above description. Moreover, the compu-
tation of the next hop and the modification of the header clearly take time O(1).

4.4 Performance of our routing scheme

In this subsection, we give an upper bound on the stretch of the routing scheme described in previous section.

Lemma 1. Our routing scheme has stretch ≤ 2k(dlog∆e+ 9
4 )−4.

Proof. Let s be the source and t be the destination. Recall the main idea of the algorithm: We route along the path
from s to r in tree F until we arrive a vertex x, whose bag Bx is an ancestor of t’s bag Bt in tree T . Then applying
binary search algorithm, we search in the bag Bx for a vertex y, which is an ancestor of t in tree F . In the end, we
route from y to t in tree F .

Because F is a BFS tree and x is an ancestor of s in F , the length of the path followed by the message from
s to x is d(s,x), the distance between s and x in G. Similarly, because y is an ancestor of t in F , the length of
the path followed by the message from y to t is d(y, t). Let track(x,y) be the length of the path followed by
the message in the Bx from x to y. Therefore, the length of the path followed by the message from s to t is
d(s,x)+ track(x,y)+d(y,d).

From the binary search algorithm, for any node of the backbone, the message visits at most dlog∆e neighbors
and this causes a path of length 2dlog∆e. There are at most k−1 nodes on the backbone of the bag Bx. The worst
case occurs when x is the neighbor of the middle vertex of the backbone path, then the message goes to one end
of the backbone, while y is a neighbor of the other end of the backbone. After arriving at x, the message goes to
the closest end of the backbone, i.e., visits at most d(k− 1)/2e vertices, then it visits dlog∆e neighbors of all the
≤ k−1 nodes of the backbone and y is the last vertex visited. Therefore, track(u,a)≤ 2k(dlog∆e+ 3

4 )−4. Then
it is sufficient to prove d(s,x)+d(y, t)≤ d(s, t)+3k.

If Bs is an ancestor of Bt , then x = s and d(s,x) = 0. Moreover, if Bt = Bx, d(y, t) = 0. Otherwise, let B be
the nearest common ancestor of Bs an Bt in the tree-decomposition T . Let Q be a shortest path between s and t.
Because the set of vertices in B separates s from t in G, let x′ be the first vertex of Q in B and let y′ the last vertex
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of Q in B. Let Q = Q1∪Q2∪Q3 where Q1 is the subpath of Q from s to x′, Q2 is the subpath of Q from x′ to y′ and
Q3 is the subpath of Q from y′ to t. Note that because each bag has diameter at most k, d(x′,y′)≤ k.

We first show that x ∈ B. If Bx = B, it is trivially the case. Let Px be the path followed from s to x. Since Bx is
an ancestor of B, B separates s from x. Therefore, V (Px)∩B 6= /0. Let h be the first vertex of Px in B. Since h ∈ B,
the highest bag containing h is an common ancestor of Bs and Bt . Therefore, when arriving at h, the message must
explore Bh. Hence, h = x ∈ B.

Finally, since x ∈ B, d(x,x′) ≤ k. Moreover, y ∈ Bx therefore d(y,x) ≤ k. Thus, d(y,y′) ≤ d(y,x)+d(x,x′)+
|Q2| ≤ 2k+ |Q2|. Finally, d(s,x)≤ d(s,x′)+d(x′,x)≤ k+ |Q1| and d(y, t)≤ d(y,y′)+d(y′, t)≤ 2k+ |Q2|+ |Q3|.
Therefore, d(s,x)+d(y, t)≤ |Q1|+ |Q2|+ |Q3|+3k ≤ |Q|+3k = d(s, t)+3k.

5 Conclusion and Further Work

It would be interesting to reduce the O(k · log∆) stretch due to the dichotomic search phase of our routing scheme.
Another interesting topic concerns the computation of tree-decompositions not trying to minimize the size of the
bag but imposing some specific algorithmically useful structure.
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