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A CLT for renewal processes with a �nite set of interarrival

distributions

Aurel Sp¼ataru1

Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy,

Calea 13 Septembrie, nr 13, 76100 Bucharest 5, Romania

Abstract

We prove a central limit theorem for a renewal process based on a sequence of independent

non-negative interarrival times whose distributions are taken from a �nite set. The result

extends the classical central limit theorem obtained by Takács (1956).

Keywords: Renewal process, �nitely inhomogeneous random walk, central limit theorem

1 Introduction

We consider a renewal processN(t); t � 0; based on a sequenceXn; n 2 N; of independent

non-negative random variables, where the interarrival times Xn; n 2 N; have a �nite number

of possible distributions. More precisely, the set N = f1; 2; :::g is partitioned into p in�nite

subsets N1; :::Np; and assume there exists a �nite collection of random variables Y1; :::; Yp

such that the distribution of Xn coincides with that of Yi whenever n 2 Ni; 1 � i � p: In

this case, following Durrett, Kesten and Lawler (1991) and Kesten and Lawler (1992), the

sequence S0 = 0; Sn = X1+ :::+Xn; n 2 N; is called a �nitely inhomogeneous random walk.

A summary of results on �nitely inhomogeneous random walks can be found in Sp¼ataru

(2010). Some classical results, of interest for renewal theory, can be generalized to the

case p � 2: (For these generalizations, the assumption Xn � 0 is dropped.) Actually, if

1 Tel.: + 40217716559;
E-mail address: aspataru@rdslink.ro
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E jXnjs < 1; n 2 N; then Sn=n1=s
a:s:! 0 for 0 < s < 1; while (Sn � ESn)=n1=s

a:s:! 0 for

1 � s < 2: Consequently, when 1 � s < 2 we can only assert that

lim inf
n

Sn
n1=s

= lim inf
n

ESn
n1=s

a.s., lim sup
n

Sn
n1=s

= lim sup
n

ESn
n1=s

a.s. (1.1)

This is a generalization of the Kolmogorov-Marcinkiewicz-Zygmund strong law of large num-

bers. Next, if EX2
n <1; n 2 N; it is not di¢ cult to check that the Lindeberg-Feller central

limit theorem becomes

Sn � ESnq
�1(n)�21 + :::+ �p(n)�

2
p

D! �; (1.2)

where � is the standard normal distribution function, and �i(n) = #Ni \ [1; n] and �2i =

VarYi for 1 � i � p: Finally, if E jXnj < 1; n 2 N; and � is a �nite f�(X1; :::; Xn)g-time

with E� <1; then E jS� j <1 and

( min
1�i�p

EYi)E� � ES� � (max
1�i�p

EYi)E�: (1.3)

This extension of Wald�s equation can be obtained by arguing as in the classical i.i.d. case

p = 1:

Resting on these generalizations, we can now point out some basic facts concerning the

renewal process N(t); t � 0; de�ned as N(t; !) = maxfn : Sn(!) � tg; ! 2 
: ((
;K; P ) is

the underlying probability space.) Throughout we assume that 0 < EYi = �i and EY
2
i <1;

1 � i � p; and setm = min
1�i�p

�i andM = max
1�i�p

�i: Let 
0 = f! 2 
 : (Sn(!)�ESn)=n! 0g:

Then, on account of (1.1),

lim inf
n

Sn(!)

n
= lim inf

n

ESn
n

= lim inf
n

�1(n)�1 + :::+ �p(n)�p
n

� m > 0; ! 2 
0;

and so Sn(!) ! 1; ! 2 
0: This entails that N(t; !) < 1 for all t � 0 and ! 2 
0:

Moreover, since each Xn is �nite-valued, lim
t!1

N(t; !) = 1; ! 2 
0: Further, using again

2



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

(1.1), it follows that

M�1 � lim inf
t!1

N(t; !)

t
� lim sup

t!1

N(t; !)

t
� m�1; ! 2 
0:

The renewal function U(t) = EN(t); t � 0; is �nite-valued, and so right-continuous, also

in this new set-up. To see this, choose a > 0 such that b = max
1�i�p

P (Yi � a) < 1: Next, for

t � 0; choose l 2 N such that al > t: For any j � 0; we have

P (Xj+1 + :::+Xj+l > t) � P (Xj+1 > a; :::; Xj+l > a)

= (1� P (Xj+1 � a)):::(1� P (Xj+l � a)) > (1� b)l:

Therefore, if kl � n < (k + 1)l; we get

P (Sn � t) � P (Skl � t) � P (Xj+1 + :::+Xj+l � t; 0 � j � k � 1) � (1� (1� b)l)k:

Hence, as N(t) =
P

n�1 IfSn � tg; we obtain

U(t) =
X
n�1

P (Sn � t) =
X
k�1

X
kl�n<(k+1)l

� l
X
k�1

(1� (1� b)l)k <1:

Finally, by applying (1.3) and paralleling the proof of the i.i.d. case, it is not di¢ cult to

obtain the version of the elementary renewal theorem in the new setting, namely

M�1 � lim inf
t!1

U(t)

t
� lim sup

t!1

U(t)

t
� m�1:

2 A central limit theorem

Takács (1956) established the following central limit theorem for the renewal process

N(t); t � 0; corresponding to the i.i.d. case, i.e. p = 1: If � = EX1 and �2 = VarX1; then

lim
t!1

P (
N(t)� t=�
�
p
t=�2

� x) = �(x); x 2 R: (2.1)
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Formula (2.1) was generalized in several directions by various authors, in which connection

see the excellent summary of results on renewal theory in Gut (2009). The next example

shows that, depending on the partition of N and additional conditions, an analogue of (2.1)

holds in our setting.

Example 1. Suppose that �i(n)=n ! ri; 1 � i � p; and put � = r1�1 + ::: + rp�p and

�2 = r1�
2
1 + :::+ rp�

2
p: If �1(n)�1 + :::+ �p(n)�p � n� = o(

p
n) as n!1; then, resting on

the proof of the classical i.i.d. case, one can see that (2.1) is veri�ed.

Applying (1.2) and assuming that �1(n)�21 + ::: + �p(n)�
2
p s n�2 as n ! 1 for some

� 2]0;1[; we extend the central limit theorem to the new set-up. To do this, we need the

following lemma.

Lemma 1. Let f be the function whose graph is the polygonal line joining in order the

points (ESn; n); n � 0: Then, for any c 2 R;

lim
t!1

f(t)

f(t+ c
p
f(t))

= 1: (2.2)

Proof. Notice �rst that
t

M
� f(t) � t

m
; t � 0; (2.3)

and so

lim
t!1

p
f(t)

t
= 0: (2.4)

(2.4) implies that lim
t!1

(t + c
p
f(t)) =1; c 2 R: Next, a small modi�cation of the graph of

f; making f everywhere di¤erentiable, shows that

f(t)

f(t+ c
p
f(t))

� 1 = �c
p
f(t)

f(t+ c
p
f(t))

� a(t) (2.5)
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with a(t) � 1=m; whenever t+ c
p
f(t) > 0: By (2.3) and (2.4), we have

p
f(t)

f(t+ c
p
f(t))

�

q
t
m

t+c
p
f(t)

M

=
Mp
m
� 1
p
t(1 + c

p
f(t)

t
)
! 0 as t!1: (2.6)

Now (2.2) follows from (2.5) and (2.6): �

We can now state and prove our main result.

Theorem 1. Let f be as in Lemma 1, and assume that �1(n)�21 + ::: + �p(n)�
2
p s n�2 as

n!1 for some � 2]0;1[: Then

lim
t!1

P (N(t) > f(t� x�
p
f(t)) = �(x); x 2 R: (2.7)

Proof. Write P (t; x) = P (N(t) > f(t� x�
p
f(t)); t � 0; x 2 R: For n � 1; we have

ESn�1 � t < ESn () n� 1 � f(t) < n: (2.8)

For �xed x 2 R; we have noticed in the proof of Lemma 1 that lim
t!1

(t � x�
p
f(t)) = 1:

Suppose now that t�x�
p
f(t) > 0; and let n = n(t) be de�ned by ESn�1 � t�x�

p
f(t) <

ESn: Observe that n!1 as t!1: By (2.8),

n� 1 � f(t� x�
p
f(t)) < n: (2.9)

We have x�
p
f(t)� EXn � t� ESn < x�

p
f(t); and so

x

r
f(t)

n
� EXn

�
p
n
� t� ESn

�
p
n

< x

r
f(t)

n
: (2.10)

Further, we have

P (t; x) = P (N(t) � n) = P (Sn � t) = P (
Sn � ESn
�
p
n

� t� ESn
�
p
n
):

5
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In view of (2.10), this implies

P (
Sn � ESn
�
p
n

� x
r
f(t)

n
� EXn

�
p
n
) � P (t; x) � P (Sn � ESn

�
p
n

� x
r
f(t)

n
): (2.11)

On account of (2.9), we see that

n� 1
n

� f(t)

f(t� x�
p
f(t))

� f(t)

n
<

f(t)

f(t� x�
p
f(t))

:

According to Lemma 1, this entails that

lim
t!1

f(t)

n
= 1: (2.12)

Finally, since EXn �M; n 2 N; (2.7) follows from (1.2), (2.11) and (2.12): �

Remark 1. If p = 1; � = EX1 and �2 = VarX1; then f(t) = t=�; t � 0; and (2.7) becomes

lim
t!1

P (N(t) >
t

�
� x�

r
t

�3
) = �(x); x 2 R:

Thus (2.1) is a special case of (2.7).

Remark 2. Theorem 1 applies with �2 = r1�21+:::+rp�
2
p whenever �i(n)=n! ri; 1 � i � p:

Remark 3. An inspection of the proof of Theorem 1 shows that (2.7) holds true whenever

Xn; n 2 N; is an arbitrary sequence of random variables with 0 < inf
n2N

EXn � sup
n2N

EXn <1

such that (Sn � ESn)=�
p
n

D! � for some � 2]0;1[:
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