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A moment inequality of the Marcinkiewicz-Zygmund type

for some weakly dependent random �elds

Lionel Truquet

July 4, 2010

Abstract

The goal of this note is to give a new moment inequality for sums of some weakly
dependent random �elds. Our result extends moment bounds given by Wu (2007) [14]
or Liu & Lin (2008) [11] for causal autoregressive processes and follows using recursive
applications of the Burkhölder inequality for martingales.

AMS subject classi�cation: Primary: 60G60, secondary: 60F99.

Keywords: random �elds, weak dependence, moment inequalities.

1 Introduction

In this paper, we consider random �elds X indexed by Zd, d ≥ 1 and which can be written
as a Bernoulli shift, e.g

Xt = H
(
(ξt−j)j∈Zd

)
, t ∈ Zd, (1)

where ξ is an independent and identically distribued E−valued random �eld and H is a
real-valued measurable function. We consider here E = Rk with k ∈ N∗ ∪{∞} but a more
general measurable space can be considered. A random �eld of the form (1) is strictly
stationary. The most well-known examples of such random �elds are linear random �elds,
i.e

Xt =
∑

j∈Zd
ajξt−j , t ∈ Zd. (2)

Spatial AR processes which write as linear random �elds were extensively studied in spatial
statistics (see [9] for a nice presentation).
Others (nonlinear) examples of such random �elds are given in [8] as solutions of autore-
gressive équations of the form:

Xt = F
(
(Xt−j)j∈Zd ; ξt

)
, t ∈ Zd,

where F is a Lipschitzian function.
In this note, we prove moment inequalities of the Marcinkiewicz-Zygmund type for the
partial sums of a random �eld X of the form (1). More precisely we prove that for a real
number q > 1,

‖S(B)‖q ≤ Cdq
∑

k∈Zd
‖p(ξ)
d,kd
◦ · · · ◦ p(ξ)

1,k1
(X0)‖q|B|1/q

′
, (3)
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where B is a �nite subset of Zd, S(B) =
∑

j∈B
Xj , q

′ = min(q, 2) and

for (s, `) ∈ {1, . . . , d} × Z, p(ξ)
s,` denotes the projection operator de�ned for an integrable

random variable Z by

p
(ξ)
s,` (Z) = Z − E (Z/σ(ξj/js 6= `)) . (4)

The constant Cq is the universal constant of the Burkhölder inequality (see [10]) and then
it does not depend on the distribution of the random �eld. ‖ · ‖q denotes the usual norm
of Lq. Denoting

Aq =
∑

k∈Zd
‖p(ξ)
d,kd
◦ · · · ◦ p(ξ)

1,k1
(X0)‖q, (5)

Aq is a postive constant depending only on q and the distribution of the random �eld ξ.
Obviously inequality (3) is interesting only when Aq < ∞. The latter condition basically
indicates short-range dependence. Then we study in details the �niteness of the constant
Aq when the random �eld X writes as a functional of linear �elds.
An inequality of the form (3) is a useful tool to study the behaviour of sums of dependent
random variables. Strong laws of large numbers, strong invariance principle and other vari-
ants of limit theorems are often based on this kind of inequality. Some existing methods to
obtain such inequalities use mixing coe�cients. φ−mixing random �elds are considered in
Dedecker [3] and Delyon [5], an inequality for α−mixing random �elds is given in Doukhan
[6]. Unfortunately, for random �elds de�ned by (1), mixing conditions lead to restrictive
assumptions on the random �eld distribution (see [9] for the case of linear random �elds)
or are impossible to check (see the counterexample of Andrews [1] when d = 1). On the
other hand, general weak dependence conditions formulated in terms of covariances of
Lipschitzian functionals can be applied to random �elds de�ned by (1) and corresponding
moment inequalities are available. We refer to [4] and [7] for weak dependence conditions
that generalize strong mixing and to [2] for a generalization of associated random �elds.
Nevertheless, despite their generality, such approaches do not exploit the particular form
of the random �eld when it writes as a functional of independent random variables and
lead to complicated and restrictive conditions for the representation (1). When d = 1,
martingales decompositions and Burkhölder inequality for martingales have been used to
prove simple moment bounds for partial sums of causal processes of the form (2). We refer
to [14] and [11] for details. In this paper, we generalize this approach to random �elds and
we prove inequality (3) using a simple recursive application of the Burkhölder inequality.
We next study in details the application of such inequalities to partial sums of transforms
of linear random �elds.

2 Moment bounds

We �rst state basic properties of speci�c conditional expectations and operators ps,` de�ned
in (4).

Lemma 1 Let Z be an integrable random variable, ξ an i.i.d random �eld and q a real

number with q ≥ 1. Then:

1. If A,B ⊂ Zd,
E (E (Z/ξA) /ξB) = E (Z/ξA∩B) .

2
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2. If A ⊂ Zd and B ⊂ Zd \A:

‖E (Z/ξA∪B)− E (Z/ξA) ‖q ≤ ‖Z − E
(
Z/ξZd\B

)
‖q.

3. If (s, s′, `, `′) ∈ {1, . . . , d}2 × Z× Z:

‖p(ξ)
s,` ◦ p

(ξ)
s′,`′(Z)‖q ≤ 2 min

(
‖p(ξ)
s,` (Z)‖q, ‖p(ξ)

s′,`′(Z)‖q
)
.

Proof of Lemma 1

1. The result follows from the independence properties of the random �eld ξ.

2. From the point 1., we have:

E (Z/ξA∪B)− E (Z/ξA) = E
(
Z − E

(
Z/ξZd/B

)
/ξA∪B

)
,

and the result is a consequence of the Jensen inequality.

3. We have from the point 1.:

p
(ξ)
s,` ◦ p

(ξ)
s′,`′(Z) = Z − E (Z/ξA) + E (Z − E (Z/ξA) /ξB) ,

for A = {j ∈ Zd/js 6= `} and B = {j ∈ Zd/js′ 6= `′} and from the triangular
inequality and Jensen inequality, we obtain:

‖p(ξ)
s,` ◦ p

(ξ)
s′,`′(Z)‖q ≤ 2‖p(ξ)

s,` (Z)‖q.

Exchanging A and B, the result follows.�

The main result of the paper can now be stated.

Theorem 1 Let X be a real centered random �eld indexed by Zd, d ≥ 1 and such that

E|Xt| <∞ for all t ∈ Zd. Assume futhermore that there exists an i.i.d random �eld ξ such
that σ(X) ⊂ σ(ξ). Then for a real number q > 1, we have with q′ = min(q, 2):

‖S(B)‖q ≤ Cdq
∑

k∈Zd

(∑

t∈B
‖p(ξ)
d,td+kd

◦ · · · ◦ p(ξ)
1,t1+k1

(Xt)‖q
′
q

)1/q′

, (6)

where Cq denotes the universal constant of the Burkhölder inequality for martingales.

Remarks

1. The proof of inequality (6) do not use the representation (1) and the stationarity
assumption. Note that for a stationary random �eld, inequality (6) coincides with
(3).
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2. Let X be a random �eld of the form (1) and such that Aq < ∞ for a real number
q > 1. Then the Móricz theorem [12] can be used to deduce from the bounds (3) a
moment inequality for partial maxima when B is a block of Zd, i.e

B = ((a1, b1]× . . .× (ad, bd]) ∩ Zd.

More precisely, if q > 2, we have:

‖max
W/B

|S(W )|‖q ≤ (5/2)d/q
(
1− 2

2−q
2q

)−d
CdqAq|B|1/2,

where the notation W / B means W ⊂ B and W is a block of Zd with the same
minimal vertex than B, i.e

W = ((a1, c1]× . . .× (ad, cd]) ∩ Zd.

In fact the result of Móricz is analytic, in the sense that it does not involve any
dependence properties. When q ∈ (1, 2), it gives the bound

‖max
W/B

|S(W )|‖q ≤ 5d/q2d(q−1)/qCdqAq|B|1/q
d∏

i=1

log(bi − ai).

Proof of Theorem 1

1. We �rst prove the result for d = 1. For j ∈ Z and an integrable random variable Z,
we de�ne:

Pi(Z) = E (Z/Fi)− E (Z/Fi−1) ,

where Fi = σ(ξj/j ≤ i). We use the following decomposition

Xi = Xi − E (Xi/Fi) + E (Xi/Fi)
=

∑

j≥1

Pi+j(Xi) +
∑

j≥0

Pi−j(Xi)

=
∑

j∈Z
Pi+j(Xi)

Then we have S(B) =
∑

j∈Z

∑

i∈B
Pi+j(Xi), and (Pi+j(Xi))i∈Z is a martingale di�erence

for the �ltration (Fi+j)i∈Z. The Burkhölder inequality leads to:

‖S(B)‖q ≤
∑

j∈Z
‖
∑

i∈B
Pi+j(Xi)‖q ≤ Cq

∑

j∈Z



E

∣∣∣∣∣
∑

i∈B
Pi+j(Xi)2

∣∣∣∣∣

q/2




1/q

.

If q ≥ 2, the triangular inequality for the Lq/2 norm leads to

‖S(B)‖q ≤ Cq
∑

j∈Z

{∑

i∈B
‖Pi+j(Xi)‖2q

}1/2

.
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Setting A = {` ∈ Z/` ≤ i + j − 1} and B = {i + j}, an application of point 2 in
Lemma 1 yields to

‖Pi+j(Xi)‖q ≤ ‖p(ξ)
1,i+j(Xi)‖q.

Inequality (6) follows.
If now q ∈ (1, 2], inequality (6) is a consequence of the previous remark and the
bound (∑

i∈B
Pi+j(Xi)2

)q/2
≤
∑

i∈B
|Pi+j(Xi)|q.

2. We show the result for d ≥ 2 using induction on d. Suppose that the bound (6)
holds for any random �eld indexed by Zs, s ≤ d− 1 and satisfying the assumptions
of Theorem 1. We have X = (Xi,j)i∈Z,j∈Zd−1 and

S(B) =
∑

i∈A
Yi, Yi =

∑

j∈Bi
Xi,j ,

where B = ∪i∈A{i} × Bi. It is obvious that (Yi)i∈Z satis�es the assumptions of
Theorem 1 with the random �eld ξ′i = ξi,Zd−1 , i ∈ Z. Then, using inequality (6) for
d = 1, we obtain

‖S(B)‖q ≤ Cq
∑

k1∈Z

(∑

i∈A
‖p(ξ′)

1,i+k1
(Yi)‖q

′
q

)1/q′

. (7)

Note also that for ` ∈ Z, we have pξ
′

1,` = pξ1,`. Then for k1 ∈ Z and i ∈ A, we

have p
(ξ′)
1,i+k1

(Yi) =
∑

j∈Bi p
(ξ)
1,k1

(Xi,j). Since the random �eld
(
p
(ξ)
1,k1

(Xi,j)
)
j∈Bi

is

indexed by Zd−1 and satis�es the assumptions of Theorem 1 with the i.i.d random
�eld ξ′′ = (ξZ,j)j∈Zd−1 , we can apply the induction hypothesis. We observe that for

s ∈ {1, . . . , d− 1}, p(ξ′′)
s,k = p

(ξ)
s+1,k. Then we get the following bound:

‖p(ξ)
1,i+k1

(Yi)‖q

≤ Cd−1
q

∑

k2,...,kd∈Z


∑

j∈Bi
‖p(ξ)
d,jd−1+kd

◦ · · · ◦ p(ξ)
2,j1+k2

(
p
(ξ)
1,i+k1

(Xi,j)
)
‖q′q




1/q′

≤ Cd−1
q

∑

k2,...,kd∈Z


∑

j∈Bi
‖p(ξ)
d,jd−1+kd

◦ · · · ◦ p(ξ)
2,j1+k2

◦ p(ξ)
1,i+k1

(Xi,j)‖q
′
q




1/q′

.

Then, using the triangular inequality for the norm ‖x‖ =
(∑

i |xi|q
′
)1/q′

, we obtain

(∑

i∈A
‖p(ξ)

1,i+k1
(Yi)‖q

′
q

)1/q′

≤ Cd−1
q

∑

k2,...,kd∈Z


∑

i∈A

∑

j∈Bi
‖p(ξ)
d,jd−1+kd

◦ · · · ◦ p(ξ)
1,i+k1

(Xi,j)‖q
′
q




1/q′

,

and the bound (6) follows from (7) using the equality
∑

i∈A
∑

j∈Bi =
∑

(i,j)∈B.�

5
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The iterations involving the operators p
(ξ)
s,` are not always easy to evaluate. The follow-

ing corollary will be useful to verify the condition Aq <∞ in most of examples.

Corollary 1 Let X be a real random �eld satisfying the assumptions of Theorem 1. Then

Aq ≤ 2d−1
d∑

s=1

∑

n∈N
(2n+ 1)d−1

∑

|ks|=n
cs,ks , (8)

where for s ∈ {1, . . . , d},

cs,ks =

(∑

t∈B
‖p(ξ)
s,ts+ks

(Xt)‖q
′
q

)1/q′

.

Remarks

1. When the random �eld X writes as in (1) we have the bound

‖p(ξ)
s,ts+ks

(Xt)‖q ≤ ‖Xt − X̃t,s,ks‖q, (9)

where X̃t,s,ks = H

((
ξ̃t−j

)
j∈Zd

)
, ξ̃t−j = ξt−j if js 6= −ks and ξ′t−j otherwise, ξ′

being a copy of ξ. When d = 1, the right hand side of (9) is the coe�cient denoted
by θq,k used by Wu [13] to measure the dependence of a stationary process X. In
this case, condition Aq <∞ holds when

∑

k∈Z
‖p(ξ)

1,k(X0)‖q <∞,

which is similar to the condition
∑

k≤0 θq,k <∞ used by Liu and Lin [11] (see Lemma
A1 and Lemma A2 of their paper) for a causal stationary process

Xt = H (ξt−j)j≥0) , t ∈ Z.

2. Note that when d = 1, Aq is �nite if and only if the right hand side of inequality
(8) is �nite. For d ≥ 2 this is no more true. For example, for the simple example of
linear random �elds (2), we have

Aq =
∑

k∈Zd
|ak| × ‖ξ0‖q.

In contrast, when q = 2 and ξ0 is square integrable, the right hand side of (8) is �nite
provided for s = 1, . . . , d ∑

n∈N
nd−1

√ ∑

|js|=n
a2
j <∞,

which is more restrictive than the summability of coe�cients (aj) .

6
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Proof of Corollary 1 From point 3 in Lemma 1, a straightforward induction leads to
the following inequality:

‖p(ξ)
d,td+kd

◦ · · · ◦ p(ξ)
1,t1+k1

(Xt)‖q ≤ 2d−1 ∧ds=1 ‖p(ξ)
`,ks+ts

(Xt)‖q. (10)

Assume that the random �eld X satis�es the assumptions of Theorem 1. We have

∑

k∈Zd

(∑

t∈B
∧ds=1‖p(ξ)

s,ts+ks
(Xt)‖q

)1/q′

≤
d∑

s=1

∑

n∈N

∑

k/‖k‖∞=|ks|=n
cs,ks

≤
d∑

s=1

∑

n∈N
(2n+ 1)d−1

∑

|ks|=n
cs,ks .

Then the conclusion of Corollary 1 follows.�

3 Examples

In the sequel ξ denotes an i.i.d random �eld satisfying Eξ0 = 0. For a random �eld X of
the form (1), inequality (3) is interesting provided the constant Aq de�ned in (5) is �nite.
For the simple case of a linear random �eld (2), we have

Aq =
∑

k∈Zd
|aj |‖ξ0‖q.

Then provided that ξ0 ∈ Lq, we have Aq < ∞ if and only if
∑

j∈Zd |aj | < ∞. The latter
condition is a weak dependence condition since in this case the autocovariances of the �eld
are summable.
A precise evaluation of the constant Aq may also be possible when the random �eld X has a
polynomial expression with respect to the coordinates of ξ. As an example, we investigate
a moment bound for the covariances of linear random �elds.

Corollary 2 Let Yt =
∑

j∈Zd
ajξt−j, t ∈ Zd with

∑

j∈Zd
|aj | <∞, and for a given h ∈ Zd

Xt = YtYt+h − E (YtYt+h) .

Assume that ξ0 ∈ L2m with m > 1. Then for 1 < q ≤ m, Aq <∞.

Proof of Corollary 2 Let k ∈ Zd and B = p
(ξ)
d,td+kd

◦ · · · ◦ p(ξ)
1,t1+k1

(Xt). Then we are
going to prove

B =
∑

(α,β)∈I


∑

j∈Aα
ajξt−j


×


∑

j∈Aβ
aj+hξt−j


+ a−ka−k+h

(
ξ2t+k − Eξ20

)
, (11)

7
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where
I = ∩ds=1{(α, β) ∈ {0, 1}d × {0, 1}d/(α, β) 6= (0, 0) and αsβs = 0},
Aα = ∩ds=1{j ∈ Zd/js = −ks if αs = 0 and αs = 1 otherwise }.

One can easily see that if (α, β) ∈ I, then α 6= β and since there exists s ∈ {1, . . . , d} such
that αs = 0 and βs = 1 (or the contrary) then the sums

∑
j∈Aα ajξt−j and

∑
j∈Aβ ajξt−j

are independent. Before giving a proof of (11), we show why the conclusion of Corollary 2
holds. From (11) we obtain the following bound:

‖B‖q ≤
∑

(α,β)∈I

∑

j∈Aα
|aj | ·

∑

j∈Aβ
|aj+h|‖ξ0‖2q + |a−ka−k+h

(
ξ20 − σ2

)
|,

where σ2 = Eξ20 . Let q ∈ (1,m]. Using assumptions on ξ and coe�cients (aj), Aq < ∞ if
for (α, β) ∈ I,

G =
∑

k∈Zd


∑

j∈Aα
|aj | ·

∑

j∈Aβ
|aj+h|


 <∞. (12)

If α = 0, then Aα = −k and G ≤ ∑j |aj | ×
∑

j |aj+h| < ∞. The same holds if β = 0.
Now suppose that ` = ]{s ∈ {1, . . . , d}/αs = 0} satis�es 1 ≤ ` ≤ d − 1. Without loss
of generality, we assume that αs = 0, s ≤ `. Then by de�nition of I, we have βs = 0 if
s ≥ `+ 1. In this case, we obtain

G ≤
∑

k∈Zd


 ∑

j`+1,...,jd

|a−k1,...,−k`,j`+1,...,jd |


 ·


 ∑

j1,...,j`

|aj1+h1,...,j`+h`,−k`+1+h`+1,...,−kd+hd |




≤
∑

j∈Zd
|aj | ·

∑

j∈Zd
|aj+h|.

Then G <∞ and the conclusion of Corollary 2 follows.
Now we prove (11). We �rst introduce some notations. For s ∈ {1, . . . , d}, let

I(s) = ∩si=1{(α1, . . . , αs, β1, . . . , βs) ∈ {0, 1}2s αiβi = 0},
A(s)
α = ∩si=1{j ∈ Zd / ji = −ki if αi = 0, and ji 6= −ki otherwise },

Bs = p
(ξ)
s,ts+ks

◦ · · · ◦ p(ξ)
1,t1+k1

(Xt).

Using a �nite induction on the set {1, . . . , d}, we are going to prove that for s ∈ {1, . . . , d},

Bs =
∑

(α,β)∈I(s)



∑

j∈A(s)
α

ajξt−j


×



∑

j∈A(s)
β

aj+hξt−j


−

∑

ji=−ki,i=1,...,s

ajaj+hσ
2. (13)

Observe that Bd = B. The proof of this induction uses the following remark: for two
subsets C and D of Zd, we have for s ∈ {1, . . . , d} and Zt =

∑
j∈C ajξt−j ·

∑
j∈D aj+hξt−j ,

ps,ts+ks (Zt) =
∑

j∈C,js=−ks
ajξt−j ·

∑

j∈D,js 6=−ks
aj+hξt−j

+
∑

j∈C,js 6=−ks
ajξt−j ·

∑

j∈D,js=−ks
aj+hξt−j

− σ2
∑

j∈C∩D,js=−ks
ajaj+h.

8
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• The case s = 1 is an easy consequence of the previous remark.

• Suppose that equality (13) holds for Bs. Then applying again the previous equality
to Bs+1 = ps+1,ks+1(Bs), equality (13) easily follows for Bs+1.�

The next corollary gives a su�cient condition in order to have Aq <∞ for some locally
Hölderian functionals of linear random �elds. Here we apply Corollary 1.

Corollary 3 Let h : R 7→ R be a function such that there exist a ≥ 0, b ∈ (0, 1] and a

positive constant K satisfying:

|h(x)− h(y)| ≤ K (1 + |x|a + |y|a) |x− y|b, x, y ∈ E.

For t ∈ Zd, let Yt =
∑

j∈Zd
ajξt−j, t ∈ Zd and Xt = h(Yt)−Eh(Yt). Assume that E|ξ0|m <∞

with m > 1, m ≥ (a+ b)q and q > 1. If for s ∈ {1, . . . , d}

∑

n≥0

(n+ 1)d−1


 ∑

j/|js|=n
a2
j



b/2

<∞, (14)

then Aq <∞.

In particular, if aj = O (‖j‖−α) with α > (2+b)d−b
2b , condition (14) is satis�ed.

Remarks

1. Corollary 3 shows that inequality Aq <∞ holds with a loss for the decrease of coef-
�cients (aj) with respect to the condition

∑
j∈Zd |aj | <∞. For example, when aj =

O (‖j‖−α) the summability of coe�cients (aj)j holds when α > d, but (2+b)d−b
2b > d

when d ≥ 2.

2. The result of Corollary 1 can also be applied if the functional h of Corollary 3 has some
discontinuities. However, additional assumptions could be required in order to bound

explicitely the quantity ‖p(ξ)
s,` (X0)‖q. For example if h(x) = 11x>t, one can use an

approximation of h by the Lipschitz function hε(x) = 11x>t +
(

1
εx+ 1− t

ε

)
11t−ε<x≤t.

We obtain
‖p(ξ)
s,` (X0)‖q ≤ 2‖X0 − hε(Y0)‖q + ‖p(ξ)

s,` (hε(Y0))‖q.
Then we can bound the second term as in the proof of Corollary 3 and we get,

‖p(ξ)
s,` (X0)‖q ≤ 2P (t− ε < Y0 ≤ t) +

2
ε
‖ξ0‖q

√ ∑

js=−`
a2
j .

Some regularity assumptions have be made for optimizing the previous bound in ε

(e.g ‖p(ξ)
s,` (X0)‖q ∼


 ∑

js=−`
a2
j




1/4

if Y0 has a locally bounded density).

9
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Proof of Corollary 3 We �rst derive a bound for the quantities ‖ps,ts+ks(Xt)‖q, s =
1, . . . , d and q ≤ m

a+b . For a copy ξ′ of ξ, we set

Z = K


1 + |

∑

j∈Zd
ajξt−j |a + |

∑

j/js 6=−ks
ajξt−j +

∑

j/js=−ks
ajξ
′
t−j |a


 |

∑

j/js=−ks
aj(ξt−j−ξ′t−j)|b.

Then using the assumption on h, it is not di�cult to prove that ‖ps,ts+ks(Xt)‖q ≤ ‖Z‖q.
If a > 0, we consider two positive numbers p and r satisfying 1

q = 1
p + 1

r , ar ≤ m and
m ≥ bp > 1. A such choice is possible from the assumptions on m. In the sequel C denotes
a generic positive constant not depending on the index k or j. Then using the previous
bound and Hölder inequality, we obtain

‖ps,ts+ks(Xt)‖q ≤ CE1/p|
∑

j/js=−ks
aj(ξt−j − ξ′t−j)|bp.

Note that the previous bound holds also when a = 0 if we set p = m/b. From Burkhölder
inequality, we obtain

‖ps,ts+ks(Xt)‖q ≤ C


 ∑

j/js=−ks
a2
j



b/2

. (15)

The conclusion of the corollary follows easily from (15) and Corollary 1.

Suppose now aj = O (‖j‖−α) with α > (2+b)d−b
2b . Then we have for s ∈ {1, . . . , d}

∑

j/js=n

a2
j ≤ C

∑

j/‖j‖≥n,js=n
‖j‖−2α ≤ Cn−2α+d−1.

Using the same bound for
∑

j/js=−n
a2
j , we deduce that condition (14) is satis�ed and the

result follows.�

Acknowledgments: The author wish to thank an anonymous referee for its construc-
tive suggestions which led to some improvements in some earlier versions of the manuscript.
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