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 for causal autoregressive processes and follows using recursive applications of the Burkhölder inequality for martingales.

Introduction

In this paper, we consider random elds X indexed by Z d , d ≥ 1 and which can be written as a Bernoulli shift, e.g

X t = H (ξ t-j ) j∈Z d , t ∈ Z d , (1) 
where ξ is an independent and identically distribued E-valued random eld and H is a real-valued measurable function. We consider here E = R k with k ∈ N * ∪ {∞} but a more general measurable space can be considered. A random eld of the form (1) is strictly stationary. The most well-known examples of such random elds are linear random elds, i.e

X t = j∈Z d a j ξ t-j , t ∈ Z d . (2) 
Spatial AR processes which write as linear random elds were extensively studied in spatial statistics (see [START_REF] Guyon | Random elds on a network: modeling, statistics, and applications[END_REF] for a nice presentation). Others (nonlinear) examples of such random elds are given in [START_REF] Doukhan | A xed point approach to model random elds[END_REF] as solutions of autoregressive équations of the form:

X t = F (X t-j ) j∈Z d ; ξ t , t ∈ Z d ,
where F is a Lipschitzian function.

In this note, we prove moment inequalities of the Marcinkiewicz-Zygmund type for the partial sums of a random eld X of the form [START_REF] Andrews | Non strong mixing autoregressive processes[END_REF]. More precisely we prove that for a real number q > 1,

S(B) q ≤ C d q k∈Z d p (ξ) d,k d • • • • • p (ξ) 1,k 1 (X 0 ) q |B| 1/q , ( 3 
)
where B is a nite subset of Z d , S(B) = j∈B X j , q = min(q, 2) and for (s, ) ∈ {1, . . . , d} × Z, p

s, denotes the projection operator dened for an integrable random variable Z by p (ξ) s, (Z) = Z -E (Z/σ(ξ j /j s = )) .

The constant C q is the universal constant of the Burkhölder inequality (see [START_REF] Hall | Martingal limit theory and its application[END_REF]) and then it does not depend on the distribution of the random eld. • q denotes the usual norm of L q . Denoting

A q = k∈Z d p (ξ) d,k d • • • • • p (ξ) 1,k 1 (X 0 ) q , (5) 
A q is a postive constant depending only on q and the distribution of the random eld ξ.

Obviously inequality (3) is interesting only when A q < ∞. The latter condition basically indicates short-range dependence. Then we study in details the niteness of the constant A q when the random eld X writes as a functional of linear elds. An inequality of the form ( 3) is a useful tool to study the behaviour of sums of dependent random variables. Strong laws of large numbers, strong invariance principle and other variants of limit theorems are often based on this kind of inequality. Some existing methods to obtain such inequalities use mixing coecients. φ-mixing random elds are considered in Dedecker [START_REF] Dedecker | Exponential inequalities and functional central limit theorems for random elds[END_REF] and Delyon [START_REF] Delyon | Exponential inequalities for sums of weakly dependent variables[END_REF], an inequality for α-mixing random elds is given in Doukhan [START_REF] Doukhan | Mixing: Properties and Examples[END_REF]. Unfortunately, for random elds dened by [START_REF] Andrews | Non strong mixing autoregressive processes[END_REF], mixing conditions lead to restrictive assumptions on the random eld distribution (see [START_REF] Guyon | Random elds on a network: modeling, statistics, and applications[END_REF] for the case of linear random elds) or are impossible to check (see the counterexample of Andrews [START_REF] Andrews | Non strong mixing autoregressive processes[END_REF] when d = 1). On the other hand, general weak dependence conditions formulated in terms of covariances of Lipschitzian functionals can be applied to random elds dened by [START_REF] Andrews | Non strong mixing autoregressive processes[END_REF] and corresponding moment inequalities are available. We refer to [START_REF] Dedecker | Weak dependence, examples and applications[END_REF] and [START_REF] Doukhan | Weak dependence, models and some applications[END_REF] for weak dependence conditions that generalize strong mixing and to [START_REF] Bulinski | Strong invariance principle for dependent random elds IMS Lecture NotesMonograph Series[END_REF] for a generalization of associated random elds. Nevertheless, despite their generality, such approaches do not exploit the particular form of the random eld when it writes as a functional of independent random variables and lead to complicated and restrictive conditions for the representation [START_REF] Andrews | Non strong mixing autoregressive processes[END_REF]. When d = 1, martingales decompositions and Burkhölder inequality for martingales have been used to prove simple moment bounds for partial sums of causal processes of the form (2). We refer to [START_REF] Wu | Strong invariance principles for dependent random variables[END_REF] and [START_REF] Liu | Strong approximation for stationary processes[END_REF] for details. In this paper, we generalize this approach to random elds and we prove inequality (3) using a simple recursive application of the Burkhölder inequality. We next study in details the application of such inequalities to partial sums of transforms of linear random elds.

Moment bounds

We rst state basic properties of specic conditional expectations and operators p s, dened in (4).

Lemma 1 Let Z be an integrable random variable, ξ an i.i.d random eld and q a real number with q ≥ 1. Then:

1. If A, B ⊂ Z d , E (E (Z/ξ A ) /ξ B ) = E (Z/ξ A∩B ) . 2. If A ⊂ Z d and B ⊂ Z d \ A: E (Z/ξ A∪B ) -E (Z/ξ A ) q ≤ Z -E Z/ξ Z d \B q .
3. If (s, s , , ) ∈ {1, . . . , d} 2 × Z × Z:

p (ξ) s, • p (ξ) s , (Z) q ≤ 2 min p (ξ) s, (Z) q , p (ξ) 
s , (Z) q .

Proof of Lemma 1

1. The result follows from the independence properties of the random eld ξ.

2. From the point 1., we have:

E (Z/ξ A∪B ) -E (Z/ξ A ) = E Z -E Z/ξ Z d /B /ξ A∪B ,
and the result is a consequence of the Jensen inequality.

3. We have from the point 1.:

p (ξ) s, • p (ξ) s , (Z) = Z -E (Z/ξ A ) + E (Z -E (Z/ξ A ) /ξ B ) , for A = {j ∈ Z d /j s = } and B = {j ∈ Z d /j s = }
and from the triangular inequality and Jensen inequality, we obtain:

p (ξ) s, • p (ξ) s , (Z) q ≤ 2 p (ξ) s, (Z) q .
Exchanging A and B, the result follows.

The main result of the paper can now be stated.

Theorem 1 Let X be a real centered random eld indexed by Z d , d ≥ 1 and such that E|X t | < ∞ for all t ∈ Z d . Assume futhermore that there exists an i.i.d random eld ξ such that σ(X) ⊂ σ(ξ). Then for a real number q > 1, we have with q = min(q, 2):

S(B) q ≤ C d q k∈Z d t∈B p (ξ) d,t d +k d • • • • • p (ξ) 1,t 1 +k 1 (X t ) q q 1/q , (6) 
where C q denotes the universal constant of the Burkhölder inequality for martingales.

Remarks

2. Let X be a random eld of the form (1) and such that A q < ∞ for a real number q > 1. Then the Móricz theorem [START_REF] Móricz | A general moment inequality for the maximum of the rectangular partial sums of multiple series[END_REF] can be used to deduce from the bounds (3) a moment inequality for partial maxima when B is a block of Z d , i.e

B = ((a 1 , b 1 ] × . . . × (a d , b d ]) ∩ Z d .
More precisely, if q > 2, we have:

max W B |S(W )| q ≤ (5/2) d/q 1 -2 2-q 2q -d C d q A q |B| 1/2 ,
where the notation W B means W ⊂ B and W is a block of Z d with the same minimal vertex than B, i.e

W = ((a 1 , c 1 ] × . . . × (a d , c d ]) ∩ Z d .
In fact the result of Móricz is analytic, in the sense that it does not involve any dependence properties. When q ∈ (1, 2), it gives the bound

max W B |S(W )| q ≤ 5 d/q 2 d(q-1)/q C d q A q |B| 1/q d i=1 log(b i -a i ).
Proof of Theorem 1

1. We rst prove the result for d = 1. For j ∈ Z and an integrable random variable Z, we dene:

P i (Z) = E (Z/F i ) -E (Z/F i-1 ) ,
where F i = σ(ξ j /j ≤ i). We use the following decomposition

X i = X i -E (X i /F i ) + E (X i /F i ) = j≥1 P i+j (X i ) + j≥0 P i-j (X i ) = j∈Z P i+j (X i )
Then we have S(B) = j∈Z i∈B P i+j (X i ), and (P i+j (X i )) i∈Z is a martingale dierence for the ltration (F i+j ) i∈Z . The Burkhölder inequality leads to:

S(B) q ≤ j∈Z i∈B P i+j (X i ) q ≤ C q j∈Z    E i∈B P i+j (X i ) 2 q/2    1/q .
If q ≥ 2, the triangular inequality for the L q/2 norm leads to 6) is a consequence of the previous remark and the bound i∈B

S(B) q ≤ C q j∈Z i∈B P i+j (X i ) 2 q 1/2 . Setting A = { ∈ Z/ ≤ i + j -1} and B = {i + j}, an application of point 2 in Lemma 1 yields to P i+j (X i ) q ≤ p (ξ) 1,i+j (X i ) q . Inequality (6) follows. If now q ∈ (1, 2], inequality (
P i+j (X i ) 2 q/2 ≤ i∈B |P i+j (X i )| q .
2. We show the result for d ≥ 2 using induction on d. Suppose that the bound [START_REF] Doukhan | Mixing: Properties and Examples[END_REF] holds for any random eld indexed by Z s , s ≤ d -1 and satisfying the assumptions of Theorem 1. We have X = (X i,j ) i∈Z,j∈Z d-1 and

S(B) = i∈A Y i , Y i = j∈B i X i,j ,
where B = ∪ i∈A {i} × B i . It is obvious that (Y i ) i∈Z satises the assumptions of Theorem 1 with the random eld ξ i = ξ i,Z d-1 , i ∈ Z. Then, using inequality (6) for d = 1, we obtain

S(B) q ≤ C q k 1 ∈Z i∈A p (ξ ) 1,i+k 1 (Y i ) q q 1/q . (7) 
Note also that for ∈ Z, we have p ξ 1, = p ξ 1, . Then for k 1 ∈ Z and i ∈ A, we have p 

(ξ ) 1,i+k 1 (Y i ) = j∈B i p (ξ) 1,k 1 (X i,j ). Since the random eld p (ξ) 1,k 1 (X i,j )
s,k = p (ξ) (ξ ) 
s+1,k . Then we get the following bound:

p (ξ) 1,i+k 1 (Y i ) q ≤ C d-1 q k 2 ,...,k d ∈Z   j∈B i p (ξ) d,j d-1 +k d • • • • • p (ξ) 2,j 1 +k 2 p (ξ) 1,i+k 1 (X i,j ) q q   1/q ≤ C d-1 q k 2 ,...,k d ∈Z   j∈B i p (ξ) d,j d-1 +k d • • • • • p (ξ) 2,j 1 +k 2 • p (ξ) 1,i+k 1 (X i,j ) q q   1/q .
Then, using the triangular inequality for the norm

x = i |x i | q 1/q , we obtain i∈A p (ξ) 1,i+k 1 (Y i ) q q 1/q ≤ C d-1 q k 2 ,...,k d ∈Z   i∈A j∈B i p (ξ) d,j d-1 +k d • • • • • p (ξ) 1,i+k 1 (X i,j ) q q   1/q
, and the bound (6) follows from (7) using the equality i∈A j∈B i = (i,j)∈B .
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The iterations involving the operators p (ξ) s, are not always easy to evaluate. The following corollary will be useful to verify the condition A q < ∞ in most of examples.

Corollary 1 Let X be a real random eld satisfying the assumptions of Theorem 1. Then

A q ≤ 2 d-1 d s=1 n∈N (2n + 1) d-1 |ks|=n c s,ks , (8) 
where for s ∈ {1, . . . , d},

c s,ks = t∈B p (ξ)
s,ts+ks (X t ) q q 1/q . Remarks 1. When the random eld X writes as in (1) we have the bound

p (ξ) s,ts+ks (X t ) q ≤ X t -X t,s,ks q , (9) 
where X t,s,ks = H ξ t-j j∈Z d , ξ t-j = ξ t-j if j s = -k s and ξ t-j otherwise, ξ being a copy of ξ. When d = 1, the right hand side of ( 9) is the coecient denoted by θ q,k used by Wu [START_REF] Wu | Nonlinear system theory: Another look at dependence[END_REF] to measure the dependence of a stationary process X. In this case, condition A q < ∞ holds when

k∈Z p (ξ) 1,k (X 0 ) q < ∞,
which is similar to the condition k≤0 θ q,k < ∞ used by Liu and Lin [START_REF] Liu | Strong approximation for stationary processes[END_REF] (see Lemma A1 and Lemma A2 of their paper) for a causal stationary process

X t = H (ξ t-j ) j≥0 ) , t ∈ Z.
2. Note that when d = 1, A q is nite if and only if the right hand side of inequality (8) is nite. For d ≥ 2 this is no more true. For example, for the simple example of linear random elds (2), we have

A q = k∈Z d |a k | × ξ 0 q .
In contrast, when q = 2 and ξ 0 is square integrable, the right hand side of ( 8) is nite provided for s = 1, . . . , d

n∈N n d-1 |js|=n a 2 j < ∞,
which is more restrictive than the summability of coecients (a j ) .
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Proof of Corollary 1 From point 3 in Lemma 1, a straightforward induction leads to the following inequality:

p (ξ) d,t d +k d • • • • • p (ξ) 1,t 1 +k 1 (X t ) q ≤ 2 d-1 ∧ d s=1 p (ξ)
,ks+ts (X t ) q .

(10)

Assume that the random eld X satises the assumptions of Theorem 1. We have

k∈Z d t∈B ∧ d s=1 p (ξ) s,ts+ks (X t ) q 1/q ≤ d s=1 n∈N k/ k ∞=|ks|=n c s,ks ≤ d s=1 n∈N (2n + 1) d-1 |ks|=n c s,ks .
Then the conclusion of Corollary 1 follows.

Examples

In the sequel ξ denotes an i.i.d random eld satisfying Eξ 0 = 0. For a random eld X of the form (1), inequality ( 3) is interesting provided the constant A q dened in ( 5) is nite.

For the simple case of a linear random eld (2), we have

A q = k∈Z d |a j | ξ 0 q .
Then provided that ξ 0 ∈ L q , we have A q < ∞ if and only if j∈Z d |a j | < ∞. The latter condition is a weak dependence condition since in this case the autocovariances of the eld are summable.

A precise evaluation of the constant A q may also be possible when the random eld X has a polynomial expression with respect to the coordinates of ξ. As an example, we investigate a moment bound for the covariances of linear random elds.

Corollary 2 Let

Y t = j∈Z d a j ξ t-j , t ∈ Z d with j∈Z d |a j | < ∞, and for a given h ∈ Z d X t = Y t Y t+h -E (Y t Y t+h ) . Assume that ξ 0 ∈ L 2m with m > 1. Then for 1 < q ≤ m, A q < ∞. Proof of Corollary 2 Let k ∈ Z d and B = p (ξ) d,t d +k d • • • • • p (ξ)
1,t 1 +k 1 (X t ). Then we are going to prove

B = (α,β)∈I   j∈Aα a j ξ t-j   ×   j∈A β a j+h ξ t-j   + a -k a -k+h ξ 2 t+k -Eξ 2 0 , (11) 
where

I = ∩ d s=1 {(α, β) ∈ {0, 1} d × {0, 1} d /(α, β) = (0, 0) and α s β s = 0}, A α = ∩ d s=1 {j ∈ Z d /j s = -k s if α s = 0 and α s = 1 otherwise }.
One can easily see that if (α, β) ∈ I, then α = β and since there exists s ∈ {1, . . . , d} such that α s = 0 and β s = 1 (or the contrary) then the sums j∈Aα a j ξ t-j and j∈A β a j ξ t-j are independent. Before giving a proof of (11), we show why the conclusion of Corollary 2 holds. From [START_REF] Liu | Strong approximation for stationary processes[END_REF] we obtain the bound:

B q ≤ (α,β)∈I j∈Aα |a j | • j∈A β |a j+h | ξ 0 2 q + |a -k a -k+h ξ 2 0 -σ 2 |,
where

σ 2 = Eξ 2 0 . Let q ∈ (1, m].
Using assumptions on ξ and coecients (a j ),

A q < ∞ if for (α, β) ∈ I, G = k∈Z d   j∈Aα |a j | • j∈A β |a j+h |   < ∞. ( 12 
) If α = 0, then A α = -k and G ≤ j |a j | × j |a j+h | < ∞. The same holds if β = 0. Now suppose that = {s ∈ {1, . . . , d}/α s = 0} satises 1 ≤ ≤ d -1.
Without loss of generality, we assume that α s = 0, s ≤ . Then by denition of I, we have

β s = 0 if s ≥ + 1.
In this case, we obtain

G ≤ k∈Z d   j +1 ,...,j d |a -k 1 ,...,-k ,j +1 ,...,j d |   •   j 1 ,...,j |a j 1 +h 1 ,...,j +h ,-k +1 +h +1 ,...,-k d +h d |   ≤ j∈Z d |a j | • j∈Z d |a j+h |.
Then G < ∞ and the conclusion of Corollary 2 follows. Now we prove [START_REF] Liu | Strong approximation for stationary processes[END_REF]. We rst introduce some notations. For s ∈ {1, . . . , d}, let

I (s) = ∩ s i=1 {(α 1 , . . . , α s , β 1 , . . . , β s ) ∈ {0, 1} 2s α i β i = 0}, A (s) α = ∩ s i=1 {j ∈ Z d / j i = -k i if α i = 0, and j i = -k i otherwise }, B s = p (ξ) s,ts+ks • • • • • p (ξ)
1,t 1 +k 1 (X t ). Using a nite induction on the set {1, . . . , d}, we are going to prove that for s ∈ {1, . . . , d},

B s = (α,β)∈I (s)    j∈A (s) α a j ξ t-j    ×    j∈A (s) β a j+h ξ t-j    - j i =-k i ,i=1,...,s a j a j+h σ 2 . ( 13 
)
Observe that B d = B. The proof of this induction uses the following remark: for two subsets C and D of Z d , we have for s ∈ {1, . . . , d} and Z t = j∈C a j ξ t-j • j∈D a j+h ξ t-j , p s,ts+ks (Z t ) = j∈C,js=-ks

a j ξ t-j • j∈D,js =-ks a j+h ξ t-j + j∈C,js =-ks a j ξ t-j • j∈D,js=-ks a j+h ξ t-j -σ 2
j∈C∩D,js=-ks a j a j+h .

• The case s = 1 is an easy consequence of the previous remark.

• Suppose that equality (13) holds for B s . Then applying again the previous equality to B s+1 = p s+1,k s+1 (B s ), equality (13) easily follows for B s+1 .

The next corollary gives a sucient condition in order to have A q < ∞ for some locally Hölderian functionals of linear elds. Here we apply Corollary 1.

Corollary 3 Let h : R → R be a function such that there exist a ≥ 0, b ∈ (0, 1] and a positive constant K satisfying:

|h(x) -h(y)| ≤ K (1 + |x| a + |y| a ) |x -y| b , x, y ∈ E. For t ∈ Z d , let Y t = j∈Z d a j ξ t-j , t ∈ Z d and X t = h(Y t ) -Eh(Y t ). Assume that E|ξ 0 | m < ∞ with m > 1, m ≥ (a + b)q and q > 1. If for s ∈ {1, . . . , d} n≥0 (n + 1) d-1   j/|js|=n a 2 j   b/2 < ∞, (14) 
then A q < ∞.

In particular, if

a j = O ( j -α ) with α > (2+b)d-b 2b
, condition ( 14) is satised. Remarks 1. Corollary 3 shows that inequality A q < ∞ holds with a loss for the decrease of coefcients (a j ) with respect to the condition j∈Z d |a j | < ∞. For example, when a j = O ( j -α ) the summability of coecients (a j ) j holds when α > d, but

(2+b)d-b 2b > d when d ≥ 2.
2. The result of Corollary 1 can also be applied if the functional h of Corollary 3 has some discontinuities. However, additional assumptions could be required in order to bound explicitely the quantity p (ξ) s, (X 0 ) q . For example if h(x) = 1 1 x>t , one can use an approximation of h by the Lipschitz function h

(x) = 1 1 x>t + 1 x + 1 -t 1 1 t-<x≤t . We obtain p (ξ) s, (X 0 ) q ≤ 2 X 0 -h (Y 0 ) q + p (ξ)
s, (h (Y 0 )) q . Then we can bound the second term as in the proof of Corollary 3 and we get,

p (ξ) s, (X 0 ) q ≤ 2P (t -< Y 0 ≤ t) + 2 ξ 0 q js=- a 2 j .
Some regularity assumptions have be made for optimizing the previous bound in (e.g p if Y 0 has a locally bounded density).
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Proof of Corollary 3 We rst derive a bound for the quantities p s,ts+ks (X t ) q , s = 1, . . . , d and q ≤ m a+b . For a copy ξ of ξ, we set Then using the assumption on h, it is not dicult to prove that p s,ts+ks (X t ) q ≤ Z q . If a > 0, we consider two positive numbers p and r satisfying 1 q = 1 p + 1 r , ar ≤ m and m ≥ bp > 1. A such choice is possible from the assumptions on m. In the sequel C denotes a generic positive constant not depending on the index k or j. Then using the previous bound and Hölder inequality, we obtain p s,ts+ks (X t ) q ≤ CE 1/p | j/js=-ks a j (ξ t-jξ t-j )| bp .

Z = K   1 + |
Note that the previous bound holds also when a = 0 if we set p = m/b. From Burkhölder inequality, we obtain p s,ts+ks (X t ) q ≤ C   j/js=-ks

a 2 j   b/2 . ( 15 
)
The conclusion of the corollary follows easily from (15) and Corollary 1. Suppose now a j = O ( j -α ) with α > (2+b)d-b 2b

. Then we have for s ∈ {1, . . . , d} j/js=n a 2 j ≤ C j/ j ≥n,js=n j -2α ≤ Cn -2α+d-1 .

Using the same bound for j/js=-n a 2 j , we deduce that condition ( 14) is satised and the result follows.

  Z d-1 and satises the assumptions of Theorem 1 with the i.i.d random eld ξ = (ξ Z,j ) j∈Z d-1 , we can apply the induction hypothesis. We observe that for s ∈ {1, . . . , d -1}, p

j∈Z d a j ξ

  t-j | a + | =-ks a j ξ t-j + j/js=-ks a j ξ t-j | a   | j/js=-ks a j (ξ t-j -ξ t-j )| b .

The proof of inequality[START_REF] Doukhan | Mixing: Properties and Examples[END_REF] do not use the representation (1) and the stationarity assumption. Note that for a stationary random eld, inequality (6) coincides with (3).
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