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Abstract

Asymmetric discrete triangular distributions are introduced in order to extend the
symmetric ones serving for discrete associated-kernels in the nonparametric estima-
tion for discrete functions. The extension from one to two orders around the mode
provides a large family of discrete distributions having a finite support. Establish-
ing a bridge between Dirac and discrete uniform distributions, some different shapes
are also obtained and their properties are investigated. In particular, the mean and
variance are pointed out. Applications to discrete kernel estimators are given with
solution to a boundary bias problem.

Key words: Asymmetric discrete distribution, discrete associated-kernel, finite
support, limit distribution.
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1 Introduction

The recent notion of discrete associated-kernel for smoothing or estimating discrete
functions requires a development of new families of discrete distributions. In this
sense, Abdous and Kokonendji (2009) presented some asymptotic properties for dis-
crete associated-kernel estimators of a probability mass function (pmf). Furthermore,
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they pointed out the use of discrete associated-kernel from Dirac and symmetric dis-
crete triangular distributions introduced by Kokonendji et al. (2007) and also from
extensions of Dirac distribution proposed by Aitchison and Aitken (1976) and Wang
and van Ryzin (1981). On the other hand, instead of pmf, one can use them to es-
timate discrete weighted functions (Kokonendji et al., 2009a) or discrete regression
functions (Kokonendji et al., 2009b).

Let us firstly fix the definition and state in Theorem 1.2 some important properties
presented in Kokonendji et al. (2007).

Definition 1.1 Let (m, a, h) ∈ Z× N× R+. A denoted distribution DT (m; a;h) is
said to be symmetric discrete triangular distribution with mode m, arm a and
order h, if its pmf is

f(y;m, a, h) =
1

(a+ 1)−hD(a, h)

[
1−

|y −m|h

(a+ 1)h

]
, y ∈ {m,m± 1, · · · ,m± a} ,

with

D(a, h) = (2a+ 1)(a+ 1)h − 2
a∑

k=1

kh.

Theorem 1.2 Let Y be a random variable following DT (m; a;h). Then:
(i) E(Y ) = m and DT (m; a;h) is symmetric around m;
(ii) V ar(Y ) = V (a, h) does not depend on m and is given by

V (a, h) =
1

D(a, h)

[
a (2a+ 1) (a+ 1)h+1

3
− 2

a∑

k=1

kh+2
]
;

(iii) when h→ 0, DT (m; a;h) tends to D(m), i.e., the Dirac distribution at m;
(iv) when h→∞, DT (m; a;h) tends to U({m,m± 1, · · · ,m± a}), i.e., the discrete
uniform distribution on the support {m,m± 1, · · · ,m± a}.

In this paper we mainly extend the symmetric discrete triangular distribution to
a more general and flexible one, including asymmetry, keeping though the same
support. In this sense, it provides a natural solution to the problem of boundary
bias related to discrete associated-kernel estimators described by Kokonendji et al.
(2007, 2009a); see also formulas (2) and Definition 5.1. For this reason, we must
make sure that the mode is m, the expectation must tend to m when h goes to zero,
and both properties (iii) and (iv) of Theorem 1.2 hold too.

Note finally that, although general discrete triangular distributions have attracted
far less attention in the literature in contrast to the (continuous) triangular distri-
butions (e.g. Johnson, 1997) for which the similar extensions are possible, they are
now of such an interest that they were inserted in the dictionary of classical discrete
distributions (e.g. Johnson et al., 2005). The rest of this paper is organized as fol-
lows. Section 2 presents some details of the standard (h = 1) asymmetric discrete
triangular distribution. Section 3 is devoted to the first extension of DT (m; a;h)
following two arms and a single order. In Section 4 we conclude with the general
discrete triangular distribution having both different two arms and two orders. In
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Section 5 we present some applications to discrete kernel estimators with solutions
to the problem of boundary bias.

2 Standard discrete triangular distribution

Let us first fix the notation related to the support of any discrete triangular distri-
bution. We shall denote a given mode m ∈ Z and two arms (a1, a2) ∈ N2, by

ℵm,a1,a2 = ℵ
∗
a1,m

∪ ℵm,a2 = ℵa1,m ∪ ℵ
∗
m,a2

= ℵ∗a1,m ∪ {m} ∪ ℵ
∗
m,a2

(1)

with ℵa1,m = {m − k ; k = 0, 1, · · · , a1}, ℵ∗a1,m = ℵa1,m�{m}, ℵm,a2 = {m + k ;
k = 0, 1, 2, · · · , a2} and ℵ∗m,a2 = ℵm,a2�{m}. Following the standard (continuous)
triangular distribution (e.g. Johnson, 1997), we have the following definition in the
discrete case.

Definition 2.1 Let (m, a1, a2) ∈ Z × N × N. A distribution DT (m; a1, a2) is said
to be a standard discrete triangular distribution with mode m, left arm a1 and
right arm a2, if its pmf is

f(y;m, a1, a2) =
1

(a1 + a2 + 2)/2

[(
1−

m− y

a1 + 1

)
1ℵ∗a1,m

(y) +
(
1−

y −m

a2 + 1

)
1ℵm,a2

(y)
]
,

where 1S(y) denotes the indicator function of any given set S that takes the value 1
for y ∈ S and 0 otherwise.

Remark 2.2 For a1 = a2 = a we get the standard symmetric discrete triangular
distribution from Definition 1.1 as DT (m; a, a) = DT (m; a;h = 1).

Figure 1 (a) presents some graphs of DT (m; a1, a2). We state the following proposi-
tion without proof.

Proposition 2.3 Let Y ∼ DT (m; a1, a2). Then

E(sY ) = 2sm+1
(a1 + 1)s

a2+1 + (a2 + 1)s
−(a1+1) − (a1 + a2 + 2)

(a1 + a2 + 2)(a1 + 1)2(a2 + 1)(s− 1)
.

In particular, we have

E(Y ) = m+
a2 − a1
3

,

V ar(Y ) = E [Y − E(Y )]2 =
1

18

(
a21 + a1a2 + 3a1 + 3a2 + a

2
2

)
,

E [Y − E(Y )]3 =
1

270
(a2 − a1)(a1 + 2a2 + 3)(2a1 + a2 + 3) and

E [Y − E(Y )]4 =
1

270
(a21+3a1+ a1a2+3a2+ a

2
2)(2a

2
1+6a1+2a1a2+6a2+2a

2
2− 3).

Since a1 and a2 are non-negative integer values, the sign of the skewness coefficient
(E [Y − E(Y )]3 /V ar3/2(Y )) will depend only on the sign of (a2 − a1). Thus, the

3
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distribution DT (m; a1, a2) will be skewed to the right if a2 > a1, skewed to the
left if a2 < a1 and symmetric when a1 = a2. Furthermore, the kurtosis coefficient
(E [Y − E(Y )]4 /V ar2(Y )− 3) will be always negative, i.e., DT (m; a1, a2) is always
platykurtic.

(a) (b)
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Fig. 1. (a) Standard discrete triangular distributions DT (m; a1, a2) for different values of
m and arms such that a1 + a2 = 16 and (b) discrete (h-order) triangular distributions
DT (m; a1, a2;h) with m = 2, a1 = 4, a2 = 12 and different values of h.

3 Discrete (h-order) triangular distribution

The asymmetric version of DT (m; a;h) is defined as follows.

Definition 3.1 Let (m,a1, a2, h) ∈ Z×N×N×R+. A distribution DT (m; a1, a2;h)
is said to be discrete (h-order) triangular distribution with mode m, left arm a1,
right arm a2 and order h, if its pmf is

f(y;m, a1, a2, h) =
1

D(a1, a2, h)

{[
1−
(
m− y

a1 + 1

)h]
1ℵ∗a1,m

(y) +

[
1−
(
y −m

a2 + 1

)h]
1ℵm,a2

(y)

}
,

with

D(a1, a2, h) = (a1 + a2 + 1)− (a1 + 1)
−h

a1∑

k=1

kh − (a2 + 1)
−h

a2∑

k=1

kh.

Remark 3.2 (i) For a1 = a2 = a we obtain all the symmetric discrete triangular
distributions given in Definition 1.1 as DT (m; a, a;h) = DT (m; a;h). (ii) For h =
1, DT (m; a1, a2;h = 1) = DT (m; a1, a2) is the standard discrete distribution of
Definition 2.1.

Figure 1 (b) presents some graphs of DT (m; a1, a2;h) which can deform all the pre-
vious of Figure 1 (a). Some elementary properties from standard discrete triangular

4
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are preserved but not elegant to be written (e.g. skewness, kurtosis and probability
generating function). Here we show some results similar to the ones in Theorem 1.2.

Theorem 3.3 Let Y ∼ DT (m; a1, a2;h). Then:
(i) E(Y ) = m+A(a1, a2;h) with

A(a1, a2;h) =
1

D(a1, a2, h)


a2 (a2 + 1)

2
−
a1 (a1 + 1)

2
+

a1∑

k=1

k

(
k

a1 + 1

)h
−

a2∑

k=1

k

(
k

a2 + 1

)h
 ;

(ii) V ar(Y ) = B(a1, a2;h)− [A(a1, a2;h)]
2 does not depend on m with

B(a1, a2;h)=
1

D(a1, a2, h)


a2 (a2 + 1) (2a2 + 1)

6
+
a1 (a1 + 1) (2a1 + 1)

6

−
a1∑

k=1

k2
(

k

a1 + 1

)h
−

a2∑

k=1

k2
(

k

a2 + 1

)h 
;

(iii) when h→ 0, DT (m; a1, a2;h) tends to D(m);
(iv) when h→∞, DT (m; a1, a2;h) tends to U(ℵm,a1,a2).

PROOF. (i) : Using different decompositions of the support in (1) and Definition
3.1 with D := D(a1, a2, h), one has successively

E(Y )=
∑

y∈ℵm,a1,a2

y f(y;m, a1, a2, h)

=
1

D



∑

y∈ℵm,a1,a2

y −
∑

y∈ℵ∗a1m

y
(
m− y

a1 + 1

)h
−
∑

y∈ℵ∗m,a2

y
(
y −m

a2 + 1

)h



=
1

D



mD +

a1∑

k=1


−k + k

(
k

a1 + 1

)h
+

a2∑

k=1


k − k

(
k

a2 + 1

)h






which leads to the result.
(ii) : From (i) E(Y ) = m+A with A := A(a1, a2;h), one gets similarly

5
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V ar(Y )=
∑

y∈ℵm,a1,a2

(y −m− A)2 f(y;m, a1, a2, h)

=
1

D




∑

y∈ℵm,a1,a2

(y −m−A)2 −
∑

y∈ℵ∗a1m

(y −m−A)2
(
m− y

a1 + 1

)h

−
∑

y∈ℵ∗m,a2

(y −m− A)2
(
y −m

a2 + 1

)h



=
1

D



A

2 +
a1∑

k=1


(k +A)2 − (k +A)2

(
k

a1 + 1

)h


+
a2∑

k=1


(k − A)2 − (k − A)2

(
k

a2 + 1

)h




.

Expanding (k +A)2 = A2 + 2Ak + k2 and (k −A)2 = A2 − 2Ak + k2 and using the
definition of D = D(a1, a2, h) in Definition 3.1, one has

V ar(Y )=
1

D



A

2D +
a1∑

k=1


2Ak + k2 − 2Ak

(
k

a1 + 1

)h
− k2

(
k

a1 + 1

)h


+
a2∑

k=1


−2Ak + k2 + 2Ak

(
k

a2 + 1

)h
− k2

(
k

a2 + 1

)h






=
1

D



A

2D − 2A2D +
a1∑

k=1


k2 − k2

(
k

a1 + 1

)h
+

a2∑

k=1


k2 − k2

(
k

a2 + 1

)h






that yields the result.
(iii) and (iv) are obtained by considering the limits in h of individual probabilities
f(y;m, a1, a2, h). Indeed, it is easy to see that

D(a1, a2, h)→





(a1 + a2 + 1)− a1 − a2 = 1 as h→ 0

(a1 + a2 + 1)− 0− 0 = (a1 + a2 + 1) as h→∞

and finally

f(y;m, a1, a2, h)→





1{m}(y) as h→ 0

(a1 + a2 + 1)
−1
1ℵm,a1,a2

(y) as h→∞.�

4 General discrete triangular distribution

The most general extension of DT (m; a;h) can be defined as follows.

Definition 4.1 Let (m, a1, a2, h1, h2) ∈ Z × N × N × R+ × R+. A distribution
DT (m; a1, a2;h1, h2) is said to be a general discrete triangular distribution with

6
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mode m, left arm a1, right arm a2, left order h1 and right order h2, if its pmf is
f(y;m, a1, a2, h1, h2) =

1

D(a1, a2, h1, h2)

{[
1−
(
m− y

a1 + 1

)h1]
1ℵ∗a1,m

(y) +

[
1−
(
y −m

a2 + 1

)h2]
1ℵm,a2

(y)

}
,

with

D(a1, a2, h1, h2) = (a1 + a2 + 1)− (a1 + 1)
−h1

a1∑

k=1

kh1 − (a2 + 1)
−h2

a2∑

k=1

kh2.

Remark 4.2 For h1 = h2 = h we get the discrete (h-order) triangular distribution
of Definition 3.1 as DT (m; a1, a2;h, h) = DT (m; a1, a2;h).
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Fig. 2. Some general discrete triangular distributions.

Figure 2 illustrates different shapes that can be obtained by changing some parame-
ters of DT (m; a1, a2;h1, h2). The following theorem is similar to Theorem 3.3 and
we omit its proof.
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Theorem 4.3 Let Y ∼ DT (m; a1, a2;h1, h2). Then:
(i) E(Y ) = m+A(a1, a2;h1, h2) with

A(a1, a2;h1, h2)=
1

D(a1, a2, h1, h2)


a2 (a2 + 1)

2
−
a1 (a1 + 1)

2

+
a1∑

k=1

k

(
k

a1 + 1

)h1
−

a2∑

k=1

k

(
k

a2 + 1

)h2 
;

(ii) V ar(Y ) = B(a1, a2;h1, h2)− [A(a1, a2;h1, h2)]
2 does not depend on m with

B(a1, a2;h1, h2)=
1

D(a1, a2, h1, h2)


a2 (a2 + 1) (2a2 + 1)

6
+
a1 (a1 + 1) (2a1 + 1)

6

−
a1∑

k=1

k2
(

k

a1 + 1

)h1
−

a2∑

k=1

k2
(

k

a2 + 1

)h2 
;

(iii) when h1 → 0 and h2 → 0, DT (m; a1, a2;h1, h2) tends to D(m);
(iv) when h1 →∞ and h2 →∞, DT (m; a1, a2;h1, h2) tends to U(ℵm,a1,a2);
(v) when h1 → 0 and h2 →∞, DT (m; a1, a2;h1, h2) tends to U(ℵm,a2);
(vi) when h1 →∞ and h2 → 0, DT (m; a1, a2;h1, h2) tends to U(ℵa1,m).

Remark 4.4 The limits in h1 and h2 of mean (i) and variance (ii) of DT (m; a1, a2;h1, h2)
give the same means and variances of the corresponding limit distribution (iii)−(vi)
of Theorem 4.3.

5 Applications to discrete kernel estimators

Let X1, · · · , Xn be independent and identically distributed (i.i.d.) discrete random
variables with an unknown pmf p on the support T. To simplify we shall assume
T = N or T = {0, 1, · · · ,N} with known N ∈ N∗. A discrete associated-kernel
estimator p̃n of p is defined as:

p̃n(x) =
1

n

n∑

i=1

Kx,h (Xi) , x ∈ T, (2)

where h = h(n) > 0 is an arbitrary sequence of smoothing parameters (or band-
widths) that fulfills lim

n→∞
h(n) = 0, and Kx,h is the “discrete associated-kernel” with

the target x and the bandwidth h. Up to the normalizing constant C =
∑
x∈T p̃n(x),

we assume that x �→ p̃n(x) is a pmf. From Kokonendji et al. (2007) we have the
following general definition.

Definition 5.1 Let T be the discrete support of the pmf p, to be estimated, x a fixed
target in T and h > 0 a bandwidth. A pmf Kx,h on its support Sx (not depending on

8
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h) is said to be a discrete associated-kernel, if it satisfies the following conditions:

x ∈ Sx, (3)

lim
h→0

E(Zx,h) = x, (4)

lim
h→0

V ar(Zx,h) = 0, (5)

where Zx,h is the discrete random variable whose pmf is Kx,h.

In order to construct a discrete associated-kernel Kx,h from a parametric discrete
probability distribution Kθ, θ ∈ Θ ⊂ Rd, on the support Sθ such that Sθ ∩ T �= ∅,
we need to establish a correspondence between (x, h) ∈ T × (0,∞) and θ ∈ Θ. In
what follows, we will call K ≡ Kθ the type of discrete kernel to make the difference
with the classical notion of continuous kernels. In this context, the choice of the
discrete associated-kernel becomes important as well as of the bandwidth. Also,
given a type of discrete kernel K, the construction of any discrete associated-kernel
is not obviously unique. As observed by Abdous and Kokonendji (2009), there are
not many discrete associated-kernels in the sense of Definition 5.1; see, for example,
Aitchison and Aitken (1976), Wang and van Ryzin (1981), Kokonendji et al. (2007).

Here we consider the discrete (h-order) triangular distribution DT (m; a1, a2;h) (see
Definition 3.1) as a type of discrete kernel and, therefore, p̃n of (2) becomes

p̃n(x) =
1

n

n∑

i=1

f (Xi;x, a1, a2, h) , x ∈ T, (6)

for fixed arms (a1, a2) ∈ N2. That is Kx,h (·) ≡ f (·; x, a1, a2, h) which satisfies easily
all conditions (3)-(5) with Sx = ℵx,a1,a2 given in (1). Then, the pointwise bias can
be expressed as

Bias [p̃n(x)]= p [E(Zx,a1,a2,h)]− p(x) +
1

2
V ar (Zx,a1,a2,h) p

(2)(x) + o(h)

=A(a1, a2;h)p
(1)(x) +

1

2

{
B(a1, a2;h)− [A(a1, a2;h)]

2
}
p(2)(x) + o(h),(7)

where Zx,a1,a2,h is the random variable following DT (x; a1, a2;h) and p
(k) is the finite

difference of order k ∈ {1, 2} (see, e.g., Kokonendji et al ., 2009). For the pointwise
variance, we have

V ar [p̃n(x)]=
1

n
p(x) [1− p(x)] [Pr (Zx,a1,a2,h = x)]

2 +Rn (x; a1, a2, h)

=
1

n [D(a1, a2, h)]
2 p(x) [1− p(x)] +Rn (x; a1, a2, h)

with Rn (x; a1, a2, h) → 0 when n → ∞ and h = h(n) → 0. In practice, both arms
a1 and a2 are small and equal to 1, 2 or 3.

However, the general condition (3) can be replaced by
⋃
x∈T
Sx ⊇ T. This means that

the discrete associated-kernel takes into consideration the support T of the pmf p

9
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to estimate. If
⋃
x∈T
Sx is not equal to T (i.e.

⋃
x∈T
Sx � T) then one has a problem of

boundary bias.

Assuming T = N in (6), for fixed a1 �= 0, these discrete triangular kernel estimators
induce a boundary bias on the left ofN because the set

⋃
x∈N

ℵx,a1,a2 = {−a1, · · · ,−1}∪

N contains strictly the support N of the unknown pmf p. In the symmetric case with
a1 = a2 = a, Kokonendji et al. (2007, 2009a) have used an artificial modification of
the arm a for significant observations to the left boundary {0, 1, · · · , r} (r too small,
like 0, 1 or 2). For the present situation (6) of asymmetric discrete triangular kernel
estimators, the solution is to consider the modified left arm a0 of a1 such that, for
given x ∈ N,

a0 =





x if x ∈ {0, 1, · · · , a1 − 1}

a1 if x ∈ {a1, a1 + 1, · · · ,N, · · · }.
(8)

In particular, if a1 = a2 = a we have asymmetric discrete associated-kernels for
the left boundary {0, 1, · · · , a− 1} of N and symmetric ones on {a, a+ 1, · · · } with
A(a, a, h) = 0 for all h > 0 in (7); thus, it is different to the solution proposed by
Kokonendji et al. (2007, 2009a), especially at the origin x = 0 of N. The procedure
(8) is so natural for asymmetric discrete triangular kernels and it is also more appro-
priate for smoothing any count distribution. Note that, by considering the solution
(8) in the bias property (7), it is possible over weight the boundary; but, in practice,
this procedure is done before the normalization of the estimator p̃n by the constant
C =

∑
x∈T p̃n(x) (e.g. Kokonendji et al ., 2007).

If T = {0, 1, · · · ,N} in (6) we must also take into account the boundary bias on the
right of {0, 1, · · · , N} because of

⋃

x∈{0,1,··· ,N}

ℵx,a1,a2 = {−a1, · · · ,−1} ∪ {0, 1, · · · , N} ∪ {N + 1, · · · , N + a2}.

Applying the modification of the left arm (8) on the right of {0, 1, · · · ,N} (that is,
at the neighbourhood of the point x = N), the modified right arm aN of a2 is such
that, for given x ∈ {0, 1, · · · ,N},

aN =





a2 if x ∈ {0, 1, · · · , N − a2}

N − x if x ∈ {N − a2 + 1, · · · ,N − 1, N}.
(9)

Combining (8) and (9), these modified (asymmetric) discrete triangular kernel esti-
mators are more appropriate for any compact pmf (or discrete functions) and also
possibly for ordered categorial distribution (e.g. Aitchison and Aitken, 1976). They
are flexible and offer a lot of possibilities than the (modified) symmetric discrete tri-
angular kernel estimators (e.g. Kokonendji et al., 2007), which are particular cases.
All theoretical calculations (e.g. mean integrated squared error) and the usefulness
of new models in practical count data analysis can be done like in Kokonendji et al.
(2007, 2009a, 2009b) and we here omit them. Another way of these straightforward
extensions of discrete triangular distributions would be the multivariate case and
their multiple applications.

10
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