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We introduce the notion of random self-decomposability and discuss its relation to the concepts of self-decomposability and geometric infinite divisibility. We present its connection with time series autoregressive schemes with regression coefficient that randomly turns on and off. In particular, we provide a characterization of random self-decomposability as well as that of marginal distributions of stationary time series that follow this scheme. Our results settle an open question related to the existence of such processes.

Introduction

There is a growing interest in non-Gaussian autoregressive (AR) models discussed in [START_REF] Vervaat | On a stochastic difference equation and a representation of non-negative infinitely divisible random variables[END_REF],

X n = δ n X n-1 + ε n , (1.1) 
where ε n and δ n are independent sequences of independent, identically distributed (IID) random variables (see, e.g., Jayakumar andMathew, 2002, 2005;Mathew andJayakumar, 2003, 2005). In particular, the AR structure

X n =    ε n with probability p ε n + cX n-1 with probability 1 -p, (1.2) 
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where p, c ∈ [0, 1], with either exponential or (symmetric and skew) Laplace marginal distributions for {X n }, appeared in [START_REF] Dewald | A new Laplace second-order autoregressive time series model-NLAR(2)[END_REF], [START_REF] Lawrance | Some autoregressive models for point processes[END_REF], [START_REF] Lawrance | A new autoregressive time series model in exponential variates (NEAR(1))[END_REF],

and [START_REF] Jayakumar | A new asymmetric Laplace autoregressive process[END_REF].

Motivated by a question raised by [START_REF] Lawrance | Some autoregressive models for point processes[END_REF], who asked whether similar models can be derived with either gamma or Gaussian stationary distributions, we introduce the class of randomly self-decomposable (RSD) distributions. These provide the only stationary solutions in the AR scheme (1.2) for each p, c ∈ [0, 1], and bridge the notions of self-decomposability (SD)

and geometric infinite divisibility (GID). This class is introduced in Section 2, where we provide its characterization through SD and GID. In Section 3 we discuss connections with AR schemes,

followed by examples collected in Section 4, where we also include brief remarks on generalizations to higher-order autoregressive schemes.

Random self-decomposability

When we assume stationarity, it is clear that the process (1.2) is well defined whenever the relevant characteristic functions (ChF) satisfy the equation

ψ(t) = ψ c,p (t){p + (1 -p)ψ(ct)}, (2.1) 
where ψ and ψ c,p are the ChFs of X n and ε n , respectively. This motivates the following definition Definition 2.1. A distribution with the ChF ψ is said to be randomly self-decomposable (RSD) if for each p, c ∈ [0, 1] there exists a probability distribution with the ChF ψ c,p satisfying (2.1).

Remark 2.2. In terms random variables, the relation (2.1) takes the form

X d = cIX + X c,p , (2.2) 
where X and X c,p are random variables with the ChFs ψ and ψ c,p , respectively, I is a Bernoulli variable with P(I = 1) = 1p, and all the variables on the right-hand-side of (2.2) are mutually independent. Note that for c = 0 or p = 1 the relations (2.1)-(2.2) hold trivially with ψ 0,p = ψ c,1 = ψ and X 0,p = X c,1 = X.

When p = 0, the relations (2.1)-(2.2) reduce to

ψ(t) = ψ(ct)ψ c (t), c ∈ [0, 1], (2.3) 

ACCEPTED MANUSCRIPT

and

X d = cX + X c , (2.4) 
respectively, where we used the notation ψ c = ψ c,0 and X c = X c,0 . This shows that every RSD ChF is also self-decomposable, in other words, C RSD ⊂ C SD , where C RSD and C SD are the classes of RSD and SD laws, respectively.

On the other hand, when c = 1 then (2.1) becomes

ψ(t) = ψ p (t){p + (1 -p)ψ(t)}, p ∈ [0, 1], (2.5) 
while (2.2) reduces to

X d = IX + X p , (2.6) 
where we used the notation ψ p = ψ 1,p and X p = X 1,p . Solving (2.5) for ψ produces

ψ(t) = pψ p (t) 1 -(1 -p)ψ p (t) , (2.7) 
showing that for each p ∈ [0, 1], the variable X with the ChF ψ can be decomposed into a random sum

X d = X (1) p + X (2) p + • • • + X (Np) p , (2.8) 
where N p is a geometric random variable with the distribution

P(N p = x) = p(1 -p) x-1 , x = 1, 2, . . . , (2.9) 
and the X (j) p are IID copies of X p with the ChF ψ p , independent of N p . In other words, the distribution of X is geometrically infinitely divisible (GID) as defined in [START_REF] Klebanov | A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables[END_REF].

Thus, C RSD ⊂ C GID , where C GID is the classes of GID distributions.

The above shows that C RSD ⊂ C GID ∩ C SD . The following shows that we actually have an equality here.

Proposition 2.3. We have C RSD = C GID ∩ C SD , where C RSD , C GID , and C SD denote the classes of RSD, GID, and SD laws, respectively. Moreover, whenever ψ ∈ C RSD , then the ChF ψ c,p in (2.1) can be written as

ψ c,p (t) = ψ p (ct) • ψ c (t), (2.10) 
where ψ c and ψ p are given by

ψ c (t) = ψ(t)/ψ(ct) (2.11)
and

ψ p (t) = ψ(t) p + (1 -p)ψ(t) , (2.12) 
respectively.
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Proof. Since we have already seen that C RSD ⊂ C GID as well as C RSD ⊂ C SD , it follows that and straightforward algebra shows that (2.1) is valid. This concludes the proof.

C RSD ⊂ C GID ∩ C SD . It remains to show that C GID ∩ C SD ⊂ C RSD . To

Relation with autoregressive schemes

In view of Definition 2.1, we have the following obvious result.

Proposition 3.1. A stationary stochastic process (1.2) is well defined for every p, c ∈ [0, 1] if and only if the distribution of X n is randomly self-decomposable.

It follows that an AR process (1.2) with distribution of X n given by a ChF ψ and distribution of ε n given by (2.10) can be obtained if and only if X n is a RSD random variable. Thus, processes of this form with either (general) gamma or Gaussian distributions of X n cannot be constructed, as neither of these distributions is GID (although both are SD). This settles the question raised in [START_REF] Lawrance | Some autoregressive models for point processes[END_REF].

Remark 3.2. When p = 0 we have the standard AR scheme, 

X n = cX n-1 + ε n . ( 3 
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Remark 3.3. The case c = 1 corresponds to Bernoulli distributed δ n in (1.1), 

X n =    ε n with probability p ε n + X n-1 with probability 1 -p. ( 3 

Examples

Here is a brief account of examples of autoregressive processes of the form (1.2), which either have already appeared in the literature or can be constructed following the theory above. According to Propositions 3.1 and 2.3, the marginal distribution of X n must be both GID and SD. Recall that every GID ChF ψ is of the form

ψ(t) = 1 1 -log φ(t) , (4.1) 
where φ is an infinitely divisible (ID) ChF (see, e.g., [START_REF] Klebanov | A problem of Zolotarev and analogs of infinitely divisible and stable distributions in a scheme for summing a random number of random variables[END_REF]. However, in general, ψ may not be SD. One class that provides a variety of RSD distributions are GID distributions (4.1) with stable ChF φ. These are geometric stable (GS) distributions, given by the ChF

ψ(t) = (1 + σ α |t| α ω α,β (t) -iµ t) -1 , (4.2) 
where α ∈ (0, 2] is the tail index, β ∈ [-1, 1] is a skewness parameter,

ω α,β (x) =    1 -iβsign(x) tan(πα/2), if α = 1, 1 + iβ 2 π sign(x) log |x| , if α = 1, (4.3)
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and µ ∈ R and σ ≥ 0 control location and scale, respectively (see, e.g., [START_REF] Klebanov | Ill-Posed Problems in Probability and Stability of Random Sums[END_REF]. We shall consider two RSD sub-classes of this family -strictly GS distributions and (skew) Laplace laws.

Strictly GS laws and processes

Strictly GS distributions correspond to strictly stable ChF φ in (4.1), so that in (4.2) -( 4.3)

we either have α = 1 and µ = 0 or α = 1 and β = 0, with the exponential distribution (σ = 0) being another special case. Moreover, for a strictly GS random variable X we have Np) , p ∈ (0, 1), (4.4) where the {X (j) } are IID copies of X (see, e.g., Klebanov et.al., 1984). Comparing this with (2.8)

X d = p 1/α X (1) + X (2) + • • • + X (
we see that here X (j) p d = p 1/α X, so that in (2.5) we have ψ p (t) = ψ(p 1/α t). By setting c = p 1/α , the relation (2.5) also shows that X must be SD, with

ψ c (t) = c α + (1 -c α )ψ(t) (4.5)
in the relation (2.3). Note that in the standard autoregressive scheme (3.1) with a strictly GS X n d = X, the quantity (4.5) will be the ChF of the ε n . Since here we have an atom at the origin, such processes will suffer from the so called zero defect, which is a well-known phenomenon, where

we have successive values of the {X n } follow geometric progression. This is no longer the case in the more general setting (1.2) with a strictly GS distributed X n . Indeed, in view of Proposition 2.3, the ChF of the error term ε n is of the form

ψ c,p (t) = ψ p (ct) • ψ c (t) = ψ(p 1/α ct)(c α + (1 -c α )ψ(t)), (4.6) 
so that

ε n d = p 1/α cX ′ n + IX ′′ n , (4.7) 
where X ′ n and X ′′ n are independent copies of X n , I is a Bernoulli variable with P(I = 1) = 1c α , and all the variables on the right-hand-side of (4.7) are mutually independent. It is worth noting several special cases.

Exponential laws and processes

When σ = 0 in (4.2), we obtain exponential distribution with mean µ, which is strictly GS with α = 1 in (4.4). This exponential autoregressive process (1.2) is the NEAR(1) process studied in [START_REF] Lawrance | Some autoregressive models for point processes[END_REF] and [START_REF] Lawrance | A new autoregressive time series model in exponential variates (NEAR(1))[END_REF].
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Mittag-Leffler laws and processes

An important heavy-tail generalization of exponential distribution is the Mittag-Leffler distribution (see, e.g., [START_REF] Klebanov | Ill-Posed Problems in Probability and Stability of Random Sums[END_REF], which is strictly GS with α < 1 and β = 1, most conveniently described via its Laplace transform (LT)

ψ(t) = 1 1 + λt α , t > 0. ( 4.8) 
A Mittag-Leffler autoregressive process (1.2) appears to be new, and generalized previous models (3.1) and (3.2) with this marginal distribution, mentioned in introduction.

Laplace and Linnik laws and processes

When α = 2 and µ = 0 in (4.2), we obtain the classical Laplace distribution, with the ChF

ψ(t) = 1 1 + σ α |t| α , t ∈ R, (4.9) 
with α = 2 and σ > 0. Since this distribution is both GID and SD, we can define a Laplace autoregressive process (1.2) -the NLAR(1) model mentioned in [START_REF] Dewald | A new Laplace second-order autoregressive time series model-NLAR(2)[END_REF]. A further generalization is obtained by considering α ∈ (0, 2) in (4.9), leading to the (symmetric) Linnik distribution (see, e.g., [START_REF] Klebanov | Ill-Posed Problems in Probability and Stability of Random Sums[END_REF]. A Linnik autoregressive process (1.2) appears to be new, and generalized previous models (3.1) and (3.2) with this marginal distribution, mentioned in introduction.

Skew Laplace laws and processes

The ChFs of geometric stable distributions with α = 2 reduce to

ψ(t) = 1 1 + σ 2 t 2 -iµ t , t ∈ R, (4.10) 
and define the class AL(µ, σ) of asymmetric Laplace (AL) distributions, studied extensively in [START_REF] Kotz | The Laplace Distribution and Generalizations: A Revisit with Applications to Communications[END_REF]. The densities of AL distributions admit an explicit form,

f (x) = 1 σ κ 1 + κ 2    exp(-κ σ x) if x ≥ 0 exp( 1 κσ x) if x < 0, (4.11) 
where the alternative parameter κ > 0 is related to µ via the relations

κ = 2 µ σ + 4 + ( µ σ ) 2 , 1 κ -κ = µ σ . ( 4 
.12)
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Since all AL distributions are both, SD and GID, they are also RSD, and can serve as the marginal distributions of X n in the autoregressive scheme (1.2). Proposition 2.3 and straightforward algebra shows that the ChF of the error term ε n in this model is of the form

ψ c,p (t) = ψ p (ct) • ψ c (t) = 1 1 + pσ 2 c 2 t 2 -ipµct π 1 + π 2 1 1 -i σ κ t + π 3 1 1 + iσκt , (4.13) 
where

π 1 = c 2 , π 2 = (1 -c) 1 + cκ 2 1 + κ 2 , π 3 = (1 -c) c + κ 2 1 + κ 2 . (4.14)
Here, the error term admits the stochastic representation

ε n d = cX + I 1 {I 2 E 1 + (I 2 -1)E 2 }, (4.15) 
where X has the asymmetric Laplace AL(µp, σ √ p) distribution, E 1 and E 2 are exponential random variables with parameters κ/σ and 1/κσ, respectively, I 1 and I 2 are Bernoulli variables with P(I 1 = 1) = 1π 1 and P(I 2 = 1) = π 2 /(1π 1 ), respectively, with all the variables on the right-hand-side of (4.15) being mutually independent. This autoregressive scheme appeared in Jayakumar and Kuttykrishnan (2008), while its special cases with c = 1 and p = 0 were studied in Jayakumar and Kuttykrishnan (2007) and [START_REF] Jayakumar | A first order autoregressive asymmetric Laplace process[END_REF], respectively.

Generalizations to higher order autoregressive schemes

There several non-equivalent ways to generalize autoregresive schemes with random coefficients to higher order autoregresive models. Starting with Lawrance and Lewis (1980), a scheme of generalizing (1.2) through 

X n =               

. 1 )

 1 Non-Gaussian stationary models of the form (3.1) were studied by[START_REF] Andȇl | Marginal distributions of autoregressive processes[END_REF] -Gaussian, rectangular, Laplace, Cauchy, exponential, gamma, and mixed exponential, Dewald and Lewis (1985) -Laplace, Lawrance (1981) -exponential, gamma, Laplace, and mixed exponential, Jayakumar et al. (1995) -Linnik, Jayakumar and Pillai (1993) -Mittag-Leffler, Lawrance and Lewis (1980)exponential, Gaver and Lewis (1980) -exponential, gamma, and mixed exponential, Sim (1994)logistic, hyperbolic secant, exponential, and Laplace, Gibson (1986) -Laplace, Lawrance and Lewis (1981) -exponential, Jose et al. (2008) -Gaussian-Laplace, Tomy and Jose (2009) -generalized Gaussian-Laplace, and Jayakumar et al. (2009) -skew Laplace. It is important to note that one can not construct autoregressive schemes of the form (3.1) with arbitrary stationary distributions of the {X n } and valid for all p ∈ [0, 1]. Indeed, as observed by Gaver and Lewis (1980) and others, the ChFs ψ and ψ c of the X n and ε n , respectively, must satisfy the relation (2.3), so that the marginal distribution of X n must belong to the class of SD laws.

ε n with probability p = 1 -

 1 p 1 -. . . p r , ε n + cX n-1 with probability p 1 , ... ... ε n + cX n-1 + • • • + cX n-r with probability p r , (4.16) has been discussed on several occasions. Specifically, the case of c = 1 appears in Lawrance and Lewis (1982), Dewald and Lewis (1985) (the second order case), Jayakumar and Kuttykrishnan (2007), Jayakumar and Ajitha (2003), Seetha Lekshmi and Jose (2004b), Seetha Lekshmi and Jose (2004a), Seetha Lekshmi and Jose (2006). It is clear that the relation (2.1) when written as

  .2) Stationary models of this form include those where the marginal distribution of the {X n } is skew Laplace (see Jayakumar and Kuttykrishnan, 2007), exponential (see Lawrance and Lewis, 1980, 1981), Linnik (see Anderson and Arnold, 1993, Jayakumar et al., 1995), Mittag-Leffler (see Jayakumar and Pillai, 1993), geometric Mittag-Leffler (see Seetha Lekshmi and Jose, 2004b), geometric

Laplace/α-Laplace and their tailed versions (see Seetha Lekshmi and

Jose, 2004a;[START_REF] Seetha Lekshmi | Generalized Laplacian and geometric α-Laplace distributions with applications in time series modelling[END_REF]

, geometric Mittag-Leffler (see

[START_REF] Jayakumar | On the geometric Mittag-Leffler distributions[END_REF]

, and geometric generalized Linnik (see Seetha

[START_REF] Seetha Lekshmi | Autoregressive processes with Pakes and geometric Pakes generalized Linnik marginals[END_REF]

. Again, such process are well defined for each p ∈ [0, 1] whenever the ChFs ψ and ψ p of X n and ε n , respectively, satisfy the relation (2.5). Thus, only GID distributions can appear as the marginal distribution of X n given by (1.2) with c = 1 (see, e.g.,

[START_REF] Jose | Geometric Infinite Divisibility and its Applications in Autoregressive Time Series Modeling[END_REF][START_REF] Kozubowski | Skew Laplace distributions II. Divisibility properties and extensions to stochastic processes[END_REF]

.
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ψ(t) = ψ c,p (t){p + p 1 ψ(ct) + • • • + p r ψ(ct)} is providing with a characterization of distributions that lead to a stationary time series (4.16).

Even more general higher order models can be introduced through a generic extension

where (δ n,1 , . . . , δ n,k ) are independent of the {X n } and the {ε n }. However, the dependence structure among the δ n,i , i = 1, . . . , k, needs to be defined, and can lead to essentially different models.

For example, alternative model to (4.16) is obtained via

where the {c i } are real numbers and the {δ i } are independent Bernoulli variables (taking on the values 1 and 0 with probability p and 1p, respectively). For r = 1, this reduces to the models discussed in this note.

Replacing δ n-k by δ n,k , with (δ n,1 , . . . , δ n,k ) independent for different n, leads to a different model, in which P (δ n,k = 1) may depend on k.

Under the same assumptions, one can also consider

which also reduces to (1.2) if r = 1. Note that this model satisfies

A variation on this is obtained by replacing δ n-k by δ n,k , which leads to arbitrary probabilities in the above and different type of dependence when n is varying.

Finally, another interesting extension of (1.2) is obtained by considering the time N p (n) of the first success in the Bernoulli sequence δ n-i and taking
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We note that (1.2) is obtained by taking c k = 0 for k > 1. Again, a variation of this is obtained if the {N p (n)} are independent for different values n.

Studying existence of stationary distributions for the above models is an interesting and nontrivial research topic, which is however beyond the scope of this note.