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Abstract 

 

 Shear stress, hormones like parathyroid and mineral elements like calcium mediate 

the amplitude of stimulus signal which affects the rate of bone remodeling. The current 

study investigates the theoretical effects of different metabolic doses in stimulus signal 

level on bone.  The model was built considering the osteocyte as the sensing center 

mediated by coupled mechanical shear stress and some biological factors. The proposed 

enhanced model was developed based on previously published works dealing with 

different aspects of bone transduction. It describes the effects of physiological doses 

variations of Calcium, Parathyroid Hormone, Nitric Oxide and Prostaglandin E2 on the 

stimulus level sensed by osteocytes in response to applied shear stress generated by 

interstitial fluid flow. We retained the metabolic factors (Parathyroid Hormone, Nitric 

Oxide, and Prostaglandin E2) as parameters of bone cell mechanosensitivity because 
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stimulation/inhibition of induced pathways stimulates osteogenic response in vivo. We 

then tested the model response in term of stimulus signal variation versus the biological 

factors doses to external mechanical stimuli. Despite the limitations of the model, it is 

consistent and has physiological bases. Biological inputs are histologically measurable. 

This makes the model amenable to experimental verification. 

 

Keywords: Osteocytes; Shear stress; Ca-PTH; NO; PGE2 

 

Notations 

 

ocyx  : Active sensing osteocytes number. 

bx    : Active osteocblasts number. 

cx    : Active osteoclasts number. 

      Cax   : Calcium level 

     PTHx :  PTH level 

NOx   : Nitric Oxide level. 

PGEx  : Prostaglandin E2 level.  

   el
ijε     : Interstitial fluid velocity generated by pressure.           

     dP
dz

   : Pressure gradient in the canaliculi; z denotes the axial coordinate of the 

canaliculi. 

 

1. Introduction 

It is well admitted that mechanical strain is one of the main stimulus triggering bone 
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remodeling.  

Bone adaptation to its environment is influenced by both mechanical and biological 

stimuli (Feskanich et al., 2003; Goltzman, 1999; Heldring et al., 2007). Fluid flow imposes 

a shear stress on osteocytes that appears to deform the cells (Weinbaum et al., 1994).  

Bonewald (2008) rewieved a cascades of transduction events into the osteocyte as a 

response to mechanical loading. Important signaling molecules like Nitric Oxide (NO) and 

Prostaglandin E2 (PGE2) influencing bone remodeling homeostasis have been shown to be 

produced in the osteocyte in response to fluid flow.  

Weinbaum et al., (1994) were one of the first to propose a theoretical model to 

predict the fluid shear stress and streaming potential at the surface of osteocytic process in 

the lacunocanalicular porosity. Rémond et al., (2005) enhanced the model of Zeng by 

including mass flux. Lemaire et al., (2005) developed a more complex model based on the 

idea that the motion of interstitial fluid is caused by a combination of mechanical strain, 

electro-osmotic and osmotic actions. 

Few numerical studies modeling the load-induced fluid flow have been developed 

(Goulet et al., 2008; Gururaja et al., 2005; Roland Steck, 2003; Swan et al., 2003). Some 

other theoretical and numerical studies have been performed considering the osteocyte’s 

tissue strain amplification (Han et al., 2004; Rathbonivtch et al., 2007) or the integrin 

function on the mechanosensation process (Wang et al., 2007; Weinbaum, 2003). 

Recently, Adachi et al., (2010) developed a bone remodeling finite element model 

based on a stimulus function expressed in term of fluid flow in the lacunocanalicular 

system. The limitations of this work it that the model neglects the coupling effects with the 

main biological mechanisms. No biological entities were considered and the bone 

adaptation is purely triggered by mechanical stimulus. 

Some studies have attempted to explore the effect of metabolic doses regarding bone 
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remodeling or bone diseases in numerical models. Maldonado, (2006) has developed a 

formulation of the production of NO and PGE2 by the osteocyte and a description of the 

evolution of the osteocyte cell population. The osteocyte rate growth was expressed as a 

function of the number of osteoblasts (some osteoblasts differentiate into osteocytes) and a 

fluid shear stress function (mechanical loading is involving on osteocyte viability). 

Recently, enhanced mathematical model was developed by Peterson and Riggs 

(2010) to describe the bone and Calcium-Parathyroid Hormone (Ca-PTH) homeostasis. 

Komarova (2005) have developed a theoretical model describing the autocrine and 

paracrine factors which are involved in the Bone Multicellular Units (BMUs) auto-

regulation composed of osteoblast and osteoclast. In this work the authors studied the 

influence of pulsatile PTH therapy on those autocrine and paracrine factors to induce bone 

formation. Lemaire et al., (2004) have developed a more dynamic BMUs interaction model 

and investigated the effects on bone remodeling of the different biological factor such as 

Osteoprotegerin (OPG) or Transforming Growth Factor β  (TGF-β). 

Some others have investigated the effect of mechanical stimulus on bone remodeling 

without considering the metabolic factor effects (Hambli et al., 2010; Hambli et al., 2009; 

McNamara and Prendergast, 2007; Scott et al., 2001). 

Despite of the large number of studies dealing with bone mechanotransduction, there 

is still a lack of mechanobiological models combining in a unified way the most observed 

mechanical and biological mechanisms during transduction phase on bone (Rieger et al., 

2010). Such models are very useful to enhance bone remodeling predictions based on 

“biophysical” description rather than phenomenological ones. 

Oesterhelt (2010), proposed a general framework to describe the transduction 

concept based on four steps. (i) Reception of the external signals as inputs (mechanical and 

biological). Signals can be stimulatory or inhibitory; (ii) Integration (combination) of the 
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signals (iii); Amplification of the signals as outputs (iv); Signals sent to the specific target. 

Following the transduction concept proposed by Oesterhelt (2010) the current study 

attempts to investigate the effect of doses in transduction signal based on a plausible 

theoretical model. 

Several physiological factors can mediate the transduction. In the present work, we 

retained Ca, PTH, NO and PGE2 factors as parameters of the model because those 

metabolic factors are known to stimulate/inhibit osteogenic response in vivo. 

 

2. Materials and methods 

 

2.1. Concepts of bone transduction 

 

A summary of the previous discussed components is presented in table 1. The 

integrin senses the amount of Ca and regulates PTH. In the same manner the integrin 

produces NO, PGE2 and a mechanical stimulus due to fluid flow. All those components are 

organized into mechanical and biological normalized signals and then summed up into a 

full mechanobiological stimulus. 

 

Table 1 

 

2.2. Proposition of a transduction model 

 

Based on Oesterhelt (2010) transduction concept combined with Bonewald et al., 

(2008) we propose the following general block diagram representing the osteocyte 

transduction phase (Fig. 1): 
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Figure 1 

 

2.3. Mathematical description 

 

The proposed model is based on the idea that the osteocyte is the operating center 

which generates the interaction between both mechanical stimulus and biological factors. 

After combining both stimuli (mechanical and biological), the osteocyte triggers the signal 

to active BMUs to form or resorb bone.  

For the signaling phase we consider the fluid flow velocity in the canaliculi due to 
mechanical pressure proposed by Lemaire T. et al., (2005). They concluded that the fluid 
movement  PV  (equ. (1)) generated by pressure gradient is the most important driving effect 

in fluid flow since it accounts for 95%. The term ( )1 D γ− was added to Darcy’s law to 
incorporate the bone matrix damage (D) where γ  is a damage exponent that defines the 
sensitivity of the damage in the fluid velocity. 

 

The biological signaling part is assumed to be triggered by Ca demands. The Ca level 
( )Cax  is considered as an input in the model (equ. (2) which leads to PTH release ( )PTHx . 
To describe the mathematical relation between PTH release rate and level of Ca, we 
propose a fitted model obtained by experiments (Haden et al., 2000; Houillier P. et al., 
2000) expressed by equation (3) exhibiting a sigmoidale relation.  

 

The reception phase is expressed by the fluid velocity (equ. (4)) where  P TV V=  and the 
release of NO ( )NOx  and PGE2 2( )PGEx  (equ. (5-6)), from the integrin. 
The NO and PGE2 rates growth (Maldonado S., 2006) depends on a fluid shear stress 
function 

PVf  (equ. 7) applied to osteocytes. If NO evolution is purely stimulated by the 
fluid shear stress function, PGE2 are also dependant of the NO evolution and then the 
coupling is expressed in equation (6). 
Osteocyte detects the concentration of Ca through PTH (Langub et al., 2001; Teti and 
Zallone, 2009) and responses to the fluid shear stress. Thus the Osteocyte population 
growth ( )ocyx  developed by Maldonado et al., (2006) has been enhanced and is expressed 
by equation (8). It is directly affected by the osteoblasts population ( )bx  and the 
osteocytes. 

 

Komarova et al., 2003 developed a model describing the BMUs population dynamics (equ. 
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9, 10). It includes osteoblasts  ( )bx , osteoclasts ( )cx  and considers an auto-regulation 
between these two types of cells. Indeed the autocrine and paracrine factors are 
phenomenological modeled as a rate coefficient by an exponent in the model. Insulin-like 
Growth Factor (IGF) (g22) and Transforming Growth factor Beta (TGF-β) (g11) are 
autocrine factor stimulating osteoblasts and osteoclasts respectively. Whereas for the 
stimulation of osteoblasts the paracrine factor is modeled by an exponent (g12) 
representing IGF and TGF-β actions. Regarding osteoclasts the paracrine stimulation takes 
effects trough the exponent (g21) modeling Receptor Activator of Nuclear factor κB 
Ligand (RANKL) and Osteoprotegerin (OPG) actions. 

Ryser et al., (2009) developed a model describing the evolution of a single BMU 

taking into account dynamic biochemical factors such as RANKL and OPG driving 

osteoblasts and osteoclasts evolution. Moreover it describes temporal and spatial features 

of the digging hole and the movement of the BMUs across the bone surface. This model is 

biochemically more complex than the one from Komarova et al., (2003) and is more suited 

for visual bone remodeling evolution. 

In order to investigate the potential in our approach to model the coupling effects on 

the transduction signal, the model of Komarova (2003) has been retained here for its 

simplicity in the autocrine and paracrine factors description which allows us to focus on the 

effects of the transduction mechanism. 

 

The integration and amplification phase ensures a normalized signals variations between 
0% and 100% of their maximum expressed by the relation  /n Max

i i ix x x= , (equ. 11-14). It 
enables to leave aside dimensional consideration of the variables since we combine 
mechanical dimension (MPa) and biological concentration (mM) (Brazel and Peppas, 
1999; Coatanéa E; Vareille J., 2003).  

Finally, the mechanical and the biological signals are weighted and summed up (equ. 

15-17) to generate a normalized stimulus function as a signal (varying between 0%  and 

100%) mediated by the biological factors (equ. 17). 

 

iW  , i= Mecha, Bio, MB, PTH, NO, PGE2: are mechanical and biological weight factors 
verifying: 0 1iW< ≤  and 2 1Mecha Bio PTH MB NO PGEW W W W W W+ = + = + = . 
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Table 2 

 

Table 3 

4. Results  

We have modeled and investigated the main important phenomena of bone 

transduction in a mechanical and biological point of view. The influence of metabolic 

doses on stimulus level has been explored in order to investigate their sensitivity on the 

mechanobiological stimulus. The following figures show the ability of the model to 

interpret mechanical effects due to bony fluid flow through the lacunocanalicular system 

and/or different biological effects due to the virtual injection or the basal production of 

different messengers such as NO and PGE2.  

If mechanical effect is the most influenced part in bone remodeling it is also highly 

dependent on the biological components considered as a regulating factor. Figure 2 shows 

the evolution of the stimulus versus of the Ca concentration for different magnitudes of the 

fluid flow.  

Figure 2 

Two observations should be outlined: 

(i) For low quantity of Ca the model predicts an important secretion of PTH in 

order to resorb bone which results to an increase in Ca concentration. On the 

opposite, high values of calcium lead to a decrease of PTH secretion which 

results in an elevation of bone formation to stock free Ca into the bone. Those 

results are consistent with the observed biological reactions of Ca metabolism 
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in bone emphasized by Parfitt (1976) and Houillier (2009) which tends to 

maintain a constant calcemia. 

(ii) The difference in magnitude between the three curves reflects the impact of the 

fluid flow in the mechanobiological stimulus. Stronger gets the fluid flow, 

higher the stimulus becomes. Experimental issues from Burger et al., (1999) 

and Klein-Nulend (2005) confirm the predictive results of the model. In 

function of the level of the mechanobiological stimulus the transduction process 

favors bone’s resorption or formation. 

The mechanobiologic stimulus is directly dependent on the production of NO and 

PGE2 by the osteocyte through the integrin stimulated by the fluid flow. The model can 

consider physiological evolution of such messenger or can be shunted by the consideration 

of some virtual constant injection. Figure 3 shows the prediction of the stimulus versus 

fluid velocity for different evolutions of NO and PGE2. 

Figure 3 

 

It is well known that NO and PGE2 have an important role in bone remodeling regulation 

(Brandi et al., 1995; Pilbeam et al., 2008; Wimalawansa, 2008). One can notice that fluid 

flow gradually increases the production of NO and PGE2, which results in a higher 

stimulus. Although this stimulus can be increased or decreased at some specific magnitude 

of fluid flow by considering a virtual injection of continuous controlled dose (0.37 & 0.2 

for the square curve; 1.6 & 0.2 for the circle curve; 1.6 & 0.85 for the triangle curve 

respectively  for NO and PGE2 [pM]) in a specific area. By doing so the model is able to 

magnify or to reduce NO and PGE2 effects in the integral domain of influence. The model 

is considered as dose dependent because it enables the stimulus to be adjusted by the 
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amount of NO and PGE2 injected or auto regulated. 

 

 Since this is an original work, there is no comparable study which allows us to calibrate 
the appropriate values of the weighting-factors. Thus we propose two different 
configurations of the stimulus equations which represent the possibility of the model to 
match with the large adaptability of any biological system. Figure 4 exhibits the stimulus’ 
responses to different combinations of weighting-factors. In fact we propose in the first 
case to express the stimulus to be equally responsive to the mechanical and biological part. 
This is expressed by assigning a weighting-factors of 0.5 (filled solid curves). In the 
second case the stimulus is more influenced by the biological component which is 
expressed by weighting fBio  by 0.8 (open dashed curves). Moreover for the second case we 
consider the effect of NO and PGE2 to be more influencing than the PTH, which is 
represented by weighting fMB  by 0.8. 

 

Figure 4 

 

For an equally distributed influence of the mechanical and biological components (solid 

filled solid curves), the stimulus responses gradually as the amount of NO [pM] and PGE2 

[pM] increases. Also the shape of the plot represents the evolution of PTH [pg.ml-1] in 

function of Ca [mM] concentration. It should be noted that the shape of the open dashed 

curves is diminished which is explained by a decrease in the influence of PTH in the 

mechanobiological stimulus. 

 

 Our model incorporates the effects of the bone matrix damage. Fluid velocity is obtained 
by Darcy’s law and is weighted by the term (1 )D γ− . The damage considered here is due 
to the presence of microcracks into the bone which leads to an alteration of the osteocyte’s 
communication (Burger and Klein-Nulend, 1999; Prendergast and Huiskes, 1996). Instead 
of an open/close communication relation we shall consider here the possibility of some 
degradation of the signals sent trough the lacunocanalicular network. So when the damage 
increases it reduces the magnitude of the mechanical signal sent to the osteocytes. The 
figure 5 depicts the influence of the level of damage in the mechanobiological stimulus for 
basal physiological evolution of NO and PGE2. 
 

Figure 5 
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The disrupted communication between osteocytes increases as the damage on the 

lacunocanalicular network increases. This can be represented by a leakage of the bony 

fluid contained in the canaliculi. So the proportionality between the fluid flow and the 

deformation applied onto the bone is altered and the resulted signal does not match 

properly with the expected information. This non-proportionality is expressed by the 

modification of the stimulus’ magnitude. 

 

5. Discussion  

 

The work presented here is an attempt to develop a dose dependent integrated 

transduction model incorporating both mechanical and biological reactions. The idea has 

arisen from the observation that actual transduction model are only based on mechanical 

stress neglecting the biological effects.  

 

 The current model predicts the influence of Ca concentration on the magnitude of 

the mechanobiological stimulus. The concentration of Ca can be a regulating factor for the 

stimulus increase. Low level of Ca induces an important release of PTH (Houillier, 2009) 

which stimulates bone resorption in order to deliver Ca from the bone to restore falling 

plasma Ca. This effect leads to a reduced level of the stimulus. On the opposite high 

concentration of Ca diminishes the release of PTH and as a consequence, it stimulates bone 

formation. This is consistent with the work of Chen et al., (1999) who have shown that 

there was a progressive increase in the PTH secretion as dietary Ca level decreased which 

would favor Ca mobilization from bone. 

 

Experimental (Bakker et al., 2001; Klein-Nulend et al., 2005; Pitsillides et al., 
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1995) and numerical (McGarry, 2004) studies have shown NO and PGE2 to be increased 

when fluid flow grows which confirms the results of the model for two reasons. Firstly we 

can observe the increase of NO and PGE2 as the fluid flow magnifies. Secondly the 

stimulus is amplified as the amount of NO and PGE2 increase. Based on the work of 

Maldonado (2006) the kinetics of NO and PGE2 have been integrated in the present study 

in order to create a more precise stimulus taking into account the influence of NO and 

PGE2.  

Other studies have proven the importance and the benefit of non-mechanical agent 

to enhance mechanical loading (Jee WS, 2005). This confirms the regulating role of 

biological messengers which inhibit the action of mechanical loading or improve bone 

adaptation responsiveness. Their action can be easily illustrated in some hormonal bone 

diseases by submitting patients onto drugs administration (mainly non-mechanical agents 

such as estrogen or growth hormone). The threshold values are then moved in order to 

improve mechanical loading effects. 

 

Nevertheless, the model presents some limitations and simplifications. First, the 

mechanotransduction process is much more complex than the one described in this paper. 

Vitamin D (St-Arnaud, 2008; Wasserman et al., 1995), Ca homeostasis (Peterson and 

Riggs), age, sex, drugs treatments and nutrition should be taken under consideration in 

order to get an accurate model of transduction. Building such comprehensive model 

requires proceeding step by step and implies to develop a block diagram model in order to 

be easily updated. 

 

Second, our model does not consider the pulsatile and the continuous injection of 

PTH. Many studies suggest an anabolic effect of PTH for pulsated injection (Komarova, 
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2005; Kousteni and Bilezikian, 2008) and catabolic one for continuous injection. An 

extended version of the model could incorporate the pulsatile/continuous PTH dosing 

(Potter et al., 2005). 

Experiments are required to further study the many parameters required for the 

model and the effects of biological factors dosing the mechanobiological stimulus. Further 

investigation of the molecular basis of mechanotransduction on bone physiology and 

disease is needed to confirm that the mechanobiological model can provide realistic 

predictions. 

 

In spite of these limitations the model can predicts a plausible mechanobiological 

stimulus consistent with experimental, clinical and numerical observations. Moreover it is 

easily updatable regarding the block diagram architecture. 

In conclusion two perspectives arise from this work. First of all we are going to link 

this work with a model of BMUs in order to define a complete bone remodeling algorithm 

(Rieger et al., 2010). Then the whole model will be implemented into finite element code 

in order to predict bone quality evolution for specific patients and to estimate the necessity 

of putting them under drugs medication. 
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Figure 1: Block diagram describing the events cascade for bone stimulus with coupled 

mechanical and biological effects. Dashed arrows represent the mechanical effects 
and dotted ones represent the biological effects. Solid arrows denote biological 

reaction due to mechanical stimulation represented by NO & PGE2 production by the 
osteocyte. Transduction phases (Signal, Reception, Integration & Amplification, 

Target) are based on Oesterhelt’s concept (2010). 
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Figure 2: Mechanobiological stimulus versus calcium concentration for different 

levels of fluid flow on basal physiological evolution of NO and PGE2. 
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Figure 3: Predicted stimulus versus fluid velocity for different levels of NO [pM] and 

PGE2 [pM]. 
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Figure 4: Predicted stimulus versus calcium concentration at constant fluid flow for 
different levels of NO [pM],  PGE2 [pM] and different configurations of the stimulus 

Ψ. 
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Figure 5: Predicted mechanobiological stimulus at different levels of canaliculus 

damages for basal physiological evolution of NO [pM] and PGE2 [pM]. 
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  Signal  Reception  Integration  & 
Amplification 

Target 

Mechanics  Fluid flow, 
Shear stress

Production 
of NO & PGE2

fMecha,fNO,fPGE2 
 

 
BMUs 

Biology  Ca  PTH 
regulation 

fPTH,fBio 

 
Table 1: Mechanical and biologic components used in the model. 
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 Mechanical part Ref. Biological part Ref. 
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Table 2: Model’s equations 
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  Parameter value Description 
Source 

Fl
ui

d 
Fl

ow
 M

TV  
Kp 
μ 
γ 

2.1269e-6 m.s-1 

7.5e-20 m².Pa-1.s-1 
0.65e-3 Pa.s 

2 

Max. Poiseuille velocity
Poiseuille permeability 

Viscosity 
Damage exponent 

Goulet et al., 2006 
Gururaja et al., 2005 

Lemaire T. et al., 2008 
- 

C
al

ci
um

 

0Cax  

 

2.1 mM Basal value Based on Houillier et al., 2009 

P
TH

 

α1 
α2 
α3 
α4 
M
PTHx

 

9.92 pg.ml-1 
136.4 pg.ml-1 

2.317 mM 
3.097e-2 mM 
150 pg.ml-1 

PTH equ. coef. 
PTH equ. coef. 
PTH equ. coef. 
PTH equ. coef. 
Max. PTH level 

Calc. based on Houillier et al., 2009 
Calc. based on Houillier et al., 2009 
Calc. based on Houillier et al., 2009 
Calc. based on Houillier et al., 2009 

Based on Houillier et al., 2009 

N
O

 

1K  

2K  

NOx  
M
NOx  

4e-11 pM.day-1 
1.e0 day-1 

0.e0 pM.day-1 
1.998 pM 

Release rate 
Elimination rate 
Ext. admin. rate 

Max. level 

Calc. based on Maldonado et al., 2006 
Maldonado et al., 2006 
Maldonado et al., 2006 

Calc. based on Maldonado et al., 2006 

P
G

E 2
 

3K  

4K  

5K  

PGEx
 

M
PGEx

 

2e-13 pM.day-1 
1.e-3 day-1 
1.e-2 day-1 

0.e0 pM day-1 
1.06 pM 

Release rate 
Rate increased by NO 

Elimination rate 
Ext. admin. rate 

Max. level 

Calc. based on Maldonado et al., 2006 
Maldonado et al., 2006 
Maldonado et al., 2006 
Maldonado et al., 2006 

Calc. based on Maldonado et al., 2006 
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O
st

eo
cy

te
s 

6K  

7K  

8K  

9K  

14K  

ocyx  

44.e12 s.m-1 
1.e0 cell-1 
1.e-1 day-1 

2.003e-11 day-1 
1.e0 cell-1 
500 cells 

Fluid flow influence rate
 Influence rate 

Prod. rate 
Degradation rate 

Influence rate 
Ref. value 

Calc. based on Maldonado et al., 2006 
Maldonado et al., 2006 
Maldonado et al., 2006 

Calc. based on Maldonado et al., 2006 
Calc. based on Maldonado et al., 2006 
Komarova et al., 2003 – Parfitt 1977 

O
st

eo
bl

as
ts

 bx  

10K  

11K  

12g  

22g  

  200 cells 
3.e0 cell.day-1 
2.e-1 cell.day-1 

1.e0 
0.e0 

Ref. value 
Prod. rate 

Elimination rate 
Paracrine factor 
Autocrine factor 

Komarova et al., 2003 – Parfitt 1977 
Komarova et al., 2003 
Komarova et al., 2003 
Komarova et al., 2003 
Komarova et al., 2003 

O
st

eo
cl

as
ts

  cx  

12K  

13K  

11g  

21g  

20 cells 
4.e0 cell.day-1 

2.e-2 cell.day-11 
0.5e0 
-0.5e0 

Ref. value 
Prod. rate 

Elimination rate 
Autocrine factor 
Paracrine factor 

Komarova et al., 2003 – Parfitt 1977 
Komarova et al., 2003 
Komarova et al., 2003 
Komarova et al., 2003 
Komarova et al., 2003 

Table 3: Model’s parameters 
 
 




