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Abstract

A result is derived, in the form of a sum, for the time-dependent probability of
fixation of an unlinked neutral locus. The result captures many of the key features
of the probability of fixation in a highly compact form. For ‘small’ times (¢t < 4N,)
a single term of the sum accurately determines the time-dependent probability of
fixation. This is in contrast to the well-known result of Kimura, which requires the
contribution of many terms in a different sum, for ‘small’ times. Going beyond small
times, an approximation is derived for the time-dependent probability of fixation

which applies for all times when the initial relative allele frequency is small.

Keywords: gene fixation, random genetic drift, diffusion approximation, neutral

theory, Wright-Fisher model



1 Introduction

Fixation of an allele in a finite population is a random process. It is characterised by
the probability that the allele has fixed by a given time; this is the time-dependent
probability of fixation. In the present work we investigate this quantity for an un-
linked neutral locus. The standard result for the time-dependent probability of fix-
ation for this case originates with Kimura (1955a), who analysed a Wright-Fisher
model (Fisher, 1930; Wright, 1931) under the diffusion approximation.

The diffusion approximation is an approach which was introduced into population
genetics by Fisher (1922) and Wright (1945), and then substantially developed by
Kimura (1955a). Under a diffusion approximation the relative frequency of an allele is
treated as continuous random quantity. The diffusion approximation derives its name
from the diffusion equation that governs the distribution of the relative frequency.
The diffusion approximation of the Wright-Fisher model leads to an explicit form for
the time-dependent probability of fixation that has good accuracy (see e.g., Figure 1
of McKane and Waxman, 2007). However, the diffusion result is a sum of an infinite
number of terms (see Eq. (2), below) and this has a complexity that precludes much
insight into its behaviour or mathematical form. Furthermore, its determination can
require a significant amount of numerical calculation.

Despite the fundamental importance of Kimura’s result for the time-dependent



probability of fixation, it is very hard to find many direct applications of it in the
literature. In part this may be due to the absence of approximations that summarise
its essential aspects in a simple formula for all values of the time. Approximations
do, however, exist for times that are relatively long (of the order of the effective
population size or larger) and have been employed by Charlesworth et al. (2005) in
the detection of shared and ancestral polymorphisms; this work thus constitutes a
rare application of Kimura’s result.

In the present work we reanalyse the formula for the time-dependent probability
of fixation and obtain results which capture some of the key features of this quantity
in a compact form. These results generally give insights into the dynamics of ran-
dom genetic drift associated with fixation, and constitute a concrete mathematical
handle of the phenomenon which can be approximated to provide explicit formu-
lae. The results also lead to a substantial simplification in the computation of the

time-dependent probability of fixation for the case of small and intermediate times.

2 Background

Before we consider details of previous results and the results of the present work, it is

useful to introduce a scaled time, 7, which simplifies many expressions. It is defined



in terms of the actual time, ¢, via

= t/(4N,) (1)

where N, is the effective population size. The quantity 7 measures time in units of
4N, generations and henceforth shall simply be referred to as the ‘time’.

The general problem under consideration involves a single locus of a randomly
mating diploid population with two alleles, denoted A and a. Given that at time
7 = 0 the relative frequency of the A allele is p, the probability that the A allele has
fixed by time 7 (i.e., the time-dependent probability of fixation) is written Ps.(T; p).
For an unlinked locus that is selectively neutral, and in the absence of mutations, the
time-dependent probability of fixation was calculated by Kimura under the diffusion

approximation, with the result

= 2 2” + 3 n —(n n T
Pax(T5p) Z n+2))( D"CB/A (1 — 2p)e~ D+ (2)

(Kimura, 1955b). Here c/ 2)(y) denotes a Gegenbauer polynomial in the variable y
of order 3/2 and degree n (Abramowitz and Stegun, 1965).
The time-dependent probability of loss of the A allele, namely Ps(7;p), can be

obtained from the result of Eq. (2) with the replacement p — 1 — p. This follows



since (i) when the A allele starts at a relative frequency of p, the a allele starts at a
relative frequency of 1 — p, (ii) loss of the A allele is equivalent to fixation of the a
allele, (iii) under selective neutrality, the two alleles are interchangeable, and hence
Pioss(T;p) = Pax(7;1—p). Because of this relation we need consider only the fixation
probability.

The expression derived by Kimura for the fixation probability can be approxi-
mated by including a finite number of terms in the sum in Eq. (2), but this may
require substantial computation. In the presence of selection, techniques have been
developed to deal with this (Wang and Ranala, 2004). ‘Generally, the number of
terms required in the sum in Eq. (2) depends primarily on the value of the time, 7,

nHD(+2)7 only become

since the time-dependent exponentials in Eq. (2), namely e~
small for (n+ 1)(n + 2)7 > 1. For large n this relation suggests that the number of
terms that should be included in the sum is of the order of 7=1/2 and this need not
be small if 7 is small. For example in a population of 10,000 individuals, to accu-

rately approximate the fixation probability after 2000 generations can in some cases

require at least 20 terms in the sum'. Furthermore, the detailed way the expression

'We set p = 0.4 for an indication (but not a systematic analysis) of the number of terms required
in Kimura’s sum for Pgy(7;p), Eq. (2). Including 10 terms in the sum yields a negative value of
Psx (75 p), while 18 terms yields a 12% error compared with the converged value of the sum (arising
from 100 terms). However, including 20 or 21 terms yields ~ 1% error. We note that 20, numerically,
corresponds to 57 /2, i.e., is consistent with the estimate that 0(7_1/2) terms are required in the
sum.



for Psx(7;p) in Eq. (2) varies with time is not apparent from Kimura’s result, except
where the time-dependent exponentials in Eq. (2) become small, i.e., at moderately
large values of 7. In this case Pay(7;p) = p[1 — 3(1 — p)e 2™ + O(e™57)].

For values of T that are moderately small (7 < 1) Kimura’s result can be evaluated
numerically. However, no explicit mathematical form, beyond that of the sum in Eq.
(2), has so far been given for the probability of fixation for this range of 7, which
corresponds to an appreciable set of actual times, ranging from 0 to of the order of

4N, generations.

3 Results

Let us now consider the main result of the present work. This is a formula for the
time-dependent probability of fixation, P (7;p), that takes a very different form
to Kimura’s result, Eq. (2). This new formula provides a substantial amount of
information about the probability of fixation as a function of time, especially for
small 7. The formula presented here is, like Eq. (2), a sum and in Appendix A it is

shown that we can write

o0

Pix(15p0) = 4 V2eT/47—3/2 Z(—l)"An(T;p). (3)

n=0



Before we give the general form for the A, (7;p) which appear in Eq. (3), we shall
present results for a case of practical interest, namely for small initial relative fre-
quencies (p < 1). For this case, all A,(7;p) are, to leading order in p, directly

proportional to p. In particular (see Appendix A),

Au(r;p) ~p(7°/4) (2n + 1) o~ [@nt1)m)?/(ar) (4)

with corrections of order p2. Thus for small p we have Ag(7;p) = p (72/4) e ™ /47)

and keeping just this leading term in the sum in Eq. (3) leads to the explicit ap-
proximation

Pro(rsp) o prn¥e7/ g 32700 (5)

In Figure 1 we plot the approximation in Eq. (5) for p = 0.1 for a range of 7 and for

comparison also plot the full diffusion result given in Eq. (2).

From Figure 1 we conclude that for small p, Eq. (5) constitutes an explicit
approximation of Eq. (2) that: (i) is qualitatively correct over a range of 7, (ii)
has small absolute errors, and (iii) when the probability of fixation is appreciable

compared with these errors, the approximation is quantitatively correct.



An important feature of the form of Py, (7;p) given in Eq. (3) is that the smaller
the value of 7, the smaller the number of terms that need to be included in the sum for
good accuracy (this is precisely the opposite behaviour to Kimura’s result in Eq. (2)).

2
2 /T and

To illustrate this for the case of small p, we note that A;(7;p)/Ao(7;p) >~ 3e~
for all 7 less than 2 (i.e., for all t < 8N,) this ratio is less than 0.02%. Thus, for this
range of times, the inclusion of A;(7;p) in the sum in Eq. (3) makes a tiny correction
to the leading (n = 0) term. It follows that for such ‘small’ 7, the contribution of
just Ag(7;p) that was used in Eq. (5) is an approximation that encapsulates an
extremely large number of terms of the sum in Eq. (2). More generally, we note
that A, (7;p)/Ao(T;p) =~ (2n + 1)e ™+ D™/7 and this ratio rapidly decreases with
n, even for moderate 7. For example, for 7 = 5 the ratios with n = 0, 1, 2 or 3 are
approximately {1,6 x 1072,4 x 107°,4 x 10719}.

Given the level of agreement of the full diffusion approximation, Eq. (2), and
the small p approximation of Eq. (5) (see Figure 1) we investigate a further ap-
proximation in Figure 2, where the sum representing the diffusion approximation
(Eq. (2)) is truncated to the leading two terms: Pq.(7;p) =~ p[1 — 3(1 — p)e 27| (cf.
Charlesworth et al., 2005) however since we are working in a small p approximation,

where only the leading p dependence is kept, it is consistent to omit the quadratic p



dependence in this expression. Hence we use

Pax(m;p) = p (1 — 36_27—) . (6)

From Figure 2 it is apparent that for 2 < 7 < 3 there is substantial agreement
between the approximation of the present work in Eq. (5) and the result derived from
Kimura’s analysis, Eq. (6). Additionally, for 7 > 2 and p = 0.1 the approximation
of Eq. (6) is very close to the full diffusion result of Eq. (2): the difference is less
than 1073,

We note that the approximation of Pgc(7;p) in Eq. (5) has the feature that
it equals p at the time 7 = 7 ~ 3.14 and, furthermore, beyond this value of 7 the
approximation exceeds p, which is the largest value that Py, (7;p) can take. Including
higher terms in the sum of Eq. (3) beyond just the n = 0 term pushes this and related
features to larger values of 7 (see Appendix B), however, a simple way to proceed
is to use Eq. (5) for 7 < 2 and Eq. (6) for 7 > 2. At 7 = 2 this approximation of

Eq. (6) differs from the result of Eq. (5) by less than 0.02%. As a result, a small p

10



approximation that works for all 7 is

/

pW3/2eT/4T—3/2e—7r2/(4T)7 0<1t<2

Pﬁx(T;p) = (7)

p(1—3e7?7), T>2.

\

It is worth noting that the dominant factor in Eq. (7), for small 7, is e~ /(47)
which decreases in the vicinity of 7 = 0 extremely rapidly. It is primarily this factor
alone which leads to Py, (7;p) having a very flat curve in the vicinity of 7 = 0 (see
Figure 1).

A more sophisticated approximation in the ‘small’ 7 range, 7 < 2, could be
obtained for general p by using the full result for the A,(7;p), and not a small p
approximation, and possibly taking more of the A, (7;p) into account. In Appendix

A it is shown that the A, (7;p) can generally be written for all p and 7 as

arcsin(/p) 5
An<7-;p) Y - / 6—($+””+”/2) /T (ZL’ + nm + 71'/2) p— SinZ(l‘)dl'. (8)
— arcsin(/p)

While this expression appears complex, it is a well-behaved integral that can be
straightforwardly evaluated, numerically. Thus, if required, we can obtain essentially

exact numerical results for the time-dependent probability of fixation by numerically

11



evaluating a number of the A, (7;p) and using them in Eq. (3). In Table 1 we illus-
trate how the truncated approximation, Py, (7;p) o~ 4n~1/2e7/47=3/2 3" L (—1)" A, (13 p),
approaches its true value, when the full form of the A, (7;p) (Eq. (8)) are used, and
the number of terms in the sum, m, is increased. We have taken a time of 7 = 2
(corresponding to an actual time of ¢ = 8 N,) in the calculation of Table 1. Smaller

values of 7 lead to an even more rapid convergence than that shown in Table 1.

It is apparent from Table 1 that the leading term in the sum in Eq. (3), using the
numerically calculated value of Ag(7;p), is sufficient to determine the full fixation
probability to high accuracy for all p, for time 7 = 2 (and, indeed, for all smaller
times).

In addition to Eq. (3) providing an approximation for Py (7;p), a closely re-
lated quantity is the distribution of the random time to fixation, T§,, given that
fixation ultimately occurs. The probability that Ts, is smaller than t is given by
Prob(Thx < t) = Pax(7;p)/p thus Eq. (3) can also provide analytical approximations

to Prob(Thx < t) and related quantities and such as the probability density of Tgy.

12



4 Summary

In this work, the time-dependent probability of fixation, Ps.(7;p), has been derived
in the form of a sum. This takes a different form to the result of Kimura, and
only a single term of the sum is required, in the regime of ‘small’ times (t < 4N,),
to approximate the time-dependent probability of fixation. This result has been
combined with an approximation of Kimura’s result to yield an approximation for

Psy (75 p) that holds for small initial relative allele frequencies but all times.

Acknowledgements
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Appendix A: Proving equivalence with Kimura’s
result

In this appendix we shall prove that the form for the time-dependent probability
of fixation of the present work, Eqgs. (3) and (8), is equivalent to Kimura’s result,
Eq. (2). Proceeding in this direction, i.e., from the result of this work to Kimura’s
result yields a much shorter calculation than proceeding in the opposite direction
(which was the way the calculation was originally carried out).

We begin with Egs. (3) and (8) which can be combined as a sum from —oo to

oo as

267/47_—3/2 0 4 arcsin(/p) Cettn Y
Putrip) = 25T 3 (g [ et
\/7_T n——adl — arcsin(,/p)
x [z + (n+1/2)7]\/p — sin*(x)dz. 9)

A key part of the proof involves transforming a sum appearing within Eq. (9), into
a different sum, using the Poisson summation method (Apostal, 1979). The result is

given in Eq. (11), below. To establish Eq. (11), we note that the sum appearing in

14



Eq. (9), namely > > (=1)" [z + (n+1/2)7] el /277 can be written as

o0 o0

S (D) [t (4 1/2)m] el /oo fy) Y (=1)"s(y —n)dy

n=—oo n=—oo

(10)

where f(y) = [z + (y + 1/2)7] e e+ @+1/27*/7 and §(y) is a Dirac delta function. We

then note that > °° _ (—1)"d(y—n) is a function of y that is periodic, with period 2,

n=—oo

and accordingly can be written as a Fourier series. We find 3> (—1)"0(y —n) =

S @D and using this result in Eq. (10) yields, on evaluating the integral

over 1,

o0

ST (1) [x + (4 1/2)7] "ot
= L Z (—1)m(2m + 1)e*m(m+1)7'fz(2m+1):p. (11)

2y

m=—00

15



This result is exact identity, and using it in Eq. (9) yields

1 oo arcsin(,/p) ‘
Pr(rip) =3 Y (-1)"@m+ pe e e [p — sin’ (a)da
ju o
M=—o00 arcsin(/p)
=Y (=D)™@m+ e ", (12)
m=0
where
4 arcsin(,/p)
I, = _/ cos [(2m + 1)z] \/p — sin?(z)dx. (13)
T Jo

In Eq. (12) we have simplified the integral and used the fact that the part of the
sum from m = —oo to m = —1 duplicates the part from m = 0 to m = oco.

It may be verified that

Iy = p. (14)

To determine the I, for m > 0 we use Eq. (22.10.11) of Abramowitz and Stegun
(1965) for the following representation of a Gegenbauer polynomial in the variable

cos  of order n and degree a:

O (cos ) = 2'7°T'(n + 2a) (sin §)' 2 /9 ( cos[(n + )¢ do. (15)

n![(«)]? coS ¢ — Cos 6)1_a

Here I'(x) denotes Euler’s gamma function. Taking o = 3/2, p = sin*(6/2) and

16



n=m—11in Eq. (15) yields

62 oy 2 PT(m+2) o [ cos[(m+1/2)¢]
Cnt(=20) = i) ) /o<cos¢_cose>—1/2d¢

~Am(m +1) 1 ZaresiivP cos [(m 4 1/2)¢)
_ E / : dg  (16)

212 1—(1-2p cos¢—1+2p)_1/2

and on setting ¢ = 2x gives

2m(m + 1) arcsin /p .
07(312) 1—2p) = —/ cos [(2m + 1)x]1/p — sin® zdx. 17
i ( ) i [( EIRY (17)

mp(1 —p)
Comparing this result with Eq. (13) leads to

2p(1 — p)Ci2 (1 — 2p)
m(m + 1)

I, = . om=1,2,3,... (18)

Using Egs. (14) and (18) in Eq. (12) yields Kimura’s result, Eq. (2), hence we have
shown that Egs. (3) and (8) are fully equivalent to Eq. (2).

To derive the leading term in a small p approximation of A,(7;p) we change

17



variable in Eq. (8) from x to y = x/,/p. This yields

arcsin(y/p)/ /P

A, (T;p) = p/ e’[\/ﬁ“(”*lﬂ)”]z/f [Vpy + (n+ 1/2)7] \/1 — p~Lsin®(y/py)dy.

—arcsin(/p)/+/P
(19)

Expanding all quantities within the integral leads to A,,(7;p) = p f_ll e~ [tnt1/2)m?)/ T(n+
1/2)m/1 — y2dy + O(p?). The remaining integral has the value /2 hence for small

p we obtain the approximate form of A, (7;p) given in Eq. (4).

18



Appendix B: Dependence of P (7;p) on 7 when
the sum is truncated.
In this appendix we investigate the form of P, (7;p) given in Eq. (3), when it is

approximated by truncating the sum at a finite number of m terms, in which case

m—1
Pux(7;p) o dm ™2 r 732N 2 (1) Ay (73 p). (20)

n=0

When m is odd, this is numerically found to lead to an approximation for Py, (7;p)
which achieves the value of p (which is the maximum value that P (7;p) can take)
at a finite value of 7. Beyond this value of 7, the approximation overshoots p.
By contrast, taking m even leads to an approximation for Ps,(7;p) which achieves a
maximum value (less than p) at a finite value of 7, with the approximation decreasing
beyond this value of 7. It follows that keeping m terms in the sum, the value of the
scaled time 7 where one of these two behaviours occurs (Psx(7;p) either equalling
p or achieving its maximum value) corresponds to the largest value of 7 where the
approximation can be sensibly applied. Writing this largest value as 7,.x, we have
determined its values for different numbers of terms in the sum, m, using the small

p approximation given in Eq. (4). The results are summarised in Table 2.

19



The value of 7 adopted for Table 1 (in the main text) is 7 = 2 and is smaller
than any of the 7,,.,’s appearing in Table 2. The rapid convergence of the truncated
sum of Eq. (20), as demonstrated in Table 1, provides evidence that for values of T
less than 7, the truncated sum provides a very good approximation to the fixation
probability given in Eq. (2).

There is a straightforward measure of the error in the approximation of Eq. (20)
precisely at the ‘maximum time’ 7., namely the difference between the full diffusion
result for Py, (7;p), when evaluated at 7 = Ty, and the value of the approximation
of Eq. (20), when also evaluated at 7 = Tynax. This measure of the error depends on
the initial frequency, p, and we have adopted the value p = 0.1 and employed the
small p approximation for the A, (7;p). We then find that when m = 1, 2 or 3 the
absolute values of the differences are approximately {5 x 10748 x 107%,8 x 1078}

and hence very small compared with Pyy(Timax; p) Which is very close to p.

20
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Figure Captions

Figure 1 Caption. With p the initial relative frequency and 7 the scaled time,
T =t/(4N,), this figure illustrates a ‘small p’ approximation to the time-dependent
probability of fixation of Eq. (5). The approximation arises from including just the
small p form of the n = 0 term in Eq. (3). The approximation is plotted against
time, 7 (solid line). In the same figure the full diffusion result (obtained by including
100 terms in the sum in Eq. (2)) is also plotted (broken line). The value of p adopted
for the figure is p = 0.1 and for the range of 7 adopted for the figure (0 < 7 < 3)
the difference between the results of Egs. (2) and (5) is less than 6 x 1073. Smaller
values of p lead to yet closer agreement. For example, for p = 0.01 and the same
range of 7, the difference is less than 6 x 1075.

Furthermore, for p = 0.1 and 0 < 7 < 3 (the values adopted for the figure), it is
not possible to visually distinguish between the full diffusion result, Eq. (2), and the
approximation derived from Eq. (3) where only the full zeroth order term (not its

small p approximation) is included in the sum; the results differ by less than 5 x 1074,

Figure 2 Caption. In this figure the small p approximation to Py (7;p), given
by Eq. (5) is compared with the result of keeping just the leading two terms of the
diffusion sum, when quadratic dependence on p is omitted, namely Eq. (6). The
initial frequency used in the figure was p = 0.1.
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Over the range 1 < 7 < 2 the approximations of Eqs. (5) and (6) differ by less
than 1.4 x 1073, while over the range 2 < 7 < 3 the two approximations differ by

less than 5 x 1074,

Tables and Table Captions

Table 1
p=02 | p=04 | p=0.6 | p=0.8
m =11 0.191259 | 0.386966 | 0.587181 | 0.792055
m =2 | 0.191211 | 0.386814 | 0.586811 | 0.791206
m =3 | 0.191211 | 0.386814 | 0.586811 | 0.791206
Diffusion result | 0.191211 | 0.386814 | 0.586811 | 0.791206

Table 1. Caption: To illustrate how many terms are required in Eq. (3) to
accurately determine the time-dependent probability of fixation, we have calculated
the value of Py (7;p), from Egs. (3) and (8), when 7 = t/(4N,) = 2 and the sum has
been truncated to m terms (the leading term in the sum is Ay and the highest term
is A,,_1). When 7 = 2, the quantity 47~'/2¢7/47=3/2 which appears in Eq. (3), has
the value ¢ = 1.315... and the first three entries of the column headed p = 0.2 are

the values of P, (7;p) when it is successively approximated by ¢ x Ag, ¢ X (Ag — A1)

24



and ¢ x (A9 — Ay + Aj), with the A,’s numerically evaluated from Eq. (8) at 7 = 2
and p = 0.2. The final entry in the column headed p = 0.2 is the full diffusion result
that is calculated from Eq. (2). The other columns in the table follow from similar

considerations.

Table 2

No. of terms in the sum, m | 1 2 3 4 5 6 7 8

Tmax 3.1153|74(95|11.7 | 13.7 | 15.9 | 18.0

Table 2. Caption: Truncating the sum in Eq. (3) at m terms leads to the approx-
imation of the time-dependent fixation probability of Eq. (20). This approximation
works up to a limited value of the time 7, which we denote 7., and which we have
estimated from the small p results of Eq. (4). There appears to be a simple linear
relationship between 7Ty,.c and m, namely 7,., >~ 2.12m + 1.02 that we have verified

to very reasonably hold for m ranging from 1 to 20.
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