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Abstract

This article re-analyses a prey-predator model with a refuge introduced by one of the

founders of population ecology G. F. Gause and his co-workers to explain discrepan-

cies between their observations and predictions of the Lotka-Volterra prey-predator

model. They replaced the linear functional response used by Lotka and Volterra by

a saturating functional response with a discontinuity at a critical prey density. At

concentrations below this critical density prey were effectively in a refuge while at a

higher densities they were available to predators. Thus, their functional response was

of the Holling type III. They analyzed this model and predicted existence of a limit

cycle in predator-prey dynamics. In this article I show that their model is ill posed,

because trajectories are not well defined. Using the Filippov method, I define and

analyze solutions of the Gause model. I show that depending on parameter values,

there are three possibilities: (1) trajectories converge to a limit cycle, as predicted by

F. G. Gause, (2) trajectories converge to an equilibrium, or (3) the prey population

escapes predator control and grows to infinity.

Key words: discontinuous differential equations, Filippov solution, Holling

functional response, limit cycle, Lotka-Volterra model, population dynamics,

Soon after Lotka (1926) and Volterra (1926) published their theoretical treat-

ments on prey-predator population dynamics, their predictions were experimen-

tally tested by G. F. Gause (Gause, 1934; Gause et al., 1936). Gause focused on
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three experimental predator-prey systems consisting of prey (Aleuroglyphus agilis)

and predatory (Cheyletus eruditus) mites, prey (Paramecium caudatum) and preda-

tory (Didinium nasatum) protists, and yeast (Saccharomyces exiguus) and protists

(Paramecium bursaria). In none of these experiments population dynamics were con-

sistent with the Lotka–Volterra neutrally stable limit cycles. In experiments with

protists and mites a prolonged coexistence of both prey and predators was obtained

only when both species were regularly added to the system. In a completely ho-

mogeneous environment Didinium destructed all prey and it collapsed subsequently.

When the environment was not homogeneous and there was a refuge for prey, prey

survived in the refuge but the predator population collapsed. The situation was

different when protists fed on the yeast. There was strong experimental evidence

that population dynamics tended to a limit cycle that was independent from initial

population numbers. These observations lead Gause et al. (1936) to search for dis-

crepancies in assumptions of the Lotka–Volterra predator-prey model when applied

to their experimental systems. First, they observed that protists were not able to

feed on yeast at low densities, because at low yeast densities the prey formed into a

sediment at the bottom which was not accessible to predators inhabiting the water

column. Thus, prey were effectively in a refuge when at low concentrations. When

prey reached above the critical density, they re-appeared in the water column and

became accessible to predators. Second, they postulated that consumption of prey

was a saturating function of prey density. Third, they observed that the predator

population did not start to decrease until most of the predators were in the refuge.

To describe their observations mathematically, Gause et al. (1936) substituted the

linear consumption rate used in the Lotka–Volterra model by a saturating function

that was zero below the critical prey density and had a jump (discontinuity) at

the critical prey density. Hereafter I will refer to this model as the Gause model.

Models with a saturating functional response were introduced to theoretical ecolog-

ical literature later on by e. g., Rosenzweig and MacArthur (1963) who replaced

the linear functional response in the Lotka-Volterra model by the Holling type II
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(Holling, 1959) functional response. Besides the fact that the Rosenzweig-MacAthur

model assumes negative density dependent prey growth, another difference between

these two models is the jump in the functional response in the Gause model. The

Rosenzweig-MacArthur model became one of the key models of prey-predator in-

teractions because it documents that prey–predator coexistence is not limited to an

equilibrium. So did the Gause model. However, the mechanism that leads to the

limit cycle in the Rosenzweig-MacArthur model is entirely different from the mech-

anism that causes fluctuations in the Gause model. In the Rosenzweig-MacArthur

model the limit cycle is caused by interaction between bottom-up and top-down prey

regulation. When prey are limited by resources (i. e., when environmental carrying

capacity is low), bottom-up regulation is strong and keeps predator and prey pop-

ulation dynamics at an equilibrium. As environmental carrying capacity increases

due to enrichment, bottom-up regulation gets weaker and the population equilibrium

becomes unstable due to the destabilizing Holling type II functional response. In the

case of the Gause model there is no bottom-up regulation of prey growth so the

nature of the limit cycle is solely due to top-down regulation and refuge presence. In

fact, the Gause functional response is of the Holling type III, so their analysis clearly

showed that such a functional response can lead to a limit cycle in predator–prey

population dynamics.

In general, proving existence and uniqueness of a limit cycle in predator-prey

population dynamics is not trivial. For example, the limit cycle in the Rosenzweig–

McArthur model appears when the stable equilibrium undergoes the Hopf bifurcation

and its uniqueness was proved only much later (e. g., Huang and Merrill, 1989).

Certainly, these concepts were unknown when Gause et al. (1936) analyzed their

system. Therefore, it is quite remarkable that using a simple geometrical argument,

they were able to predict that trajectories of their model converge to a limit cycle (see

their Figure 5). However, there is one crucial problem with their analysis. The Gause

model was described by a differential equation with a discontinuous right-hand side

(due to the jump in the functional response). Such differential equations may not



4

have solutions in the usual sense1 and the Gause model is an example. A concept

of a “solution” for such models was introduced later on by A. F. Filippov (1960)

(see also Aubin and Cellina, 1984; Filippov, 1988). No such mathematical concept

existed at the time when Gause with his co-workers analysed their model to achieve

a better fit with experimental data. This is really a remarkable example of biological

research that used a mathematical methodology that was not yet developed at that

time.

In this article I will explain how solutions of the Gause model can be defined

and will analyze this model with respect to parameter values and initial population

densities. I will show that trajectories of the Gause model can converge to a limit

cycle as correctly predicted by Gause et al. (1936), but they can also converge to an

equilibrium, or prey can escape completely predator regulation.

1. The Gause model

Gause et al. (1936) considered the following adaptation of the Lotka–Volterra

predator-prey model
dR

dt
= rR− Cf(R)

dC

dt
= (ef(R)−m)C.

(1)

Here R is prey density, C is predator density, r is the per capita prey population

growth rate, f is the Gause functional response specified below, e is the efficiency

rate with which captured prey are converted to new predators, and m is the predator

mortality rate. There are three distinctive features of this functional response: 1.

below a critical prey population threshold (denoted by Rc) prey are not consumed,

2. the functional response has a discontinuity at the threshold, 3. consumption satu-

rates with increasing prey density (Gause et al., 1936). The first feature corresponds

to the refuge of a fixed size Rc. The jump at the critical prey density was motivated

1A trivial example is the differential equation
dx

dt
= 1 when x < 0 and

dx

dt
= −1 when x > 0.

Unless we set
dx

dt
= 0 when x = 0, this differential equation has no solution starting at x(0) = 0.
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by their observation that “... predators ... do not seriously decrease in concentration

until the destruction of the prey down to this threshold...” (Gause et al., 1936). This

suggest that the functional response in the vicinity of Rc is quite steep, and can be

approximated by a functional response with a jump at Rc. In fact, as we will see

below, this assumption allowed authors to analyze the predator-prey population dy-

namics using a simple geometric argument. Moreover these authors also asked that

“the tangent to f ... crosses the ordinate and not the abscissa”. This latter con-

dition excludes coexistence of prey and predators in a locally asymptotically stable

equilibrium and it is interesting to note that this seems to be the first occurrence of

the now well known (in)stability condition for prey-predator interactions (Murdoch

and Oaten, 1975). A prototype of such a functional response is (see the solid curve

in Figure 1A)

f(R) =

⎧⎪⎪⎨⎪⎪⎩
0 R < Rc

λR

1 + hλR
R ≥ Rc.

(2)

Here parameter λ describes the search rate of a predator and h is the handling time

a predator needs to process one unit of prey. Rc is the critical prey density below

which prey are not accessible to predators. Thus, for above-critical prey density, f

is the Holling type II functional response. The Gause functional response (2) is a

limiting case of the Holling type III functional response (dashed curve in Figure 1A)

fIII(R) =
λRμ/(Rμ + Rμ

s )R

1 + hλRμ/(Rμ + Rμ
s )R

(3)

when the exponent μ tends to infinity. I will show now that model (1) is not well

defined in the sense that solutions cannot be continued in forward time once prey

density reaches the critical threshold Rc, and predator density is high enough.

For prey population densities below the threshold (R < Rc), prey not being eaten

by predators grow exponentially while predators die exponentially, i. e., model (1)

becomes
dR

dt
= rR

dC

dt
= −mC.

(4)
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Thus, at each point of the prey-predator density phase space to the left of the critical

prey density R = Rc, trajectories move in the south-east direction.

For prey population densities above the threshold (R > Rc), population dynam-

ics (1) are given by the Lotka–Volterra model with the Holling type II functional

response
dR

dt
= rR− C

λR

1 + hλR
dC

dt
=

(
eλR

1 + hλR
−m

)
C.

(5)

First, I will recall properties of model (5) when no refuge exists (Rc = 0, e. g.,

Murdoch and Oaten, 1975; Svirezhev and Logofet, 1983; Křivan, 2008). For small

handling times that satisfy h < e/m this model has an interior, unstable equilibrium

E� = {R�, C�} = { m
λ(e−mh)

, re
λ(e−mh)

} (Appendix A). Depending on parameters and

initial conditions, model (5) has two types of solutions (Appendix A). For small

handling times that satisfy h < e/(r+m) all trajectories of model (5) spiral outward

from the interior equilibrium with ever increasing amplitude. For larger handling

times (e/m > h > e/(r + m)) there exist trajectories that tend to infinity without

spiraling around the equilibrium (see the bottom trajectory in Figure 2B,F). In such

a case, the prey population completely escapes predator regulation.

Second, I will assume a refuge exists (Rc > 0) and I will consider model (1) with

the Gause functional response (2). For R > Rc the prey isocline coincides with the

prey isocline of model (5) and it is given by

C =
r

λ
(1 + λhR)

(thick dashed line in Figure 2). For small prey densities satisfying R < Rc the prey

isocline is not defined. Let us consider the line R = Rc in the prey-predator density

phase space. The isocline analysis shows that in the vicinity and to the right of this

line, the prey population decreases provided predator density is high enough, i. e.,

C > Cc =
r

λ
(1 + λhRc). (6)
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Here the point (Rc, Cc) corresponds to the intersection of the prey isocline of model

(5) with the critical prey line R = Rc (the corner of the thick dashed line in Figure

2). Similarly, to the left of this line, the prey population increases. It is clear that

above the critical predator density Cc trajectories of the Gause model are pushed

from both sides to the line R = Rc and they cannot leave this line if they exist. Thus,

trajectories of model (1) cannot cross the critical line R = Rc above the point Cc

and, by definition (the prey isocline consists of points in the prey–predator density

phase space where prey population neither increases nor decreases, Rosenzweig and

MacArthur, 1963), this half-line must be a part of the prey isocline of the Gause

model. Thus, the prey isocline of the Gause model is L-shaped (the thick dashed

line in Figure 2).

However, the most interesting feature of the Gause model is the fact that once

a trajectory falls on the vertical part of the prey isocline, it cannot be continued

any further. Indeed, as the “trajectory” cannot leave the line R = Rc above the

point Cc it follows that
dR

dt
= 0. But the right-hand side of model (1) evaluated

at R = Rc gives
dRc

dt
�= 0. In other words, the Gause model is not well posed

because its trajectories are not defined when they fall on the vertical part of the prey

isocline. This is a consequence of the fact that the Gause functional response has

a “jump” at the critical prey density, because such models may not have solutions.

In other words it is not clear how Gause et al. (1936) defined the vector field in

their Figure 5, panel 1’ for R = Rc. It took more than twenty years after Gause

et al. (1936) published their article before Filippov (1960) (see also Filippov, 1988)

introduced a new solution concept for such models. The crucial step is provided

through suitable definition of the vector field at the critical prey density, which I

briefly describe now. The Filippov solution concept applied to the Gause model

defines a new vector field at the critical prey density Rc as the line segment with

end points given by the two adjacent vector fields f 1 and f 2. Here f 1 = (rRc,−mC)

stands for the vector field defined by the right-hand side of model (4) and f 2 =
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(rRc − CλRc/(1 + λhRc), eλRcC/(1 + λhRc) −mC) for the vector field defined by

model (5). This new (multivalued) vector field is given by

F = αf 1 + (1− α)f 2

where 0 ≤ α ≤ 1. In other words, this vector field associates to every point along

the vertical part of prey isocline a whole set of possible directions given by F . This

definition of the Filippov field re-defines the functional response (2) at the critical

prey density to

f(R) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 R < Rc

[0, λRc

1+λhRc
] R = Rc

λR

1 + hλR
R > Rc.

(7)

It follows that under this new definition f(Rc) is the line segment [0, λRc

1+λhRc
] that fills

the gap in the Gause functional response (Figure 1B). This definition is very natural

as it reflects the fact that at the critical prey density the functional response does not

specify exactly the prey consumption by predators. Thus, functional response (7) is

a very reasonable approximation of a continuous Holling type III functional response

that is steep enough at prey densities close to the critical prey density (Figure 1B).

Appendix B shows that model (1) with Filippov vector field at the critical prey

density has uniquely defined trajectories for every initial condition.

To analyze the Gause model we need to know the dynamics along the vertical

part of the prey isocline. When trajectory of model (1) falls on the vertical part of

the prey isocline and the predator density satisfies C > Cc, the trajectory cannot

leave the isocline and it must move vertically, i. e., dR/dt = 0. This implies that

along such a trajectory

α = 1− r(1 + λhRc)

λC
,

which corresponds to the vector fF = (0, erRc − mC) ∈ F, and the population
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dynamics are
dR

dt
= 0

dC

dt
= erRc −mC.

(8)

The above equation describes population dynamics along the line R = Rc as long as

C > Cc. At the point (Rc, Cc) the trajectory leaves the line R = Rc and because

the consumer density is low, it enters the region where R > Rc (this also follows

from considerations in Appendix B). Thus, model (8) provides a formal definition

of the vector field along the horizontal line in Figure 5, panel 1’ of Gause et al.

(1936) (I remark that axes are swapped in Gause et al. (1936) so the line R = Rc

is horizontal there). It is interesting to observe that there exists a new equilibrium

EF = (RF , CF ) = (Rc, erRc/m) of model (8), provided this point is on the vertical

part of the prey isocline, i. e., when CF > Cc. This holds whenever the prey critical

density satisfies Rc > m/(λ(e−mh)), i. e., when the predator isocline of model (5)

is to the left of the prey critical line R = Rc, or, in other words, if the prey refuge is

large enough.

Now I will analyze qualitative behavior of the solutions of the Gause model with

respect to parameters and initial population densities. I will consider two cases,

depending whether the critical prey population density Rc is smaller or larger than

is the equilibrium prey density R� = m/(λ(e − mh)) of model (5). First, I will

assume that the critical prey density is smaller (Rc < R�, Figure 2A–D). Figure 2A

shows the case where the handling time is so small that all trajectories of model

(5) spiral around the equilibrium. In this case, starting from any initial population

densities, the corresponding trajectory must fall at certain time onto the vertical part

of the prey isocline. The trajectory will then follow dynamics described by (8) and

because in this case there is no equilibrium on the vertical part of the prey isocline,

the trajectory must reach at a positive time the lower end-point (Rc, Cc) (i. e., the

corner of the prey isocline). At this point it will leave the isocline and a limit cycle

is formed (the heavy solid cycle in Figure 2A). All trajectories will reach this limit
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cycle in a finite time. This is the limit cycle predicted by Gause et al. (1936).

For larger handling times (i. e., e/m > h > e/(r + m)), model (5) also has

trajectories that do not spiral around the equilibrium. There are two possibilities

depending on the position of the critical point (Rc, Cc). Either the trajectory that

starts at this point returns to the critical line R = Rc (Figure 2B) in which case a

limit cycle exists. However, this limit cycle is not globally stable, because there are

trajectories that tend to infinity (see the bottom trajectory in Figure 2B). Numerical

simulations show that for yet higher handling times the trajectory that starts at the

point (Rc, Cc) tends to infinity (Figure 2C) and predators lose control over their prey.

Second, I consider the case where Rc > R� (Figure 2E, F). In this case, equi-

librium E� of model (5) is located to the left of the prey critical density line in

the prey–predator phase space where dynamics are described by (4). Thus, it is no

longer an equilibrium of the Gause model. However, the equilibrium EF is on the

prey isocline and therefore is the only equilibrium of the Gause model. Similar to

the case where the prey critical density line was to the left of the predator isocline,

for small handling times all trajectories must fall onto the vertical part of prey iso-

cline and then move along it to reach the equilibrium EF (Figure 2E). For higher

handling times, some trajectories will escape predator regulation (Figure 2F) so that

the equilibrium is then only locally asymptotically stable.

These results are summarized in Figure 3. This is an example of a bifurcation

diagram in the (h, Rc) parameter space. The solid curve in Figure 3 corresponds to

the transition from the locally stable limit cycle in Figure 2A to the locally stable

equilibrium (panel E). This curve is given by equation Rc = R∗, i. e., Rc = m/(λ(e−
mh)). Such bifurcation was called the boundary-focus bifurcation (see the case BF3

in Figure 5 in Kuznetsov et al., 2003). The dashed line in Figure 3 corresponds to

transition between Figure 2B and Figure 2C, i. e., disappearance of the limit cycle

in Figure 2B, and was obtained by numerical simulations.
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2. Discussion

In this article I have analyzed a prey-predator model introduced by Gause et al.

(1936) to explain cycles in prey-predator population dynamics which they observed

in some experiments. They replaced the linear functional response used by Lotka and

Volterra by a functional response that was zero below some critical prey threshold

density, had a “jump” at this threshold, and was saturating at high prey densities.

Such a functional response is an extreme form of the Holling type III sigmoid func-

tional response that was introduced later on (Holling, 1959). Using this functional

response Gause et al. (1936) were able to show that predators and prey can coex-

ist along a limit cycle. This is perhaps the very first models in ecology that shows

species coexistence is possible not only at an equilibrium. They also showed that

a prey refuge can lead to predator-prey coexistence as the same model without a

refuge does not predict such a coexistence. Moreover, they derived a general stabil-

ity condition for predator-prey models. Thus, this article was really fundamental for

further development of population ecology. Although their analysis is very elegant,

there is one crucial problem because their model is not well defined as there are

initial population densities for which no solutions exist. The question then is if and

in which sense the predictions these authors obtained from the model are correct

or not. In this article, using the approach developed by Filippov (1960), I showed

how trajectories in the Gause model can be defined. I also analyzed this model with

respect to parameters and initial population densities. Gause et al. (1936) predicted

that the model has a globally stable limit cycle (see their Figure 5). I showed that

predators and prey can coexist along a limit cycle provided that the refuge size and

handling times are not too high (see the region LC in Figure 3). In fact, for small

handling times this limit cycle is globally stable, but for slightly higher handling

times there are also trajectories along which both populations tend to infinity (Fig-

ure 2B). Along such trajectories prey “escape”predator control due to low predator

efficiency to handle prey items. For yet higher handling times the limit cycle disap-
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pears and predators cannot control prey growth (see the region in Figure 3 denoted

as ∞ ).

A different situation occurs when prey critical density is high enough, i. e., when

the prey refuge is large. Then, for small handling times a globally asymptotically

stable equilibrium point exists. As handling time increases, there will be again some

trajectories that will tend to infinity.

As prey below the critical density are effectively in a refuge, this analysis nicely

demonstrates the stabilizing role of refugia that protect a fixed number of prey (e. g.,

Rosenzweig and MacArthur, 1963; Hassell and May, 1973; Maynard Smith, 1974;

Murdoch and Oaten, 1975; Hassell, 1978; Sih, 1987; Ives and Dobson, 1987; Ruxton,

1995; Hochberg and Holt, 1995; Křivan, 1998). When the refuge is large enough,

i. e., when the critical prey density below which prey are protected is high, provided

predators are able to regulate the prey population (i. e., when handling times are

small) then the two species coexist at an equilibrium. As refuge size decreases, less

prey are protected and prey-predator coexistence occurs along a limit cycle.

Because the Gause functional response is of the Holling type III, analysis of the

Gause model shows that such a functional response can lead to predator and prey

coexistence without any prey density dependence. In fact, the effect of a refuge on

predator-prey stability is somewhat parallel to the effect of enrichment on predator-

prey stability in the Rosenzweig–MacArthur model. While in the Rosenzweig–

MacArthur model a higher environmental capacity weakens the bottom-up control

and leads to population oscillations, the effect of refuge is just opposite. A larger

refuge stabilizes otherwise unstable population equilibrium.

A similar analysis for the Lotka–Volterra model where functional response is

linear with a “jump” at the critical prey density shows the same pattern (Figure 2D).

Here all trajectories converge to a global attractor which is bounded by the largest

Lotka-Volterra cycle that is to the right of the vertical part of the prey isocline. For

larger Rc the population dynamics converge on an equilibrium (results not shown)

exactly as in the case with the Holling type II functional response.
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The ultimate reason for species coexistence at an equilibrium or along a limit

cycle in the Gause model is the fact that the prey isocline has a vertical segment.

This vertical segment then limits the amplitude of species fluctuations as suggested

by Rosenzweig and MacArthur (1963) in their seminal work. Since then it was

shown that such isoclines arise when prey-predator models consider optimal foraging

of predators (Křivan, 1996; van Baalen et al., 2001), optimal activity level of prey

and/or predators (Křivan, 2007) or optimal use of refuges (Křivan, 1998). All these

models show that prey isoclines with vertical segments (or equivalently predator iso-

clines with horizontal segment) can arise naturally in real populations. In fact, using

models with discontinuous right-hand sides is a very natural methodology for analyz-

ing such systems and can lead to a much simpler analysis when compared to models

with strong non-linearities. Such an approach was used for example by Crowley

(1981) to demonstrate an existence of a limit cycle in Rosenzweig and MacArthur

(1963) model where prey isocline was assumed to be vertical at the prey carrying

capacity. This corresponds to strong density dependence that operates only when

prey density reaches the carrying capacity.

It is likely that the Gause predator-prey model was one of the first models in

biology where discontinuous differential equations were used. It is remarkable that

this happened even before mathematicians provided a formal definition of a solution

for such systems. Although it does not seem that Gause work motivated some

research in this field, this example clearly shows that biology can be a source of

interesting problems for mathematicians. Since that time, similar models were used

in ecology (e. g., Křivan, 1996; Meza et al., 2005; Dercole et al., 2007; Křivan, 2007),

and in gene networks (e. g., Edwards, 2000; de Jong et al., 2004; Gouzé and Sari, 2003;

Casey et al., 2006). Moreover, a complete qualitative theory was developed for two

dimensional models with a discontinuity (Kuznetsov et al., 2003), and a systematic

approach (called “the puzzle method”) for analyzing such models was developed

(Dercole et al., 2007). Moreover, software for numerical analysis of such models is also

available (Dercole and Kuznetsov, 2004, 2005; Piiroinen and Kuznetsov, 2008; Thota
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and Dankowicz, 2008). These methodological advances open further possibilities to

study models with discontinuities that were not available at times when Gause et al.

(1936) wrote their pioneering treatise.
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Appendix A: Analysis of model (5)

At the interior equilibrium E� = {R�, C�} = { m
λ(e−mh)

, re
λ(e−mh)

} of model (5), the

Gause criterion

df(R�)

dR
=

λ

(1 + λhR)2
<

λ

(1 + λhR)
=

f(R�)

R�

implies instability. Moreover, because

∂

∂R

(
1

RC
(rR− f(R)C)

)
+

∂

∂C

(
1

RC
(ef(R)C −mC)

)
=

1

R

(
f(R)

R
− df(R)

dR

)
> 0

the Dulac (1937) criterion (see also Hofbauer and Sigmund, 1998) with the Dulac

function 1
RC

excludes existence of a limit cycle for model (5).

When prey density is high, model (5) asymptotically tends to

dR

dt
= rR− C

h

dC

dt
= ( e

h
−m)C.

(9)

The prey isocline is the line C = hrR. Below this isocline prey population increases

while above it decreases. Let us consider a line given by C = kR with 0 < k < hr

(i. e., this line is below the prey isocline in the prey-predator density phase space).

Trajectories of model (9) cross this line upwards provided k > h(m + r)− e because

under this condition dC/dR > k at every point of this line. It follows that when

h < e/(m + r) then k > h(m + r)− e for every 0 < k < hr and trajectories of model

(9) will reach the prey isocline, i. e., trajectories of model (5) will spiral around its

equilibrium. However, when h > e/(m + r) there will be trajectories of model (9)

that never reach the prey isocline (see bottom trajectories in Figure 2B,F). Along

such trajectories prey population escapes predator control.
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Appendix B: Existence and uniqueness of trajectories of the Gause model

Let n = (nR, nC) = (1, 0) be the vector perpendicular to the line R = Rc in the

prey-predator density phase space. Projection of the two vector fields given by the

right-hand sides of (4) (denoted as f 1) and (5) (denoted as f 2) are 〈n, f 1〉 = rRc

and 〈n, f 2〉 = rRc − λRcC
1+λhRc

. If 〈n, f 1〉 > 0 and 〈n, f 2〉 < 0 trajectories are pushed

from both below and above to the line R = Rc. These conditions hold when predator

population density is large enough, i. e., C > Cc.

The existence of trajectories for the Gause model follows from general existence

theorems that can be found in Filippov (1988) (see also Colombo and Křivan, 1993).

Uniqueness of trajectories for the Gause model follows from the fact that 〈n, f 1〉 =

〈n, f 2〉+ λRcC
1+λhRc

. Thus, it is impossible that at some points of discontinuity 〈n, f 1〉 < 0

and 〈n, f 2〉 > 0 which would imply non-uniqueness of trajectories (Filippov, 1988;

Colombo and Křivan, 1993).
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Séances de L’Académie des Sciences 204, 1703–1706.

Edwards, R., 2000. Analysis of continuous-time switching networks. Physica D 146,

165–199.



18

Filippov, A. F., 1960. Differential equations with discontinuous right-hand side. [In

Russian. English translation published in American mathematical society transla-

tions, Series 2, 1964, pp. 199-231]. Mat. sbornik 51, 99–128.

Filippov, A. F., 1988. Differential equations with discontinuous righthand sides.

Kluwer Academic Publishers, Dordrecht.

Gause, G. F., 1934. The struggle for existence. Williams and Wilkins, Baltimore.

Gause, G. F., Smaragdova, N. P., Witt, A. A., 1936. Further studies of interaction

between predators and prey. The Journal of Animal Ecology 5, 1–18.
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Figure legends:

Figure 1: Panel A (solid line) shows the Gause functional response (2). Panel B

shows the Filippov regularization (7) (solid line) of the Gause functional response.

The dashed line in both panels is the Holling type III functional response given by

(3). Parameters: Rc = 1, λ = 10, h = 0.1, μ = 10.

Figure 2: Panels A-D assume that the critical prey density (Rc = 0.2) is smaller

than the equilibrium prey density R� of model (5), while panels E and F assume

the opposite case (Rc = 0.6). Panel A shows the trajectories of the Gause model

when handling time is small (h = 0.1) and all trajectories converge to a limit cycle.

For intermediate handling times (h = 0.5, panel B) a locally asymptotically stable

limit cycle exists, but there are also trajectories that tend to infinity. For yet larger

handling times (h = 0.7, panel C) all trajectories diverge from the equilibrium. Panel

D shows the case where handling time is zero. Panel E assumes low handling time

(h = 0.1) in which case all trajectories converge to an equilibrium point that is

located at the vertical part of the prey isocline. Panel F assumes a larger handling

time (h = 0.7) where the equilibrium is only locally asymptotically stable because

some trajectories tend to infinity. Other parameters: r = 1, λ = 1, m = 0.2, e = 0.5.

Figure 3: A bifurcation diagram for the Gause model with respect to handling times

and the refuge size. The solid curve corresponds to the transition from the limit cycle

(Figure 2A) to the stable equilibrium (Figure 2E) and is given by Rc = m
λ(e−mh)

. The

dashed curve corresponds to the set of parameters where the limit cycle disappears.

LC stands for the limit cycle, Eq stands for the interior equilibrium, ∞ means that

no bounded attractor exists, and the right region (Cons. ext.) denotes the set of

parameters for which consumers extinct and prey grow exponentially.
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