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1. Introduction

Since the seminal work of J Radon [1], which finds numerous applications (Computed
Tomography, Single Photon Emission Computed Tomography (SPECT) and Positron
Emission Tomography (PET), etc.) many extensions of this integral transform have been
widely discussed, in particular in the literature of imaging science. This is the case when
results of measurements appear under the form of integrals of a physical quantity over
lower dimensional manifolds. The relevant problem to solve is the recovery of the physical
quantity of interest as a function inR2. The field of such problems is known in mathematics
as integral geometry in the sense of I M Gel’fand [2] and in image processing as image
reconstruction.

As the circle is the simplest non-trivial curve in the plane next to the straight line, it
becomes the natural object on which a new Radon transform can be defined. However
a circle has three parameters (two for its center and one for its radius). Therefore to
reduce data redundancy, a constraint is usually imposed. A few examples of circular Radon
transforms are known so far. Quinto [3] has considered the case of all translations of a circle
of fixed radius as well as circles centered on a circle and shown that they are invertible. This
case is of interest for thermo-acoustic (and opto-acoustic) tomography [4, 5]. Synthetic
Aperture Radar - SAR (or SOund NAvigation and Ranging - SONAR) imaging makes use of
circles of varying radius but centered on a straight line [6, 7, 8]. Circular Radon transforms
along paths that are not on the zero sets of harmonic polynomials were proved to be
invertible in [9]. Finally Compton scattering tomography, a two-dimensional imaging
process based on scattered radiation, has one modality for which image formation is built
on Radon transforms defined on a set of circles passing through a fixed point of the plane
[10].

In this work we describe a recently proposed modality of Compton scattering
tomography [11], which is at the origin of a new Radon transform. It is defined on
circular arcs having a chord of fixed length rotating around its middle point. Obviously
such a condition is far more complicated that the two conditions previously met in
imaging systems. Yet, it will be shown that its inversion can be achieved through analytic
techniques established long ago by A M Cormack [12].

Generally the choice of a family of circles is dictated by the physical mechanism of
image formation. But there exists also other mechanisms which lead to Radon transforms
on other types curves such as ellipses [13], parabolas [14], hyperbolas [15, 16] or V-line (or
pair of half-lines from a vertex in the plane) [17]. It is not known whether higher order
algebraic curves could support more sophisticated image formation mechanisms.

From the mathematical point of view, it was A M Cormack who first succeeded
to invert a large class of Radon transform on what he called α-curves, of which are
straight lines, parabolas and one branch right-angle hyperbolas. He also showed that
geometrically inverted α-curves, which are called by him β-curves support also invertible
Radon transforms. The β-curves contains as special cases circles passing through a
fixed point, cardioids and one-branch Bernoulli lemniscates. Palamodov has given the
reconstruction of functions from the data of its integrals over half-circles with centers at
the diameter of a half-disc H [18]. But, as far as we are aware of, our circular arc Radon
transform seems to be a new member of invertible Radon transforms in the plane.

Relations between these algebraic curve Radon transforms with the classical Radon
have been routinely studied. In particular, the connection between parabolic and straight-
line Radon transforms has been found by Denecker et. al. [19], whereas the relation
between standard Radon transforms and SAR/SONAR transforms is discussed in [6].
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In this paper, we shall be concerned essentially with the new Radon transform on
arcs of circles and the derivation of its inverse. In section 2, we recall the principle of
Compton scattering tomography as suggested more than thirty years back. We then review
the modality proposed by S J Norton, who has shown that a possible implementation
of Compton scattering tomography can be made with a circular Radon transform based
on circles which pass through the radiation point source. We then introduce the new
circular-arc Radon transform after showing how it occurs in a new modality of Compton
scattering tomography. The merits of this circular-arc Radon transform cannot be claimed
until the existence of its inverse transform is established. Section 3 is precisely devoted
to the derivation of the inverse transform. This implies that image reconstruction
is feasible with Compton scattered radiation in this modality of Compton scattering
tomography. Finally section 4 discusses some possible extensions of this Radon transform
on families of algebraic curves globally invariant under geometric inversion. Conclusion
and perspectives are contained in the last section.

2. Compton scattering tomography (CST) and circular Radon Transforms

2.1. Compton scattering tomography (CST)

For more than forty years, transmitted penetrating radiation such as X- or gamma-rays
have been routinely used to probe the hidden parts of matter and/or tissues [20, 21, 22].
The measurement of their attenuation along all possible linear paths in the plane form
a set of Radon data, which, once fed into a chosen inversion formula provides the
reconstruction of the probed medium. In this imaging modality radiation scatter acts as a
nuisance by blurring images and it should be removed or at least be compensated.

However it was realized, in the earlier seventies, that the Compton effect which is
the scattering of X- or gamma-photons with electric charges in matter may give rise to
new challenging imaging modalities [23]. The idea is to register the outgoing scattered
photons according to their energies in order to image the hidden part of objects of interest.
Compton scattering tomography (CST) was then born. Several modalities have been
proposed and tested [24]. But so far none of them has emerged as sufficiently efficient
to be of widespread use.

Extension of this concept to three-dimensional imaging exists in two modalities:
Compton camera imaging [25] and Compton scattered radiation imaging [26, 27, 28, 29].
The first one is based on Radon transform on conical surfaces with swinging axis whereas
the second one is modeled by Radon transform on cone surfaces with fixed axis direction.
Both of them are illustrations of an astute use of Compton scattering for imaging hidden
parts of objects.

2.2. Norton’s CT

In 1984 S J Norton [10, 30] worked out a CST modality which is based on a Radon transform
on circles having a fixed common point. The functioning principle is given by figure
1. A point source S emits primary radiation towards an object, of which M is a running
point. A point detector D moves along an Ox-axis and collects, at given energy E , scattered
radiation from the object. The physics of Compton scattering demand that the registered
radiation flux energy f̂ at site D is due to the contribution of all scattering sites M lying
on an arc of circle from S to D subtending an angle (π−ω), where ω is the scattering
angle corresponding to the outgoing energy E , as given by the Compton formula, see for
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Figure 1. Norton’s Compton scatter tomography

example [31]. Mathematically, f̂ is essentially the Radon transform of the object electron
density f (M) on such arc of circles, when radiation attenuation and photometric effects
on radiation propagation are neglected. Image reconstruction is then feasible if an exact
inversion formula for this type of circular Radon transform is available. This was done first
by A M Cormack with a new technique of inversion, which turned out to work also for
α- and β-curves, see [12]. Much later on, Norton came up with an alternative inversion
formula [10].

2.3. Review of the Cormack circular Radon transform inverse

To facilitate the reading of the next sections, we briefly recall the inversion approach to the
Cormack circular Radon transform, introduced above.

Consider a circle of diameter p, which goes through S the origin of coordinates, see
figure 1. Let its center Ω be defined by

−→
SΩ = (p/2)n, such that n makes an angle ϕ

with respect to a reference direction Sx. A running point M on the circle is defined by−−→
SM = r (γ)k, where cosγ = (k ·n). The polar equation of the circle is clearly cosγ = r /p,
with −π/2 < γ<π/2. The circle arc element can be easily evaluated as

d s =
√

(dr )2 + (r dγ)2 = r dγ
1

cosγ
= p dγ. (1)

An integrable function f (M) is represented, in this polar coordinate system by f (r,θ),
where θ = γ+ϕ. Its circular Radon transform is given by the integral

f̂ (p,ϕ) =
∫

Arc
d s f (r,γ+ϕ)|r=p cosγ = p

∫ π/2

−π/2
dγ f (r,γ+ϕ)|r=p cosγ, (2)

This defining equation can be reformulated in terms of Fourier angular components of f
and f̂

f (r,θ) = ∑
l

fl (r )e i lθ , with fl (r ) = 1

2π

∫ 2π

0
dθ e−i lθ f (r,θ) (3)
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f̂ (p,ϕ) = ∑
l

f̂l (p)e i lϕ, with f̂l (p) = 1

2π

∫ 2π

0
dϕ e−i lϕ f̂ (p,ϕ)

as

f̂l (p) = p
∫ π/2

−π/2
dγ fl (r )|r=p cosγ e i lγ. (4)

From the polar equation of the circle we have

r dγ
1

cosγ
= p dγ=− dr

sinγ
, (5)

and taking into account the symmetry in γ, a final form, after going back to the variable r ,
change of integration bounds, and expressing all quantities in terms of r , arises as

f̂l (p) = 2
∫ p

0
dr

cos l
(
cos−1(r /p)

)√
1− (r /p)2

fl (r ). (6)

This is in fact one of the forms of the Tchebycheff transform [32], called Cormack
transform, by H H Barrett in [33]. The recovery of the circular component fl (r ) is done by
integrating both sides of this equation on an appropriately chosen function of p. Thanks
to a formula discovered by A M Cormack [12] (which is in fact a special case of a general
property of Gauss hypergeometric functions [34]), the right-hand-side of the equation
turns out to be the primitive of the product of fl (r ) with a known function of r . Thus fl (r )
can be extracted by a simple derivation. We shall meet the same inversion procedure for
the circular arc Radon transform.

2.4. A new modality in CST

Recently we have suggested a new modality for Compton scattering tomography and
presented some preliminary results on its performance [11]. Figure 2 shows how this
novel modality of Compton scattering tomography works. An emitting radiation point
source S is placed at a distance 2p from a point detector D. The segment SD joining
them rotates around its middle point O. At site D is collected the single-scattered radiation
flux density from the scanned object for a given angular position of the line SD and at
a given scattering energy E , (or equivalently at scattering angle ω). Thus, thanks to the
physics of the Compton effect, the detected radiation flux density f̂ (τ,φ) is the integral
of the electron density f (M) on this class of circular arc, where τ = cotω and φ is the
rotation angle made by the mediator line of the segment SD with a fixed reference axis,
see figure 2. Consequently this image formation leads to a novel class of Radon transform
on a particular class of circular arcs, provided that radiation attenuation and photometric
effects on radiation propagation are not taken into account.

2.5. Circular-Arc Radon (CAR) transform

The family of circular arcs, on which this new Radon transform is defined, subtend an angle
(π−ω). Their radius is p/sinω. A running point M on the circular arc, is localized by its
polar angle θ and its distance to the origin OM = r . The direction of OM makes an angle γ

with the mediator line of SD , which itself makes an angle φ with a fixed polar direction, as
shown in figure 2.

From the cosine identity for the triangle ΩOM

ΩM 2 =OM 2 +OΩ2 −2OM OΩ cos �ΩOM , (7)



Inversion of a new circular-arc Radon transform for Compton scattering tomography 6

p = OS = OD

r 

O

M

S

D

Ω

ω

θ

ω

ϕ

γ
Object

Figure 2. Principle of the Circular-Arc-Radon transform

and one can obtain the circle equation after making the substitutions ΩM = p/sinω,
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OM = r and �ΩOM = (π−γ) in the previous equation,

p2 = r 2 +2pr τ cosγ. (8)

The r -positive root of eq. (8) describes the physically relevant circular arc

r = r (cosγ) = p

(√
1+τ2 cos2γ−τcosγ

)
. (9)

The second r -root describes the complementary arc below the SD line, which corresponds
to a subtended angle ω, hence physically not relevant. As the product of the r -roots of eq.
(8) is p2, these two arcs are inverse from each other in a geometric inversion transform of
center O and module p. Consequently the whole circle is globally invariant with respect to
this inversion and the locus of invariant points in this inversion is the circle (Γ) of radius p

and center O. Thus the physical range of γ is −π/2 < γ < π/2, and p
(p

1+τ2 −τ
)
< r < p.

Outside this interval r = 0.
Alternatively, the circular-arc equation may also be written as

cosγ= 1

2τ

(
p

r
− r

p

)
, (10)

displaying a reflection symmetry with respect to γ. In fact the symmetry is even greater, as
the equation remains invariant under the simultaneous transformations

ω−→ (π−ω) and (r, p) −→ (1/r,1/p). (11)

Actually we do not need back scattering because by rotating the scanning equipment
beyond φ>π, we can find ourselves in the same situation as exploring with an angle larger
than π/2. This fact can be also seen in the inversion equation. Replacing ω by (π−ω)
amounts to flip the sign of τ. This is also equivalent to take the equation

cosγ= 1

2τ

(
p

r
+ r

p

)
,

instead of equation (10). The circular-arc line element d s can be readily given as

d s = r dγ

√
1+τ2

1+τ2 cos2γ
= dr

p
1+τ2

τsinγ
. (12)

With this line element, the Circular-Arc Radon (CAR)transform of a function f (r,θ), is

f̂ (τ,φ) =
∫

ØSD
d s f (r,θ), (13)

in which f is an integrable function having a compact support, which is assumed to be
strictly inside the inversion circle (Γ).

We now derive a new integral equation linking f̂l (τ) to fl (r ), the circular components
of f̂ (τ,φ) and f (r,θ). Since θ = (φ−γ) from figure 2 and accounting for the invariance of
the integrand under γ←→−γ, eq. (13) takes the form

f̂l (τ) = 2
∫ π/2

0
dγ r (cosγ)

√
1+τ2

1+τ2 cos2γ
fl (r (cosγ)) cos lγ. (14)

Now using

dγ
r (cosγ)√

1+τ2 cos2γ
= dr

τsinγ
= dr√

τ2 − 1
4

(
p
r − r

p

)2
. (15)
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we change back to the r -variable in eq. (14) and compute the new r -integration bounds

for γ= 0, r = p(
√

1+τ2 −τ), (16)

for γ=π/2, r = p. (17)

Eq. (14) becomes finally

τ f̂l (τ)p
1+τ2

= 2
∫ p

p(
p

1+τ2−τ)

dr√
1− 1

4τ2

(
p
r − r

p

)2
fl (r ) cos

[
l cos−1

(
1

2τ

(
p

r
− r

p

))]
. (18)

Compare this equation (18) to equation (6).

3. Inversion of the Circular-Arc-Radon Transform

3.1. Derivation

We are now in a position to put equation (18) in the form of a Cormack’s integral [12], which
lends itself to inversion using an integral identity [34]. Let

q = 1

τ
= tanω, and s−1 = 1

2

(
p

r
− r

p

)
. (19)

Since r > 0, we have r = p(
p

1+ s−2 − s−1), and

dr

r
= d s

s
p

1+ s2
. (20)

For simplicity, let hl (r ) = r fl (r ). The new integration boundary values on s are

for r = p(
√

1+τ2 −τ), s = q (21)

for r = p, s =∞. (22)

Moreover with
τp

1+τ2
= 1√

1+q2
, (23)

eq. (18) becomes

f̂l (1/q)√
1+q2

= 2
∫ ∞

q

d s

s
p

1+ s2
hl (p(

√
1+ s−2 − s−1))

cos l (cos−1(q/s))√
1− (q/s)2

. (24)

This equation (24) has now exactly the structure of equation (12a) of [12] and becomes
appropriate for Cormack’s inversion technique. We follow Cormack’s procedure by
multiplying both sides of equation (24) by

cosh
(
l cosh−1 (

q/t
))

q
√(

q/t
)2 −1

, (25)

and integrate over q from t to ∞. This yields∫ ∞

t
d q

cosh
(
l cosh−1 (

q/t
))

q
√(

q/t
)2 −1

f̂l (1/q)√
1+q2

=

2
∫ ∞

t
d q

cosh
(
l cosh−1 (

q/t
))

q
√(

q/t
)2 −1

∫ ∞

q

d s

s
p

1+ s2
hl (p(

√
1+ s−2 − s−1))

cos l (cos−1(q/s))√
1− (q/s)2

. (26)
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Since fl (r ) is of compact support, we can rearrange the two-dimensional integration on
the right-hand-side of eq. (26) into

2
∫ ∞

t

d s

s
p

1+ s2
hl (p(

√
1+ s−2 − s−1))

∫ s

t
d q

cosh
(
l cosh−1 (

q/t
))

q
√(

q/t
)2 −1

cos l (cos−1(q/s))√
1− (q/s)2

. (27)

But in [12, 34], it is shown that∫ s

t
d q

cosh
(
l cosh−1 ( q

t

))
q
√( q

t

)2 −1

cos l (cos−1(q/s))√
1− (q/s)2

= π

2
. (28)

This result leads to the following form of the integral relation between circular components∫ ∞

t

d s

s
p

1+ s2
hl (p(

√
1+ s−2 − s−1)) = 1

π

∫ ∞

t
d q

cosh
(
l cosh−1 (

q/t
))

q
√(

q/t
)2 −1

f̂l (1/q)√
1+q2

. (29)

Extraction of fl is achieved by differentiation with respect to t on both sides of eq. (29)

−π
t
p

1+ t 2
p(

√
1+ t−2 − t−1) fl (p(

√
1+ s−2 − s−1)) =

 d

d t

∫ ∞

t
d q

cosh
(
l cosh−1 (

q/t
))

q
√(

q/t
)2 −1

f̂l (1/q)√
1+q2


t= 2pr

(p2−r 2 )

. (30)

It remains now to re-insert the original variable r in eq. (30). Recalling that, by definition,
r = p(

p
1+ t−2 − t−1), we can work out

t = 2pr

(p2 − r 2)
, and

1

t
p

1+ t 2
= 2pr

(p2 + r 2)
. (31)

Eq. (30) yields the circular component fl (r ) of f (r,θ)

fl (r ) = (−)
(p2 + r 2)

2πpr 2

 d

d t

∫ ∞

t
d q

cosh
(
l cosh−1 (

q/t
))

q
√(

q/t
)2 −1

f̂l (1/q)√
1+q2


t= 2pr

(p2−r 2 )

. (32)

A simple change of variables in the integration shows that equation (32) may be recast as

fl (r ) = (−)
(p2 + r 2)

2πpr 2

[∫ ∞

t
d q

cosh
(
l cosh−1 (

q/t
))√

q2 − t 2

d

d q

(
f̂l (1/q)√

1+q2

)]
t= 2pr

(p2−r 2 )

. (33)

Finally f (r,θ) is reconstructed through its Fourier expansion with the circular
components fl (r ), as given by eq. (32). Note that the integration on q means that one
has to collect data with scattering angle from π/2 to a certain value corresponding to t .
This is the hole theorem as quoted in [12]. Finally this inversion structure suffers from data
noise propagation for which a cure is proposed in [35].
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3.2. Advantages of the new CST modality

The analytical inverse formula (32) (or (33)) is the mathematical basis for a new image
reconstruction method via the object electron density in this CST modality. This may
be viewed as an alternative to image reconstruction via the object attenuation map by
standard computed tomography (CT), because the attenuation property of matter may
change in time as opposed to its electron density. It opens a new way for probing the inside
of matter under working conditions which complement those of the existing CST modality.
In fact in Norton’s 1995 CST modality, the nature of the circular Radon transform dictates
a scanning process on one side of the line source - detector. This is appropriate for large
objects such as concrete walls, metal structures in ship building and the like. However
there exists also a need for imaging smaller objects in non-destructive industrial testing as
well as in medical imaging. For these objects, scanning should be rapid and restricted to an
adjustable reduced volume in which residual stray radiation can be easily shielded. This
is why the proposed CST modality, based on the circular-arc Radon transform, is more
appropriate, in particular when a large number of objects need to be imaged in a row.
Moreover, such a CST scanner can be built with the existing detector/detection technology,
which has been shown to work with primary (or non-scattered radiation) as well as with
scattered radiation. This would make it suitable for widespread use.

4. A generalization of the circular-arc Radon transform

4.1. Definition

In this section we examine the question of whether or not one can extend the idea of
Cormack for finding more general curves on which a Radon transform can be defined so
that it can be inverted by the same procedure. The essence of the idea is to come up with
a similar functional form by assuming at first that relevant curves should be of the general
type

τ cos(aγ) = g (xa), where x = p

r
, − π

2a
< γ< π

2a
and a ∈R+. (34)

Here g is an arbitrary function, p a characteristic length of the system and τ ∈ R+ a
parameter. By differentiation one can show that

r dγ

xa g ′(xa)
= dr

τsin(aγ)
= dr√

τ2 − g 2(xa)
. (35)

Hence the arc element is

d s =
√

dr 2 + (r dγ)2 = dr

√
τ2 − g 2(xa)+ (xa g ′(xa))2

τ2 − g 2(xa)
. (36)

This allows to define the Radon transform of a function f (r,θ) as

f̂ (τ,φ) =
∫

ØSD
d s f (r (γ),γ+φ) =

∫ r2

r1

dr

√
τ2 − g 2(xa)+ (xa g ′(xa))2

τ2 − g 2(xa)
f (r,γ+φ), (37)

where γ = a−1 cos−1(g /τ). The integration limits are determined by g ((p/r1)a) = τ and
by g ((p/r2)a) = 0. Now going to the circular components as before, the integral equation
linking them is

f̂l (τ) = 2
∫ r2

r1

dr

√
τ2 − g 2(xa)+ (xa g ′(xa))2

τ2 − g 2(xa)
fl (r ) cos(lγ)|γ=a−1 cos−1(g /τ). (38)
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Since g does not depend on τ, if we demand that

−g 2(xa)+ (xa g ′(xa))2 =C constant, (39)

then eq. (38) becomes

τp
τ2 +C

f̂l (τ) = 2
∫ r2

r1

dr
cos(l /a cos−1(g /τ))√

1− (g (xa)/τ)2
fl (r ). (40)

This equation has the required form for inversion with the Cormack’s method.
So we must solve the differential equation (39). Putting z = (xa) with x = p/r , it is easy

to verify that the general solution takes the form of a linear fractional relation

g (z) =
(
pz + q

z

)
with C =− 4pq. (41)

Conversely we can work out z (resp. r ) as a function of g

z = g

2p
±

√(
g

2p

)2

− q

p
and r = p

(
g

2p
±

√(
g

2p

)2

− q

p

)1/a

, (42)

and compute dr in terms of g , and replace r by its expression in g .
Remark
A different type of generalization has been studied by Kurusa [36]. It is defined on

closed curves of R2 having strictly convex distance functions.

4.2. Special cases

We observe that eq. (41) contains the two cases solved by A M Cormack when either p or q
is zero, i.e.

cos aγ=
( p

r

)a
for q = 0, and cos aγ=

(
r

q

)a

for p = 0 (43)

We now examine a non-trivial example of the previous generalization, for which the curve
equation is simply

cos aγ= 1

2τ

[( p

r

)a
−

(
r

p

)a]
, (44)

where a ∈R+ and −π/2a < γ<π/2a. Alternatively, we can solve for r(
r

p

)a

=
(√

1+τ2 cos2 aγ−τcos aγ

)
. (45)

For a = 1, the curve is a circular arc ØSD rotating around a point O, which is no longer the
middle point of the chord SD . The corresponding differential dr is

dr = τsin aγ√
1+τ2 cos2 aγ

r (cosγ)dγ, (46)

hence the curve element d s is

d s = r dγ

√
1+τ2

1+τ2 cos2 aγ
= dr

1

τsin aγ
. (47)

The curvilinear-arc Radon transform is now given by the integral

f̂ (τ,φ) =
∫

Arc
d s f (r (cosγ),θ) =

∫ π/2a

−π/2a
r dγ

√
1+τ2

1+τ2 cos2 aγ
f (r (cosγ),γ+φ). (48)
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Going over circular components we find

f̂l (τ) = 2
∫ π/2a

−π/2a
r (cosγ)dγ

√
1+τ2

1+τ2 cos2 aγ
fl (r (cosγ)) cos(lγ). (49)

Now after going back to the r -variable, this integral equation becomes

τ f̂l (τ)p
1+τ2

= 2
∫ p

p(
p

1+τ2−τ)1/a

dr√
1−

(
1

2τ

[( p
r

)a −
(

r
p

)a])2
fl (r ) cos(lγ). (50)

with

γ= 1

a
cos−1 1

2τ

[( p

r

)a
−

(
r

p

)a]
. (51)

Setting as before

q = 1

τ
and

1

s
= 1

2

[( p

r

)a
−

(
r

p

)a]
⇒ dr = r

a

d s

s
p

1+ s2
, (52)

we end up with the final equation

τ f̂l (τ)p
1+τ2

= 2
∫ ∞

q

1

a

d s

s
p

1+ s2

1√
1− (q/s)2

hl (p(
√

1+ s−2−(1/s))1/a) cos

(
l

a
cos−1(q/s)

)
,(53)

where hl (r ) = r fl (r ) as before. This last equation has again the precise structure of
Cormack’s equation [12], thus invertible with the same technique.

In particular, for a = 1/2,2, we have the equivalent inversion invariant α− and β-
curves of [12].

• for a = 1/2 √
r

p
=

(√
1+τ2 cos2(γ/2)−τcos(γ/2)

)
(54)

This curve is closed since −π< γ<π. It has the form of a one branch lemniscate.

• for a = 2, (
r

p

)2

=
(√

1+τ2 cos2 2γ−τcos2γ

)
. (55)

This is an arc located in a π/2-quadrant of the plane since −π/4 < γ<π/4.

4.3. Inclusion of attenuation and photometric effects in realistic working conditions

For a = 1, under realistic working conditions, traveling radiation is affected by medium
attenuation and by dispersion due to photometric propagation effects. A standard way to
take into account for these effects is to put the following factor

e−µMS

MS2 × e−µMD

MD2 , (56)

(where µ is the average linear attenuation coefficient, here assumed to be constant) in the
integrand of the circular-arc Radon transform of eq. (13). The value of this additional factor
can be evaluated by using triangular identities

MS2 = p2 + r 2 −2pr sinγ and MD2 = p2 + r 2 +2pr sinγ. (57)
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Hence

e−µMS

MS2 × e−µMD

MD2 =
exp−µ

(√
p2 + r 2 −2pr sinγ+

√
p2 + r 2 +2pr sinγ

)
(p2 − r 2)2 +4p2r 2 cos2γ

=
exp−µ

(√
p2 + r 2 −2pr sinγ+

√
p2 + r 2 +2pr sinγ

)
(
p2 − r 2

)2 (1+τ−2)
.

where

sinγ=
√

1−
(

1

2τ

(
p

r
− r

p

))2

> 0, (58)

We observe that attenuation brings up a term in sinγ, which has a non-separable
dependence on τ. Thus inversion cannot be achieved in this case with the present method.
However the inclusion of photometric effects, which yields terms of the form of a product
of a function of r and a function of τ, will not spoiled the present mechanism of inversion.
These terms have apparent divergences at r = p, which are in fact avoided since the class
of functions of interest have their support strictly inside the inversion circle (Γ).

5. Conclusion and perspectives

A new circular arc Radon transform arising in the mathematical modeling of image
formation of a new modality of Compton scatter tomography (CST) is introduced and
shown to be invertible via the technique of A M Cormack. It is also proved that it
is a member of a larger class of inversion invariant algebraic curve Radon transforms.
Interesting mathematical problems can be raised in this context, such as questions on
range and injectivity in general, which has been studied in depth for previous classes of
circular Radon transforms [9, 37, 38]. Another aspect is the development of numerical
reconstruction algorithms based on an adapted filtered back-projection process, which
remains to be constructed and exploited. These topics could be the subjects for future work
which can include the study of an extension to higher dimensional spaces as fascinating
new invertible spherical Radon transforms of potential use for imaging science.
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