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STATIC KLEIN-GORDON-MAXWELL-PROCA SYSTEMS IN 4-DIMENSIONAL CLOSED MANIFOLDS

Static Klein-Gordon-Maxwell-Proca systems are massive versions of the electrostatic Klein-Gordon-Maxwell Systems. The vector field in these systems inherits a mass and is governed by the Proca action which generalizes that of Maxwell. Klein-Gordon-Maxwell systems are intended to provide a dualistic model for the description of the interaction between a charged relativistic matter scalar field and the electromagnetic field that it generates. The electromagnetic field is both generated by and drives the particle field. In the electrostatic form of the Klein-Gordon-Maxwell systems, looking for standing waves ue iωt , the matter field is characterized by the property that u, together with a gauge potential v, solve the electrostatic Klein-Gordon-Maxwell systems (0.3) with m 1 = 0. In the case of a closed manifold we discuss here the two equations in (0.3) are independent one of another when m 1 = 0 and the system reduces to the sole Schrödinger equation. The Proca formalism, for m 1 > 0, leads to a deeper phenomenon and is more appropriate to the closed case. The particle in this model interacts via the minimum coupling rule ∂ t → ∂ t + iqϕ and ∇ → ∇ -iqA (0.1) with an external massive vector field (ϕ, A) which is governed by the Maxwell-Proca Lagrangian. The Proca action is a gauge-fixed version of the Stueckelberg action in the Higgs mechanism (see Goldhaber and Nieto [START_REF]Photon and Graviton mass limits[END_REF], and Ruegg and Ruiz-Altaba [START_REF] Ruegg | The Stueckelberg field[END_REF]). In the Proca formalism, developped under the influence of de Broglie, the photon inherits a nonzero mass. This issue is of considerable importance and intensively studied in modern physics (see for instance Adelberger, Dvali and Gruzinov [START_REF] Adelberger | Photon-Mass Bound Destroyed by Vortices[END_REF], Byrne [START_REF] Byrne | Cosmic tests of Maxwell's equations. I -A photon rest mass[END_REF], Goldhaber and Nieto [START_REF] Goldhaber | Terrestrial and Extraterrestrial limits on the photon mass[END_REF][START_REF]Photon and Graviton mass limits[END_REF], Luo and Tu [START_REF] Luo | Experimental tests of Coulomb's Law and the photon rest mass[END_REF], Luo, Gillies and Tu [START_REF] Luo | The mass of the photon[END_REF] and the references in these papers). When n = 3, the KGMP equations consist in the nonlinear Klein-Gordon matter equation, the charge continuity equation and the massive modified Maxwell equations in SI units, which are hereafter explicitly written down:

∇.E = ρ/ε 0 -µ 2 ϕ , ∇ × H = µ 0 J + ε 0 ∂E ∂t -µ 2 A ,
∇ × E + ∂H ∂t = 0 and ∇.H = 0 .

(0.2)
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These massive Maxwell equations, as modified to Proca form, appear to have been first written in modern format by Schrödinger [START_REF] Schrödinger | The Earth's and the Sun's permanent magnetic fields in the unitary field theory[END_REF]. The Proca formalism a priori breaks Gauge invariance. Gauge invariance can be restaured by the Stueckelberg trick, as pointed out by Pauli [START_REF] Pauli | Relativistic Field Theories of Elementary Particles[END_REF], and then by the Higgs mechanism. We refer to Goldhaber and Nieto [START_REF]Photon and Graviton mass limits[END_REF], Luo, Gillies and Tu [START_REF] Luo | The mass of the photon[END_REF], and Ruegg and Ruiz-Altaba [START_REF] Ruegg | The Stueckelberg field[END_REF] for very complete references on the Proca approach.

In what follows we let (M, g) be a smooth compact 3, 4-dimensional Riemannian manifold. We let also 2 = 2n n-2 be the critical Sobolev exponent, where n is the dimension of M . Given real numbers q > 0, m 0 , m 1 > 0, ω ∈ (-m 0 , m 0 ), and p ∈ (2, 2 ], the derivation of the Klein-Gordon-Maxwell-Proca system we investigate in this paper is written as

∆ g u + m 2 0 u = u p-1 + ω 2 (qv -1) 2 u ∆ g v + m 2 1 + q 2 u 2 v = qu 2 , (0.3) 
where ∆ g = -div g ∇ is the Laplace-Beltrami operator. The system (0.3) corresponds to looking for standing waves ue iωt for the full KGMP system in the static case where the massive vector field (ϕ, A) depends on the sole spatial variable. The system is energy critical when n = 3 and p = 6 and when n = 4 and p = 4. It is subcritical otherwise, namely when n = 3 and p ∈ [START_REF] D'aprile | Layered solutions for a semilinear elliptic system in a ball[END_REF][START_REF] Berti | Non-compactness and multiplicity results for the Yamabe problem on S n[END_REF] or n = 4 and p ∈ (2, 4).

In the above model, m 1 is a coupling constant which makes that the two equations in (0.3) are trully coupled (m 1 is the Proca mass in the Maxwell-Proca formalism) while m 0 is the mass of the particle, q is the charge of the particle, u is the amplitude in the writing of the particle, ω is its temporal frequency (referred to as the phase in the sequel), and v is the electric potential.

Let S g stand for the scalar curvature of g, and S p (ω) be the set consisting of the positive smooth solutions U = (u, v) of (0.3) with phase ω and nonlinear term u p-1 . Namely, S p (ω) = (u, v) smooth s.t. u > 0, v > 0, and (u, v) solve (0.3) .

(0.4)

Given ω ∈ [0, m 0 ), we let

K 0 (ω) = (-m 0 , -ω] [ω, m 0 ) . (0.5)
When ω = 0, K 0 (0) = (-m 0 , m 0 ) is the full admissible phase range. For θ ∈ (0, 1), and

U = (u, v), we let U C 2,θ = u C 2,θ + v C 2,θ .
The following result was proved in Druet and Hebey [START_REF]Existence and a priori bounds for electrostatic Klein-Gordon-Maxwell systems in fully inhomogeneous spaces[END_REF].

Theorem 0.1 (The 3-dimensional case -Druet and Hebey [START_REF]Existence and a priori bounds for electrostatic Klein-Gordon-Maxwell systems in fully inhomogeneous spaces[END_REF]). Let (M, g) be a smooth compact 3-dimensional Riemannian manifold m 0 , m 1 > 0, ω ∈ (-m 0 , m 0 ), and p ∈ [START_REF] D'aprile | Layered solutions for a semilinear elliptic system in a ball[END_REF][START_REF] Berti | Non-compactness and multiplicity results for the Yamabe problem on S n[END_REF]. When p = 6 assume

m 2 0 < ω 2 + 1 8 S g (x) (0.6)
for all x ∈ M . Then (0.3) possesses a smooth positive solution. Moreover, for any p ∈ (2, 6), and any θ ∈ (0, 1), there exists C > 0 such that for any ω ∈ K 0 (0), and any U ∈ S p (ω ), U C 2,θ ≤ C, where S p (ω ) is as in (0.4) and K 0 (0) is as in (0.5).

Assuming again (0.6), there also holds that for any θ ∈ (0, 1), U C 2,θ ≤ C for all U ∈ S 6 (ω ) and all ω ∈ K 0 (ω), where C > 0 does not depend on ω and U.

This result exhibits phase compensation in the 3-dimensional case. We aim in this paper in proving that a similar phenomenon holds true when n = 4. In this dimension the second equation in (0.3) becomes critical and this leads to serious difficulties. We prove below the existence of smooth positive solutions and the existence of uniform bounds for (0.3) in the subcritical cases p ∈ (2, 4) without any conditions, and in the critical case p = 4 assuming that the mass potential, balanced by the phase, is smaller than the geometric threshold potential of the conformal Laplacian. In doing so we prove that phase compensation still holds true for our systems when n = 4. Our result, in the subcritical case, is as follows.

Theorem 0.2 (The subcritical 4-dimensional case). Let (M, g) be a smooth compact 4-dimensional Riemannian manifold, q > 0, m 0 , m 1 > 0, ω ∈ (-m 0 , m 0 ), and p ∈ [START_REF] D'aprile | Layered solutions for a semilinear elliptic system in a ball[END_REF][START_REF] Aubin | Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF]. Then (0.3) possesses a smooth positive solution. Moreover, for any θ ∈ (0, 1), there exists C > 0 such that for any ω ∈ K 0 (0), and any U ∈ S p (ω ), U C 2,θ ≤ C, where S p (ω ) is as in (0.4) and K 0 (0) is as in (0.5).

In the critical case we prove the following result. The geometry of the ambiant inhomogeneous space, through the scalar curvature of g, comes to play a role as in the 3-dimensional case. However, the result now turns out to be local in its existence part.

Theorem 0.3 (The critical 4-dimensional case). Let (M, g) be a smooth compact 4-dimensional Riemannian manifold, q > 0, m 0 , m 1 > 0, ω ∈ (-m 0 , m 0 ), and p = 4. Assume

m 2 0 < ω 2 + 1 6 S g (x) (0.7)
for some x ∈ M . Then (0.3) possesses a smooth positive solution. Assuming that (0.7) holds true for all x ∈ M there also holds that for any θ ∈ (0, 1), U C 2,θ ≤ C for all U ∈ S 4 (ω ) and all ω ∈ K 0 (ω), where C > 0 does not depend on ω and U, S 4 (ω ) is as in (0.4), and K 0 (ω) is as in (0.5).

There are two consequences to Theorem 0.3. We list them in points (i)-(ii) below. In point (i) we illustrate the phase compensation effect associated with (0.3). There we always get existence and a priori bounds for all phases ω which are close to m 0 . Point (ii) concerns the full range of phases when we assume m 0 is not too large.

(i) Phase compensation in the critical case -Assume p = 4 and S g > 0 in M . Then there exists ε > 0 such that for any m 0 -ε < |ω| < m 0 , (0.3) possesses a smooth positive solution. Moreover, for any θ ∈ (0, 1), there exists C > 0 such that U C 2,θ ≤ C for all U ∈ S 4 (ω) and all ω a -ε < |ω| < ω a .

(iii) Full phase range in the critical case -Assume p = 4 and m 2 0 < 1 6 S g in M . For any ω ∈ (-m 0 , m 0 ), (0.3) possesses a smooth positive solution. Moreover, for any θ ∈ (0, 1), there exists C > 0 such that U C 2,θ ≤ C for all U ∈ S 4 (ω) and all ω ∈ (-ω a , ω a ).

As an immediate consequence of the C 2,θ -bounds in the above results we obtain phase stability for standing waves of the Klein-Gordon-Maxwell-Proca equations in electrostatic form. Standing waves for the Klein-Gordon-Maxwell-Proca equations in electrostatic form are written as S = ue iωt and they are coupled with a gauge potential v, where (u, v) solves (0.3). Roughly speaking, phase stability means that for any arbitrary sequence of standing waves u α e iωαt , with gauge potentials v α , the convergence of the phases ω α in R implies the convergence of the amplitudes u α and of the gauge potentials v α in the C 2 -topology. Phase stability prevents the existence of arbitrarily large amplitude standing waves.

High dimensional KGM systems in Coulomb gauge have been recently investigated by Rodnianski and Tao [START_REF] Rodnianski | Global regularity for the Maxwell-Klein-Gordon equation with small critical Sobolev norm in high dimensions[END_REF] and with special emphasis in (1 + 4)-dimensions by Klainerman and Tataru [START_REF] Klainerman | On the optimal regularity for Yang-Mills equations in R 4+1[END_REF] and Selberg [START_REF] Selberg | Almost optimal local well-posedness of the Klein-Gordon-Maxwell system in 1+4 dimensions[END_REF]. Electrostatic KGM systems in the three dimensional case have been investigated by several authors. Possible references on the physics side are by Benci and Fortunato [START_REF] Benci | Solitary waves of the nonlinear Klein-Gordon field equation coupled with the Maxwell equations[END_REF], Long [START_REF] Long | Existence and stability of solitary waves in non-linear Klein-Gordon-Maxwell equations[END_REF], Long and Stuart [START_REF] Long | Effective dynamics for solitons in the nonlinear Klein Gordon Maxwell system and the Lorentz force law[END_REF]. Blowing-up solutions to the electrostatic Schrödinger-Maxwell system, a cousin of the electrostaic KGM type systems that we consider here, have been constructed in D'Aprile and Wei [START_REF] D'aprile | Layered solutions for a semilinear elliptic system in a ball[END_REF][START_REF]Clustered solutions around harmonic centers to a coupled elliptic system[END_REF].

We briefly discuss in Section 1 the physics relevance of (0.3). We prove our theorem in Sections 2 to 4. The existence part in the theorem is proved in Section 2. The C 2,θ -bound in the subcritical case is established in Section 3. The more delicate C 2,θ -bound in the critical case is established in Sections 4 . The phase compensation phenomenon in the theorem holds true thanks to the 4-dimensional log effect µ 2 = o(µ 2 log µ) as µ → 0.

The physics origin of the system

The Klein-Gordon-Maxwell-Proca system discussed in this work describes an interacting field theory model in theoretical physics. Most electromagnetic phenomena are described by conventional electrodynamics, which is a theory of the coupling of electromagnetic fields to matter fields. Of prime importance for particle physics is fermion electrodynamics in which matter is represented by spinor fields. However one may have also boson electrodynamics in which matter is described by integer spin or bosonic fields. The simplest one is of course the complex scalar field, describing spinless particles having electric charges ±q. It gives rise to scalar electrodynamics, which describes in the non-relativistic limit the superconductivity of metals at very low temperatures. In the more general context of particle physics, a complex scalar field ψ may serve to describe scalar mesons in nuclear matter interacting via a massive vector boson field (ϕ, A).

The interaction in this model is described by the minimum substitution rule (0.1) in a nonlinear Klein-Gordon Lagrangian. As for the external massive vector field it is governed by the Maxwell-Proca Lagrangian. More precisely, assuming for short that the manifold is orientable, we define the Lagrangian densities L N KG and L M P of ψ, ϕ, and A by

L N KG (ψ, ϕ, A) = 1 2 ( ∂ ∂t + iqϕ)ψ 2 - 1 2 |(∇ -iqA)ψ| 2 + m 2 0 2 |ψ| 2 - 1 p |ψ| p , L M P (ϕ, A) = 1 2 ∂A ∂t + ∇ϕ 2 - 1 2 |∇ × A| 2 + m 2 1 2 |ϕ| 2 - m 2 1 2 |A| 2 , (1.1) 
where ∇× = d, is the Hodge dual, ψ represents the matter complex scalar field, m 0 its mass, q its charge, (ϕ, A) the electromagnetic vector field, and m 1 its mass.

It can be noted that (ϕ, A) 2 L = |ϕ| 2 -|A| 2 is the square of the Lorentz norm of (ϕ, A) with respect to the Lorentz metric diag(1, -1, . . . , -1). The total action functional for ψ, φ, and A is then given by

S(ψ, ϕ, A) = (L N KG + L M P ) dv g dt . (1.2)
Writing ψ in polar form as ψ(x, t) = u(x, t)e iS(x,t) , taking the variation of S with respect to u, S, ϕ, and A, we get four equations which are written as

           ∂ 2 u ∂t 2 + ∆ g u + m 2 0 u = u p-1 + ∂S ∂t + qϕ 2 -|∇S -qA| 2 u ∂ ∂t ∂S ∂t + qϕ u 2 -∇. (∇S -qA) u 2 = 0 -∇. ∂A ∂t + ∇ϕ + m 2 1 ϕ + q ∂S ∂t + qϕ u 2 = 0 ∆ g A + ∂ ∂t ∂A ∂t + ∇ϕ + m 2 1 A = q (∇S -qA) u 2 , (1.3) 
where ∆ g = -div g ∇ is the Laplace-Beltrami operator, ∆ g = δd is half the Laplacian acting on forms, and δ is the codifferential. We refer to this system as a nonlinear Klein-Gordon-Maxwell-Proca system. When n = 3, ∆ g A = ∇ × (∇ × A) and if we let

E = - ∂A ∂t + ∇ϕ , H = ∇ × A , ρ = - ∂S ∂t + qϕ qu 2 , and j = (∇S -qA) qu 2 , (1.4) 
then the two last equations in (1.3) give rise to the first pair of the Maxwell-Proca equations (0.2) with 0 = µ 0 = 1 (units are chosen such that c = 1) and µ 2 = m 2 1 , while the two first equations in (1.4) give rise to the second pair of the equations. The first equation in (1.3) gives rise to the nonlinear Klein-Gordon matter equation. The second equation in (1.3) gives rise to the charge continuity equation ∂ρ ∂t + ∇.j = 0 which, thanks to (0.2), is equivalent to the Lorentz condition ∇.A + ∂ϕ ∂t = 0. We assume in what follows that u(x, t) = u(x) does not depend on t, S(x, t) = ωt does not depend on x, and ϕ(x, t) = ϕ(x), A(x, t) = A(x) do not depend on t. In other words, we look for standing waves solutions of (1.3) and assume that we are in the static case of the system where (ϕ, A) depends on the sole spatial variable. By the fourth equation in (1.3) we then get that

∆ g A + (q 2 u 2 + m 2 1 )A = 0 .
This clearly implies that, and is equivalent to, A ≡ 0 since

(∆ g A, A) = |dA| 2 .
As a remark, assuming that A ≡ 0, the Lorentz condition for the external Proca field (ϕ, A) would make ϕ dependent on the sole spatial variables. As for the second equation in (1.3) it reduces to ∂ 2 S ∂t 2 = 0. It is automatically satisfied when S(t) = ωt, and we are thus left with the first and third equations in (1.3). Letting S = -ωt, and ϕ = ωv, these equations are rewritten as

∆ g u + m 2 0 u = u p-1 + (qϕ -ω) 2 u ∆ g ϕ + m 2 1 ϕ + q(qϕ -ω)u 2 = 0 . (1.5)
In particular, letting ϕ = ωv, in (1.5), we recover our original system (0.3). In other words, our original system (0.3) corresponds to looking for standing waves solutions of the Klein-Gordon-Maxwell-Proca system (1.3) in static form.

Existence Theory

We prove the existence part in Theorems 0.2 and 0.3. Formally, solutions of (0.3) are critical points of the functional S defined by

S(u, v) = 1 2 M |∇u| 2 dv g - ω 2 2 M |∇v| 2 dv g + m 2 0 2 M u 2 dv g - ω 2 m 2 1 2 M v 2 dv g - 1 p M u p dv g - ω 2 2 M u 2 (1 -qv) 2 dv g . (2.1)
The functional S is strongly indefinite because of the competition between u and v. Following a very nice idea going back to Benci-Fortunato [START_REF] Benci | Solitary waves of the nonlinear Klein-Gordon field equation coupled with the Maxwell equations[END_REF], we introduce the auxiliary functional Φ given by

∆ g Φ(u) + (m 2 1 + q 2 u 2 )Φ(u) = qu 2 , (2.2) 
and then consider that u in (0.3) can be seen as a critical point of

I p (u) = 1 2 M |∇u| 2 dv g + m 2 0 2 M u 2 dv g - 1 p M (u + ) p dv g - ω 2 2 M (1 -qΦ(u)) u 2 dv g , (2.3) 
where

u + = max(u, 0). Let Ψ : H 1 (M ) → R be defined by Ψ(u) = 1 2 M (1 -qΦ(u)) u 2 dv g . (2.4) 
The following lemma establishes the existence and differentiability of Φ, as well as the C 1 -smoothness of Ψ. Equation (2.2) is critical when n = 4 because of the term u 2 Φ(u).

Lemma 2.1. Let (M, g) be a smooth compact Riemannian 4-manifold and q > 0.

There exists Φ :

H 1 (M ) → H 1 (M ) such that (2.
2) holds true and 0 ≤ Φ(u) ≤ 1 q for all u ∈ H 1 (M ). Moreover, Φ is locally Lipschitz and differentiable. Its differential DΦ(u) = V u at u is given by

∆ g V u (ϕ) + (m 2 1 + q 2 u 2 )V u (ϕ) = 2qu (1 -qΦ(u)) ϕ (2.5) for all ϕ ∈ H 1 (M ). The functional Ψ : H 1 (M ) → R defined in (2.4) is C 1 in H 1 (M ) and DΨ(u).(ϕ) = M (1 -qΦ(u)) 2 uϕdv g (2.6) for all u, ϕ ∈ H 1 (M ).
Proof of Lemma 2.1. We briefly sketch the proof. Let u ∈ H 1 and H u : H 1 → R be defined by

H u (ϕ) = M |∇ϕ| 2 dv g + M (m 2 1 + q 2 u 2 )ϕ 2 dv g .
The functional is well defined since

H 1 ⊂ L 4 . Letting Φ(0) = 0 we can assume that u ≡ 0. Let µ = inf u∈H 1 , R u 2 ϕ=1
H u (ϕ) .

By standard minimization arguments there exists ϕ ∈ H 1 (M ) such that M u 2 ϕdv g = 1 and H u (ϕ) = µ. In particular, µ > 0. Letting Φ(u) = q µ ϕ we get that Φ(u) solves (2.2) in H 1 . It is easily seen that Φ(u) is unique. By the maximum principle, Φ(u) ≥ 0. Noting that

∆ g 1 q -Φ(u) + (m 2 1 + q 2 )u 2 1 q -Φ(u) ≥ 0
it also follows from the maximum principle that Φ(u) ≤ 1 q . Now we let u, v ∈ H 1 (M ). We have that

∆ g (Φ(v) -Φ(u)) + (m 2 1 + q 2 )u 2 (Φ(v) -Φ(u)) = q(v 2 -u 2 ) (1 -qΦ(v)) .
Multiplying the equation by Φ(v) -Φ(u), integrating over M , and by the Sobolev emedding theorem, we get that

Φ(v) -Φ(u) H 1 ≤ C ( u H 1 + v H 1 ) v -u H 1 .
(2.7)

In particular, Φ is locally Lipschitz continuous. We can prove the existence of V u (ϕ) in (2.5) as when proving the existence of Φ(u). Writing the equation satisfied by Φ(u + ϕ) -Φ(u) -V u (ϕ), multiplying the equation by Φ(u + ϕ) -Φ(u) -V u (ϕ) and integrating over M , we get that

Φ(u + ϕ) -Φ(u) -V u (ϕ) H 1 ≤ C ϕ H 1 ( ϕ H 1 + u H 1 Φ(u + ϕ) -Φ(u) H 1 )
Then the differentiability of Φ follows from the continuity of Φ. In particular, Ψ is differentiable. By (2.2),

Ψ(u) = 1 2 M |∇Φ(u)| 2 + m 2 1 Φ(u) 2 dv g + 1 2 M (1 -qΦ(u)) 2 u 2 dv g ,
and we also have that ∂H ∂Φ (u, Φ(u)) = 0, where

H(u, Φ) = 1 2 H u (Φ) -q M u 2 Φdv g . Noting that Ψ(u) = H (u, Φ(u)) + 1 2 M u 2 dv g ,
we get that (2.6) holds true. The continuity of DΨ can be proved directly from (2.6) and the continuity of Φ. This ends the proof of the lemma. Now we prove the subcritical existence of Theorem 0.2. We proceed by applying the mountain pass lemma to the functional I p in (2.3).

Proof of existence in Theorem 0.2. By Lemma 2.1,

I p is C 1 in H 1 . Let u 0 ∈ H 1 such that u + 0 ≡ 0. There holds I p (0) = 0 and I p (tu 0 ) → -∞ as t → +∞ since p > 2. Since 0 ≤ Φ(u) ≤ 1
q for all u, we also have that

I p (u) ≥ 1 2 M |∇u| 2 dv g + (m 2 0 -ω 2 ) M u 2 dv g - 1 p M |u| p dv g ≥ C 1 u 2 H 1 -C 2 u p H 1
for all u ∈ H 1 , where C 1 , C 2 > 0 do not depend on u. In particular, there exist δ, C > 0 such that

I p (u) ≥ C for all u ∈ H 1 such that u H 1 = δ. Let T 0 = T 0 (u 0 ), T 0 
1, be such that I p (T 0 u 0 ) < 0, and c p = c p (u 0 ) be given by

c p = inf P ∈P max u∈P I p (u) , (2.8) 
where P is the class of continuous paths joining 0 to T 0 u 0 . According to the above we can apply the mountain pass lemma and we get the existence of a sequence (u α ) α in H 1 such that I p (u α ) → c p and DI p (u α ) → 0 as α → +∞. Writing that I p (u α ) = c p + o(1) and that DI p (u α ).(u α ) = o( u α H 1 ), we get by Lemma 2.1 that

1 2 M |∇u α | 2 + m 2 0 u 2 α dv g = 1 p M (u + α ) p dv g + c p + ω 2 2 M (1 -qΦ(u α )) u 2 α dv g + o(1) 1 2 M |∇u α | 2 + m 2 0 u 2 α dv g = 1 2 M (u + α ) p dv g + ω 2 2 M (1 -qΦ(u α )) 2 u 2 α dv g + o ( u α H 1 ) (2.9) for all α. Writing that DI p (u α ).(u - α ) = o( u - α H 1 )
we get that u - α → 0 in H 1 as α → +∞. By (2.9) we then get that (u α ) α is bounded in H 1 . In particular, there exists u p ∈ H 1 (M ) such that, up to passing to a subsequence,

(i) u α u p weakly in H 1 , (ii) u α → u p in L p ,
and u α → u p a.e. as α → +∞. Substracting one equation to another in (2.9), letting α → +∞, and since c p = 0, we get that u p ≡ 0. Writing the equation satisfied by Φ(u α ) -Φ(u p ), multiplying the equation by Φ(u α ) -Φ(u p ) and integrating over M , we get that Φ(u α ) → Φ(u p ) in H 1 (2.10) as α → +∞. Now we let ϕ ∈ H 1 . There holds DI p (u α ).(ϕ) = o(1). Hence, by Lemma 2.1,

M ∇u α ∇ϕdv g + m 2 0 M u α ϕdv g = M (u + α ) p-1 ϕdv g + ω 2 M (1 -qΦ(u α )) 2 u α ϕdv g + o(1) .
(2.11)

Letting α → +∞ in (2.11) we then get by (2.10) that

∆ g u p + m 2 0 u p = (u + p ) p-1 + ω 2 (1 -qΦ(u p )) 2 u p in H 1 .
Multiplying the equation by u - p and integrating over M , it follows that u - p ≡ 0. In particular, u p ≥ 0, u p ≡ 0, and

∆ g u p + m 2 0 u p = u p-1 p + ω 2 (1 -qΦ(u p )) 2 u p (2.12)
in H 1 . By regularity results we get from (2.12) that u p ∈ H 2,s for all s. Then, by regularity results, Φ(u p ) ∈ H 2,s for all s. By the Sobolev embedding theorem, regularity theory, and the maximum principle, it follows that u p , Φ(u p ) ∈ C 2 (M ) and that u p , Φ(u p ) > 0 in M . Letting u = u p and v = Φ(u p ), this proves the existence part in Theorem 0.2.

An additional information we obtain is that u p realizes c p . Indeed, since u p ≥ 0, u - α → 0 in H 1 , and Φ(u α ) → Φ(u p ) in H 1 , there holds that

M (u + α ) p dv g → M u p p dv g , and 
M (1 -qΦ(u α )) 2 u 2 α dv g → M (1 -qΦ(u p )) 2 u 2 p dv g
as α → +∞. The second equation in (2.9) together with (2.12) then give that

M |∇u α | 2 dv g → M |∇u p | 2 dv g .
It follows that u α → u p in H 1 as α → +∞. By the first equation in (2.9) we then get that I p (u p ) = c p . In other words, c p is realized by u p . Now, given x 0 ∈ M and ρ 0 > 0 small, sufficiently small, we define u ε by

u ε (x) = ε ε 2 +r 2 -ε ε 2 +ρ 2 0 if r ≤ ρ 0 , u ε (x) = 0 if r ≥ ρ 0 , (2.13) 
where r = d g (x 0 , x). Then, see Aubin [START_REF] Aubin | Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF], for any λ ∈ R,

J λ (u ε ) = 1 K 2 4 1 + C 1 6 S g (x 0 ) -λ ε 2 ln ε + o(ε 2 ln ε) , (2.14) 
where

J λ (u ε ) = M |∇u ε | 2 + λu 2 ε dv g M u 4 ε dv g 1/2
, and C > 0 is independent of α. Also there holds

M u 4 ε dv g = R 3 1 1 + |x| 2 4 dx + o(1) , M |∇u ε | 2 dv g = 8 M u 4 ε dv g + o(1) . (2.15) 
In what follows we prove the existence part of Theorem 0.3.

Proof of existence in Theorem 0.3. As a preliminary remark, by standard arguments such as developed in Aubin [START_REF] Aubin | Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] and Brézis and Nirenberg [START_REF] Brézis | Positive solutions of nonlinear ellitpic equations involving critical Sobolev exponents[END_REF], we just need to prove that we can chose u 0 ∈ H 1 , u + 0 ≡ 0, such that

δ 0 ≤ c p ≤ 1 4K 4 4 -δ 0 (2.16)
for all p ∈ (4 -ε, 4) and some ε, δ 0 > 0, where c p = c p (u 0 ) is as in (2.8). Now we assume that (0.7) holds true for some x ∈ M , in particular for x ∈ M where S g is maximum. We let x 0 ∈ M be such that S g is maximum at x 0 , and (t ε ) ε be any family of positive real numbers such that the t ε 's are bounded. The first estimate we prove is that

M Φ(t ε u ε )u 2 ε dv g = O ε 2 , (2.17) 
where the u ε 's are as in (2.13). By definition,

∆ g Φ(t ε u ε ) + (m 2 1 + q 2 )t 2 ε u 2 ε Φ(t ε u ε ) = qt 2 ε u 2 ε . (2.18)
Multiplying (2.18) by Φ(t ε u ε ) and integrating over M we get by Hölder's inequalities that

Φ(t ε u ε ) 2 H 1 = qt 2 ε M u 2 ε Φ(t ε u ε )dv g ≤ C M u 8/3 ε dv g 3/4 Φ(t ε u ε ) L 4
and it follows from the Sobolev inequality that

Φ(t ε u ε ) H 1 ≤ C M u 8/3 ε dv g 3/4 . (2.19)
Then, by (2.19),

M Φ(t ε u ε )u 2 ε dv g ≤ C M u 8/3 ε dv g 3/4 Φ(t ε u ε ) L 4 ≤ C M u 8/3 ε dv g 3/2
.

(2.20)

There holds,

M u 8/3 ε dv g ≤ ω 3 ρ0 0 ε ε 2 + r 2 8/3 r 3 dr = ω 3 ε 4/3 ρ0/ε 0 1 1 + r 2 8/3 r 3 dr = O(ε 4/3 ) .
(2.21) By (2.20) and (2.21), this proves (2.17). Let (ε α ) α be a sequence of positive real numbers such that ε α → 0 as α → +∞, u α = u εα , and F 4 be the functional defined in H 1 by

F 4 (u) = 1 2 M |∇u| 2 dv g + 1 2 (m 2 0 -ω 2 ) M u 2 dv g - 1 4 M |u| 4 dv g . (2.22) 
By (2.15), there exists T 0 1 such that I 4 (T 0 u α ) < 0 for all α 1. There also holds that

max 0≤t≤T0 I 4 (tu α ) ≤ max 0≤t≤T0 F 4 (tu α ) + CT 2 0 max 0≤t≤T0 M Φ(tu α )u 2 α dv g ≤ 1 4 J λ (u α ) 2 + CT 2 0 max 0≤t≤T0 M Φ(tu α )u 2 α dv g
for all α, where λ = m 2 0 -ω 2 . By (2.14) and (2.17) we thus get that

max 0≤t≤T0 I 4 (tu α ) ≤ 1 K 4 4 1 + C 1 6 S g (x 0 ) -m 2 0 + ω 2 ε 2 α ln ε α + o(ε 2 α ln ε α ) ,
where C > 0 is independent of α. By assumption the ε 2 α ln ε α coefficient is positive. Let u 0 = u α , where α 1 is sufficiently large such that

max 0≤t≤T0 I 4 (tu α ) ≤ 1 4K 4 4 -δ 0
for some δ 0 > 0. Since u 0 is now fixed, we can write that

max 0≤t≤T0 I p (tu 0 ) ≤ (1 + δ ε ) max 0≤t≤T0 I 4 (tu 0 ) (2.23)
for all p ∈ (4 -ε, 4), where δ ε > 0 is such that δ ε → 0 as ε → 0. Noting that

I p (u) ≥ 1 2 M |∇u| 2 + (m 2 0 -ω 2 )u 2 dv g - 1 p M |u| p dv g , ≥ C 1 u 2 H 1 -C 2 u p H 1
where C 1 , C 2 > 0 are independent of u, there holds that there exist δ 1 , δ 2 > 0 such that δ 1 , δ 2 are as small as we want, and I p (u) ≥ δ 2 for all u such that u

H 1 = δ 1 .
As a conclusion, there exist δ 0 > 0 and ε > 0 such that (2.16) holds true for all p ∈ (4 -ε, 4). This ends the proof of the existence part in Theorem 0.3.

A priori bounds in the subcritical case

We prove the uniform bounds in the subcritical case of Theorem 0.2. In what follows p ∈ (2, 4).

Proof of the uniform bounds in Theorem 0.2. Let (ω α ) α be a sequence in (-m 0 , m 0 ) such that ω α → ω as α → +∞ for some ω ∈ [-m 0 , m 0 ]. Also let p ∈ (2, 4) and (u α , v α ) α be a sequence of smooth positive solutions of (0.3) with phases ω α . Then,

∆ g u α + m 2 0 u α = u p-1 α + ω 2 α (qv α -1) 2 u α ∆ g v α + m 2 1 + q 2 u 2 α v α = qu 2 α (3.1)
for all α. By the second equation in (3.1), 0 ≤ v α ≤ 1 q for all α. Assume by contradiction that max

M u α → +∞ (3.2)
as α → +∞. Let x α ∈ M and µ α > 0 be given by

u α (x α ) = max M u α = µ -2/(p-2) α . By (3.2), µ α → 0 as α → +∞. Define ũα by ũα (x) = µ 2 p-2 α u α exp xα (µ α x)
and g α by g α (x) = exp xα g (µ α x) for x ∈ B 0 (δµ -1 α ), where δ > 0 is small. Since µ α → 0, we get that g α → ξ in C 2 loc (R 3 ) as α → +∞. Moreover, by (3.1), ∆ gα ũα + µ 2 α m 2 0 ũα = ũp-1

α + ω 2 α µ 2 α (qv α -1) 2 ũα , (3.3) 
where vα is given by vα (x) = v α exp xα (µ α x) . We have ũα (0) = 1 and 0 ≤ ũα ≤ 1. By (3.3) and standard elliptic theory arguments, we can write that, after passing to a subsequence, ũα → u in C 1,θ loc (R 4 ) as α → +∞, where u is such that u(0) = 1 and 0 ≤ u ≤ 1. Then ∆u = u p-1 in R 4 , where ∆ is the Euclidean Laplacian. It follows that u is actually smooth and positive, and, since 2 < p < 4, we get a contradiction with the Liouville result of Gidas and Spruck [START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF]. As a conclusion, (3.2) is not possible and there exists C > 0 such that

u α + v α ≤ C (3.4)
in M for all α. Coming back to (3.1) it follows that the sequences (u α ) α and (v α ) α are actually bounded in H 2,s for all s. Pushing one step further the regularity argument they turn out to be bounded in H 3,s for all s, and by the Sobolev embedding theorem we get that they are also bounded in C 2,θ , 0 < θ < 1. This ends the proof of the uniform bounds in Theorem 0.2 when p ∈ (2, 4).

If we assume that ω α → ω as α → +∞ for some ω ∈ (-m 0 , m 0 ), p ∈ (2, 4], and u α → u and v α → v in C 2 as α → +∞, then u > 0, v > 0, and u, v are smooth solutions of (0.3). Indeed, given ε > 0 sufficiently small, since m 2 0 -ω 2 > 0, ∆ g + (m 2 0 -ω 2 -ε) is coercive. There holds that 0 ≤ v α ≤ 1 q for all α. In particular, by (3.1) and the Sobolev inequality, for any α 1 sufficiently large,

M |∇u α | 2 + m 2 0 -ω 2 -ε u 2 α dv g ≤ M |∇u α | 2 dv g + m 2 0 M u 2 α dv g -ω 2 α M (qv 2 α -1) 2 u 2 α dv g = M u p α dv g ≤ C M |∇u α | 2 + m 2 0 -ω 2 -ε u 2 α dv g p/2
for some C > 0 independent of α. This implies u > 0 and then v > 0. Obviously the positivity of u and v does not hold anymore if we allow ω 2 = m 2 0 . Let (ε α ) α be a sequence of positive real numbers such that ε α → 0 as α → +∞. Let u α = ε α and

v α = qε 2 α m 2 1 + q 2 ε 2 α .
Then u α → 0 and v α → 0 in C 2 as α → +∞, and we do have that (u α , v α ) solves (3.1) , where

ω 2 α = 1 (qv α -1) 2 m 2 0 -ε p-2 α .
In this case ω 2 α → m 2 0 as α → +∞ and the construction provides a counter example to the above statement about the positivity of u and v.

A priori bounds in the critical case

In what follows we let (M, g) be a smooth compact 4-dimensional Riemannian manifold, m 0 , m 1 > 0, and (ω α ) α be a sequence in (-m 0 , m 0 ) such that ω α → ω as α → +∞ for some ω ∈ [-m 0 , m 0 ]. Also we let (u α , v α ) α be a sequence of smooth positive solutions of (0.3) with phases ω α and p = 4. Namely,

∆ g u α + m 2 0 u α = u 3 α + ω 2 α (qv α -1) 2 u α ∆ g v α + m 2 1 + q 2 u 2 α v α = qu 2 α (4.1)
for all α. By the second equation in (4.1), 0 ≤ v α ≤ 1 q for all α. In particular, if we let

h α = m 2 0 -ω 2 α (qv α -1) 2 , (4.2) 
then h α L ∞ ≤ C for all α, where C > 0 is independent of α. Assume by contradiction that max

M u α → +∞ (4.3) as α → +∞.
In what follows we let (x α ) α be a sequence of points in M , and (ρ α ) α be a sequence of positive real numbers, 0 < ρ α < i g /7 for all α, where i g is the injectivity radius of (M, g). We assume that the x α 's and ρ α 's satisfy

     ∇u α (x α ) = 0 for all α, d g (x α , x)u α (x) ≤ C for all x ∈ B xα (7ρ α ) and all α , lim α→+∞ ρ α sup Bx α (6ρα) u α (x) = +∞ . (4.4)
We let µ α be given by

µ α = u α (x α ) -1 . (4.5)
Since the h α 's in (4.2) are L ∞ -bounded we can apply the asymptotic analysis in Druet and Hebey [START_REF]Stability and instability for Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds[END_REF] and Druet, Hebey and Vétois [START_REF] Druet | Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian[END_REF]. In particular, we get that ρα µα → +∞ as α → +∞ and that

µ α u α exp xα (µ α x) → 1 + |x| 2 8 -1 (4.6)
in C 1 loc (R 4 ) as α → +∞, where µ α is as in (4.5). As a consequence, µ α → 0 as α → +∞. Now we define ϕ α : (0, ρ α ) → R + by

ϕ α (r) = 1 |∂B xα (r)| g ∂Bx α (r) u α dσ g , (4.7) 
where |∂B xα (r)| g is the volume of the sphere of center x α and radius r for the induced metric. Let Λ = 4 √ 2. We define r α ∈ [Λµ α , ρ α ] by 

r α = sup r ∈ [Λµ α , ρ α ] s.t. (sϕ α (s)) ≤ 0 in [Λµ α , r] . ( 4 
(r)) (r α ) = 0 if r α < ρ α . (4.11) 
Let B α be defined in M by

B α (x) = µ α µ 2 α + dg(xα,x) 2 8
, (4.12)

where µ α is as in (4.5). The following sharp estimates, see Druet, Hebey and Robert [START_REF] Druet | Blow-up theory for elliptic PDEs in Riemannian geometry[END_REF] and Druet, Hebey and Vétois [START_REF] Druet | Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian[END_REF], hold true.

Lemma 4.1. Let (M, g) be a smooth compact Riemannian 4-dimensional manifold, and (u α , v α ) α be a sequence of smooth positive solutions of (4.1) such that (4.3) holds true. Let (x α ) α and (ρ α ) α be such that (4.4) hold true, and let R ≥ 6 be such that Rr α ≤ 6ρ α for all α 1. There exists C > 0 such that, after passing to a subsequence,

u α (x) + d g (x α , x) |∇u α (x)| ≤ Cµ α d g (x α , x) -2 (4.13)
for all x ∈ B xα ( R 2 r α )\ {x α } and all α, where µ α is as in (4.5), and where r α is as in (4.8). In addition, there also exist C > 0 and (ε α ) α such that

|u α -B α | ≤ Cµ α r -2 α + S α + ε α B α (4.14) in B xα (2r α )\{x α } for all α, where ε α → 0 as α → +∞ and S α (x) = d g (x α , x) -1 for x ∈ M \{x α }.
Lemma 4.1 provide a sharp control on the u α 's, but we need more to conclude. We prove that the following fundamental asymptotic estimate holds true. Lemma 4.2 is the key estimate we need to prove the a priori bounds in the critical case discussed in this section. Lemma 4.2. Let (M, g) be a smooth compact Riemannian 4-dimensional manifold and (u α , v α ) α be a sequence of smooth positive solutions of (4.1) such that (4.3) holds true. Let (x α ) α and (ρ α ) α be such that (4.4) holds true. Assume (0.7). There holds that r α → 0 as α → +∞, where r α is as in (4.8). Moreover ρ α = O (r α ) and

r 2 α µ -1 α u α exp xα (r α x) → 8 |x| 2 + H(x) (4.15) 
in C 2 loc (B 0 (2)\{0}) as α → +∞, where µ α is as in (4.5), and H is a harmonic function in B 0 (2) which satisfies that H(0) ≤ 0.

Proof of Lemma 4.2. Let R ≥ 6 be such that Rr α ≤ 6ρ α for α 1. We assume first that r α → 0 as α → +∞. For x ∈ B 0 (3) we define

ũα (x) = r 2 α µ -1 α u α exp xα (r α x) , gα (x) = exp xα g (r α x) , and hα (x) = h α exp xα (r α x) ,
where h α is as in (4.2). Since r α → 0 as α → +∞, we have that gα → ξ in C 2 loc (R n ) as α → +∞, where ξ is the Euclidean metric. Thanks to Lemma 4.1,

|ũ α (x)| ≤ C |x| -2 (4.16) in B 0 ( R 2 )\{0}. By (4.1), ∆ gα ũα + r 2 α hα ũα = µ α r α 2 ũ3 α (4.17) 
in B 0 ( R 2 ). Thanks to (4.9) and by standard elliptic theory, we then deduce that, after passing to a subsequence, ũα → ũ (4.18) in C 2 loc B 0 ( R 2 )\{0} as α → +∞, where W satisfies ∆ũ = 0 in B 0 ( R 2 )\{0} and ∆ is the Euclidean Laplace Beltrami operator. Moreover, thanks to (4.16), we know that

|ũ(x)| ≤ C |x| -2 (4.19) in B 0 ( R 2 )\{0}. Thus we can write that ũ(x) = Λ |x| 2 + H(x) (4.20) 
where Λ ≥ 0 and H satisfies ∆H = 0 in B 0 ( R 2 ). In order to see that Λ = 8, it is sufficient to integrate (4.17) in B 0 (1) to get that

- ∂B0(1) ∂ ν ũα dσ gα = µ α r α 2 B0(1) ũ3 α dv gα -r 2 α B0 (1) 
hα ũα dv gα .

By (4.16), B0

ũα dv gα ≤ C (4.22)

and by changing x into µα rα x, we can write that

B0(1) ũ3 α dv gα = r 2 α µ -2 α B0( rα µα ) û3 α dv ĝα ,
where ûα (x) = µ α u α exp xα (µ α x) and ĝα (x) = exp xα g (µ α x). By (4.6) and Lemma 4.1, we then get that 

lim α→+∞ µ α r α 2 B0 (1) 
∂ ν ũα dσ gα = -2ω 3 Λ , (4.24) 
we get that Λ = 8 thanks to (4.22)-(4.24) by passing into the limit in (4.21) as α → +∞. At this point we claim that there exists β ∈ (0, 1] and C > 0 such that

v α ≤ Cu β α in M (4.25) 
for all α. Let x α ∈ M be a point where vα

u β α is maximum. Then, ∆ g v α (x α ) v α (x α ) ≥ ∆ g u β α (x α ) u β α (x α )
and it follows from (4.1) that

q u α (x α ) 2 v α (x α ) -m 2 1 -q 2 u α (x α ) 2 ≥ -β(β -1) |∇u α (x α )| 2 u α (x α ) 2 + βu α (x α ) 2 -βm 2 0 + βω 2 α (qv α (x α ) -1) 2 . (4.26) 
Choosing β ∈ (0, 1] such that m 2 1 -βm 2 0 > 0, since 0 < v α ≤ 1 q , we get that u β α (x α ) ≥ Cv α (x α ) for some C > 0 independent of α. This proves (4.25). In what follows we let X α be the 1-form given by

X α (x) = 1 - 1 18 Rc g (x). (∇f α (x), ∇f α (x)) ∇f α (x) , (4.27) 
where f α (x) = 1 2 d g (x α , x) 2 , Rc g is the Ricci curvature of g, and is the musical isomorphism. We apply the Pohozaev identity in Druet-Hebey [START_REF]Stability for strongly coupled critical elliptic systems in a fully inhomogeneous medium[END_REF] with the vector field X α to u α in B xα (r α ). We separate the regular part A α = m 2 0 -ω 2 α from the singular part in h α . Then, h α = A α + O (v α ) and we get that

Bx α (rα) A α u α X α (∇u α )dv g + 1 8 Bx α (rα) (∆ g div g X α ) u 2 α dv g + 1 4 Bx α (rα) (div g X α ) A α u 2 α dv g = Q 1,α + Q 2,α + Q 3,α + O Bx α (rα) v α u 2 α dv g + O Bx α (rα) v α u α |X α (∇u α )| dv g , (4.28) 
where

Q 1,α = 1 4 ∂Bx α (rα) (div g X α ) u α ∂ ν u α dσ g - ∂Bx α (rα) 1 2 X α (ν)|∇u α | 2 -X α (∇u α )∂ ν u α dσ g , Q 2,α = - p i=1 Bx α (rα) ∇X α - 1 4 (div g X α ) g (∇u α , ∇u α ) dv g , Q 3,α = 1 4 ∂Bx α (rα) X α (ν) u 4 α dσ g - 1 8 ∂Bx α (rα) (∂ ν div g X α ) u 2 α dσ g ,
and ν is the unit outward normal derivative to B xα (r α ). We have that

|X α (x)| = O (d g (x α , x)) , div g X α (x) = n + O d g (x α , x) 2 ) , |∇ (div g X α ) (x)| = O (d g (x α , x)) , and ∆ g (div g X α ) (x) = 4 3 S g (x α ) + O (d g (x α , x)) . (4.29) 
Following Druet, Hebey and Vétois [START_REF] Druet | Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian[END_REF] we get from Lemma 4.1, (4.28) and (4.29) that

Q 1,α = -64ω 3 m 2 0 -ω 2 - 1 6 S g (x 0 ) µ 2 α ln r α µ α + o µ 2 α ln 1 µ α + o µ 2 α r -2 α + O Bx α (rα) v α u 2 α dv g + O Bx α (rα) v α u α |X α (∇u α )| dv g , (4.30) 
where x α → x 0 as α → +∞. By Lemma 4.1 and (4.29) there also holds that

Q 1,α = O µ 2 α r -2 α . (4.31) 
At this point we decompose v α into a quasi-harmonic part with nonzero Dirichlet boundary condition and a quasi-Poisson part with zero Dirichler boundary condition. More precisely, we write that

v α = w 1,α + w 2,α (4.32) 
in B α = B xα (r α ), where rα = 5 2 r α , and w 1,α , w 2,α are given by

∆ g w 1,α + m 2 1 w 1,α = 0 in B α w 1,α = v α on ∂B α , (4.33) 
and if

W α = ∆ g v α + m 2 1 v α , by ∆ g w 2,α + m 2 1 w 2,α = W α in B α w 2,α = 0 on ∂B α . (4.34)
Let G α be the Green's function of ∆ g + m 2 1 in B α with zero Dirichlet boundary condition on ∂B α . By the maximum principle, considering the Green's function on a larger ball of radius i g , we obtain by comparison of the two Green's functions that there exists C > 0 such that G α (x, y) ≤ Cd g (x, y) -2 for all x = y in B α . Writing that Independently, by the maximum principle, the w 1,α 's satisfy that 0 ≤ w 1,α ≤ 1 q . Let ĝα (x) = exp xα g (r α x) and ŵ1,α (x) = w 1,α exp xα (r α x) . There holds

w 2,α (x) = Bα G α (x,
∆ ĝα ŵ1,α + m 2 1 r2 α ŵ1,α = 0 in B w 1,α = vα on ∂B , (4.38) 
where B = B 0 (1) ⊂ R 4 , and vα (x) = v α exp xα (r α x) . At this point we claim that

r α → 0 (4.39)
as α → +∞. In order to prove (4.39) we proceed by contradiction and assume that r α ≥ δ 0 > 0 for all α 1. By Lemma 4.1 and (4.25),

v α ≤ Cµ β α in M \B xα (r α ) , (4.40) 
where C > 0 is independent of α since we assumed r α ≥ δ 0 > 0. In particular, v α L ∞ (∂Bα) → 0 as α → +∞. Then vα L ∞ (∂B) → 0 as α → +∞, and it follows from the maximum principle and (4.38) that ŵ1,α L ∞ (B) → 0 as α → +∞. In particular, w 

v α u 2 α dv g = o µ 2 α ln 1 µ α Bx α (rα) u α v α |X α (∇u α )|dv g = o µ 2 α ln 1 µ α . ( 4 
Q 1,α = -(128ω 3 H(0) + o(1)) µ 2 α r -2 α . (4.42)
Now we distinguish the two cases:

(i) r 2 α ln rα µα → 0 as α → +∞, and (ii) r 2 α ln rα µα ≥ δ 0 > 0 for all α.

In case (i), since v α = O(1), we get from Lemma 4.1 and (4.29) that

Bx α (rα) v α u 2 α dv g = O µ 2 α ln r α µ α , Bx α (rα) v α u α |X α (∇u α )|dv g = O µ 2 α ln r α µ α . (4.43) 
Since there also holds that r 2 α ln 1 µα → +∞ it follows from (4.30), (4.42) and (4.43) that H(0) = 0. Now we assume (ii). From (ii) we get that r α ≥ C(ln 1 µα ) -1/2 and by (4.25) we obtain that

v α ≤ C µ α ln 1 µ α β in M \B xα (r α ) .
In particular, v α L ∞ (∂Bα) → 0 as α → +∞. Then vα L ∞ (∂B) → 0 as α → +∞, and it follows from the maximum principle and (4.38) that ŵ1,α L ∞ (B) → 0 as α → +∞. In particular, w 

v α u 2 α dv g = Bx α (rα) w 2,α u 2 α dv g + o µ 2 α ln r α µ α , Bx α (rα) v α u α |X α (∇u α )|dv g = Bx α (rα) w 2,α u α |X α (∇u α )|dv g + o µ 2 α ln r α µ α . (4.44) 
There holds, ∆ g w 2,α + m 2 1 w 2,α = q (1 -qv α ) u 2 α . (4.45)

Let η : R n → R be such that η is smooth, 0 ≤ η ≤ 1, η = 1 in B 0 (1), and η = 0 in R n \B 0 (2). We define Proof of the uniform bounds in Theorem 0.3. Let (M, g) be a smooth compact Riemannian 4-dimensional manifold and (u α , v α ) α be a sequence of smooth positive solutions of (4.1) such that (0.7) holds true. By Druet, Hebey and Vétois [START_REF] Druet | Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian[END_REF] there exists C > 0 such that for any α the following holds true: there exist N α ∈ N and N α critical points of u α , denoted by (x 1,α , x 2,α , . . . , x Nα,α ), such that

η α (x) = η d g (x α , x) r α ( 4 
u α w 2,α |X α (∇u α )|dv g ≤ Bx α (rα) w 4 2,α dv g 1/4 Bx α (rα) |u α X α (∇u α )| 4/3 dv g 3/4 , (4.47 
d g (x i,α , x j,α ) u α (x i,α ) ≥ 1 (4.55)
for all i, j ∈ {1, . . . , N α }, i = j, and min i=1,...,Nα

d g (x i,α , x) u α (x) ≤ C (4.56)
for all x ∈ M and all α. We define

d α = min 1≤i<j≤Nα d g (x i,α , x j,α ) . ( 4 

.57)

If N α = 1, we set d α = 1 4 i g , where i g is the injectivity radius of (M, g). We claim that d α → 0 (4.58) as α → +∞. In order to prove this claim, we proceed by contradiction. Assuming on the contrary that d α → 0 as α → +∞, we see that N α ≥ 2 for α large, and we can thus assume that the concentration points are ordered in such a way that in B 0 (δd -1 α ), for all i. For any R > 0, we also let 1 ≤ N R,α ≤ N α be such that

d α = d g (x 1,α , x 2,α ) ≤ d g (x 1,α , x 3,α ) ≤ • • • ≤ d g (x 1,α , x Nα,α ) . (4.59) We set, for x ∈ B 0 (δd -1 α ), 0 < δ < 1 2 i g fixed, ûα ( 
d g (x 1,α , x i,α ) ≤ Rd α for 1 ≤ i ≤ N R,α , and 
d g (x 1,α , x i,α ) > Rd α for N R,α + 1 ≤ i ≤ N α .
Such a N R,α does exist thanks to (4.59). We also have that N R,α ≥ 2 for all R > 1 and that (N R,α ) α is uniformly bounded for all R > 0 thanks to (4.57). In the sequel, we set

xi,α = d -1 α exp -1 x1,α (x i,α ) for all 1 ≤ i ≤ N α such that d g (x 1,α , x i,α ) ≤ 1 2 i g . Thanks to (4.56), for any R > 1, there exists C R > 0 such that sup B0(R)\ SN 2R,α i=1 B xi,α ( 1 R ) ûα ≤ C R . ( 4 

.61)

By the Harnack inequality in Druet, Hebey and Vétois [START_REF] Druet | Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian[END_REF], for any R > 1, there exists D R > 1 such that

∇û α L ∞ (Ω R,α ) ≤ D R sup Ω R,α ûα ≤ D 2 R inf Ω R,α ûα , (4.62) 
where

Ω R,α = B 0 (R) \ N 2R,α i=1 B xi,α 1 R .
Assume first that, for some R > 0, there exists 1

≤ i ≤ N R,α such that ûα (x i,α ) = O(1) . ( 4 

.63)

The two first equations in (4.4) are satisfied by the sequences x α = x i,α and ρ α = ). In particular, by standard elliptic theory, and thanks to (4.60), (û α ) α is uniformly bounded in C 1 B xi,α ( 12 ) . Since, by (4.55), we have that

|x i,α | n-2 2 |û α (x i,α )| ≥ 1 ,
we get the existence of some δ i > 0 such that for some δi > 0. Thus, using (4.62), we can deduce that these two situations are mutually exclusive in the sense that either (4.63) holds true for all i or (4.64) holds true for all i. Now we split the conclusion of the proof into two cases.

|û α | ≥ 1 2 |x i,α | 1-n 2 ≥ 1 2 R 1-
In the first case we assume that there exist R > 0 and 1 ≤ i ≤ N R,α such that ûα (x i,α ) = O(1). Then, thanks to the above discussion, we get that ûα (x j,α ) = O(1) for all 1 ≤ j ≤ N R,α and all R > 0. As above, we get that (û α ) α is uniformly bounded in C 1 loc (R 4 ). Thus, by standard elliptic theory, there exists a subsequence of (û α ) α which converges in C 1 loc (R 4 ) to some û solution of ∆û = û3 in R 4 . By the above discussion, |u| possesses at least two critical points, namely 0 and x2 , the limit of x2,α . This is absurd thanks to the classification of Caffarelli, Gidas and Spruck [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF].

In the second case we assume that there exist R > 0 and 1 ≤ i ≤ N R,α such that |û α (x i,α )| → +∞ as α → +∞. Then, thanks to the above discussion, ûα (x j,α ) → +∞ as α → +∞, for all 1 ≤ j ≤ N R,α and all R > 0. By (4.60) we have that where Ĥ(0) ≥ Λ 2 -Λ 1 R -2 -Λ 2 (R -1) -2 . Choosing R large enough, we can ensure that Ĥ(0) > 0 and this is in contradiction with Lemma 4.2.

By the above discussion we get that (4.58) holds true. Clearly, this implies that (N α ) α is uniformly bounded. Let (x α ) α be a sequence of maximal points of u α . Thanks to (4.3) and to (4.58), we clearly have that (4.4) holds true for the sequences (x α ) α and ρ α = δ for some δ > 0 fixed. This clearly contradicts Lemma 4.2 and thus concludes the proof of the uniform bounds in Theorem 0.3.

Existence and nonexistence of a priori estimates for critical elliptic Schrödinger type equations on manifolds have been investigated by Berti-Malchiodi [START_REF] Berti | Non-compactness and multiplicity results for the Yamabe problem on S n[END_REF], Brendle [START_REF] Brendle | Blow-up phenomena for the Yamabe equation[END_REF][START_REF]On the conformal scalar curvature equation and related problems[END_REF], Brendle and Marques [START_REF] Brendle | Blow-up phenomena for the Yamabe equation II[END_REF], Brézis and Li [START_REF] Brézis | Some nonlinear elliptic equations have only constant solutions[END_REF], Druet [START_REF] Druet | From one bubble to several bubbles: The low-dimensional case[END_REF][START_REF]Compactness for Yamabe metrics in low dimensions[END_REF], Druet and Hebey [START_REF] Druet | Elliptic equations of Yamabe type[END_REF][START_REF]Stability and instability for Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds[END_REF][START_REF]Stability for strongly coupled critical elliptic systems in a fully inhomogeneous medium[END_REF], Druet, Hebey, and Vétois [START_REF] Druet | Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian[END_REF], Druet and Laurain [START_REF] Druet | Stability of the Pohozaev obstruction in dimension 3[END_REF], Hebey [START_REF] Hebey | Critical elliptic systems in potential form[END_REF][START_REF]Diagonal compactness for critical elliptic systems in potential form[END_REF], Khuri, Marques and Schoen [START_REF] Khuri | A compactness theorem for the Yamabe Problem[END_REF], Li and Zhang [START_REF]A Harnack type inequality for the Yamabe equations in low dimensions[END_REF][START_REF]Compactness of solutions to the Yamabe problem II[END_REF], Li and Zhu [START_REF]Yamabe type equations on three dimensional Riemannian manifolds[END_REF], Marques [START_REF] Marques | A priori estimates for the Yamabe problem in the non-locally conformally flat case[END_REF], Micheletti, Pistoia and Vétois [START_REF] Micheletti | Blow-up solutions for asymptotically critical elliptic equations on Riemannian manifolds[END_REF], Schoen [START_REF] Schoen | Variational theory for the total scalar curvature functional for Riemannian metrics and related topics[END_REF][START_REF]On the number of constant scalar curvature metrics in a conformal class[END_REF], and Vétois [START_REF] Vétois | Multiple solutions for nonlinear elliptic equations on compact Riemannian manifolds[END_REF]. In the subcritical case, a priori estimates for Schrödinger equations go back to the seminal work by Gidas and Spruck [START_REF] Gidas | A priori bounds for positive solutions of nonlinear elliptic equations[END_REF]. The above list is not exhaustive.

ũ3 α dv gα = 16ω 3 .

 3 

  ) while by Lemma 4.1 and (4.29) there holds that Bx α (rα) u 8/3 α dv g = O µ 4/3 α and Bx α (rα) |u α X α (∇u α )| 4/3 dv g = O µ 4

  x) = d α u α exp x1,α (d α x) , ĥα (x) = h α exp x1,α (d α x) , and ĝα (x) = exp x1,α g (d α x) . It is clear that ĝα → ξ in C 2 loc (R n ) as α → +∞ since d α → 0 as α → +∞. Thanks to (4.1) we have that ∆ ĝα ûα + d 2 α ĥα ûα = û3 α (4.60)

1 8

 1 d α . Then it follows from (4.6) that the last equation in (4.4) cannot hold and thus that (û α ) α is uniformly bounded in B xi,α ( 3 4

n 2 in

 2 B xi,α (δ i ). Assume now that, for some R > 0, there exists 1≤ i ≤ N R,α such that |û α (x i,α )| → +∞ (4.64) as α → +∞. Since (4.4) is satisfied by the sequences x α = x i,α and ρ α = 1 8 d α , it follows from Lemma 4.2 that the sequence (|û α (x i,α )|×|û α |) α is uniformly bounded in Ωα = B xi,α ( δi )\B xi,α ( δi 2 )

∆ ĝα vα + d 2 α

 2 ûα (0)û α . Applying Lemma 4.2 and standard elliptic theory, and thanks to (4.62) and to the above discussion, one easily checks that, after passing to a subsequence, ûα (0)û α → Ĝ in C 1 loc (R n \{x i } i∈I ) as α → +∞, where I = {1, . . . , lim R→+∞ lim α→+∞ N R,α } and, for any R > 0, Ĝ(x) = ÑR i=1 Λ i |x -xi | 2 + ĤR (x) in B 0 (R), where 2 ≤ ÑR ≤ N 2R is such that |x ÑR | ≤ R and |x ÑR +1 | > R,where N 2R,α → N 2R as α → +∞, where λ i > 0, and where ĤR is a harmonic function in B 0 (R). Since Ĝ ≥ 0, we can write thanks to the maximum principle that, in a neighbourhood of the origin, Ĝ(x) = Λ 1 |x| n-2 + Ĥ(x) ,

  y)W α (y)dv g (y)

	it follows that			
	|w 2,α (x)| ≤ C	Bα	u 2 α (y)dv g (y) d g (x, y) 2 .	(4.35)
	By (4.6) and Lemma 4.1 we can write that	
	u α (x) ≤	Cµ α α + d g (x α , x) 2 µ 2	(4.36)
	in B α . Combining (4.35) and (4.36) we then get that
	|w 2,α (x)| ≤ C	µ 2 α ln 2 + µ 2 α + d g (x α , x) 2 dg(xα,x) 2 µ 2 α	.	(4.37)

  1,α L ∞ (Bα) → 0 as α → +∞. By (4.32) and(4.37), thanks to what we just obtained about the w 1,α 's, we get that v α L ∞ (Bα) → 0 as α → +∞. Then, by Lemma 4.1 and (4.29) we get that

	Bx α (rα)

  1,α L ∞ (Bα) → 0 as α → +∞ and we get with (4.32), Lemma 4.1, and (4.29), that

Bx α (rα)
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Multiplying (4.45) 

and by (4.9) it follows that

Coming back to (4.51), it follows that 

By (4.54) we get that H(0) ≤ 0. At this point it remains to prove that ρ α = O (r α ). We prove that ρ α = r α . If not the case, then r α < ρ α and we get with (4.11) that (rϕ(r)) (1) = 0, where

Hence H(0) = 8 and we get a contradiction with H(0) ≤ 0. In other words, ρ α = r α for all α 1. This ends the proof of the lemma.

Thanks to Lemma 4.2 we can now prove the uniform bounds in Theorem 0.3. This is the subject of what follows.