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[1] Unusually cold conditions in Arctic winter 2010/11
led to large stratospheric ozone loss. We investigate this
with UV-visible measurements made at Eureka, Canada
(80.05�N, 86.42�W) from 1999–2011. For 8–22 March
2011, OClO was enhanced, indicating chlorine activation
above Eureka. Ozone columns were lower than in any other
year in the record, reaching minima of 237 DU and 247 DU
in two datasets. The average NO2 column inside the vortex,
measured at visible and UV wavelengths, was 46 � 30%
and 45 � 27% lower in 2011 than the average NO2 column
from previous years. Ozone column loss was estimated
from two ozone datasets, using a modeled passive ozone
tracer. For 12–20 March 2011, the average ozone loss was
27% and 29% (99 DU and 108 DU). The largest percent
ozone loss in the 11-year record of 47% (250 DU and
251 DU) was observed on 5 April 2011. Citation: Adams, C.,
et al. (2012), Severe 2011 ozone depletion assessed with 11 years of
ozone, NO2, and OClO measurements at 80�N, Geophys. Res. Lett.,
39, L05806, doi:10.1029/2011GL050478.

1. Introduction

[2] In spring 2011, chemical ozone loss in the Arctic was
comparable to that observed over Antarctica for the first time
on record [Manney et al., 2011]. This resulted from an
unusually prolonged period with a strong, cold polar vortex.
Due to these persistent low temperatures, polar stratospheric

clouds (PSCs) were observed until mid-March and activated
chlorine was observed until late March. This resulted in a
record ozone loss [Balis et al., 2011; Manney et al., 2011].
[3] The polar vortex was above the Polar Environment

Atmospheric Research Laboratory (PEARL), located at
Eureka, Canada (80.05�N, 86.42�W) for a large part of
spring 2011. A suite of instruments, operated by the
Canadian Network for the Detection of Atmospheric Change
(CANDAC), take continuous measurements at PEARL. We
present results from four differential optical absorption
spectroscopy (DOAS) instruments. DOAS instruments can
measure under both clear and cloudy conditions and there-
fore present a more continuous timeseries of ozone and NO2

than solar tracking Fourier Transform Infrared (FTIR)
spectrometers. Furthermore, DOAS instruments can also
measure OClO, which is a good qualitative indicator of
chlorine activation [Sessler et al., 1995]. However, quanti-
fication of ClO from OClO measurements is difficult due to
uncertainties in model predictions, particularly under strong
chlorine activation [e.g., Oetjen et al., 2011]. Ozone, NO2,
and OClO measurements can be combined with strato-
spheric parameters in order to identify ozone depletion,
chlorine activation, and denitrification within the polar
vortex [e.g., Tornkvist et al., 2002; Tétard et al., 2009].

2. Datasets

[4] Measurements included in this study were taken
by four ground-based DOAS instruments: the PEARL and
University of Toronto ground-based spectrometers (GBSs)
[Fraser et al., 2009] and two System D’Analyse par
Observations Zenithales (SAOZ) instruments [Pommereau
and Goutail, 1988]. These instruments are part of the
Network for the Detection of Atmospheric Composition
Change (NDACC) and their Eureka ozone and NO2 datasets
are described in detail by Adams et al. [2012]. Measure-
ments from the two GBS (two SAOZ) instruments are
nearly identical and therefore were combined to create a
single GBS (SAOZ) dataset.
[5] The GBSs are UV-visible Triax-180 triple-grating

spectrometers, built by Instruments S.A. / Jobin Yvon
Horiba, with cooled charge-coupled device detectors and a
2� field-of-view. The resolution varies from 0.2–2.5 nm and
the wavelength range varies from 320–600 nm depending
on the selected grating and target wavelength. GBS ozone
and NO2 columns were retrieved above Eureka in the spring
for 1999–2011, except for 2001 and 2002. The SAOZ
instruments are grating spectrometers, which measure in the
270–620 nm range with a 1.0-nm resolution and a 10� field-
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of-view and record spectra on uncooled 1024-pixel linear
diode array detectors. SAOZ instruments took spring-time
measurements at Eureka for 2005–2011.
[6] The DOAS (GBS and SAOZ) ozone measurements

were analyzed in the 450–550 nm range, using the NDACC
guidelines [Hendrick et al., 2011]. NO2 partial columns were
retrieved for the GBS instruments in two different wave-
length regions: 425–450 nm (GBS-vis) and 350–380 nm
(GBS-UV), depending on the selected measurement grating.
The GBS NO2 partial columns were calculated for 17 km to
the top of the atmosphere for the validation of satellite partial
column measurements, using AMFs that were set to zero
below 17 km [Adams et al., 2012]. SAOZ NO2 total
columns were retrieved in the 410–510 nm range. The
SAOZ NO2 total columns are qualitatively consistent with
the GBS partial columns, but are not presented here because
they cover a different altitude range. The SAOZ and GBS
ozone and NO2 columns have been shown to agree well
with other ground-based and satellite measurements [Fraser
et al., 2008, 2009; Adams et al., 2012]. OClO differential
slant column densities (DSCDs) at solar zenith angle 90�
were also retrieved from spring 2007, 2008, and 2011 GBS

spectra in the 350–380 nm range. The OClO retrievals are
described in the auxiliary material.1

[7] Derived meteorological products [Manney et al.,
2007] were calculated along the lines-of-sight of the
DOAS instruments [Adams et al., 2012] for 1999–2003
using the Met Office analysis and 2004–2011 using the
GEOS-5.1.0/GEOS-5.2.0 analysis. Stratospheric tempera-
tures and scaled potential vorticity (sPV) were interpolated
to the 490-K potential temperature level (� ozone concen-
tration maximum, �19 km) and are referred to here as T490K

and sPV490K. The inner and outer vortex edges are identified
by sPV490K values of 1.6 � 10�4 s�1 and 1.2 � 10�4 s�1,
respectively [Manney et al., 2007].

3. Timeseries of Ozone, NO2, and OClO

[8] The 1999–2011 timeseries of ozone, NO2, OClO,
T490K, and sPV490K are shown in Figure 1. In 2000, 2005,
2007 and 2011, low ozone columns were measured above
Eureka when the polar vortex was overhead. These years are
shown in color, while the other measurement years are
shown in grey. Low ozone coincides with low NO2, low
T490K, and time periods when the instruments are sampling
inside the polar vortex.
[9] For 23 February to 21 March 2011 (days 54–80), the

DOAS instruments sample lower stratospheric air inside the
polar vortex. OClO DSCDs of 0.8–2.0 � 1014 mol/cm2 are
within the range of previous elevated OClO measurements
[e.g., Tornkvist et al., 2002], suggesting chlorine activation.
All elevated OClO DSCDs, from 8–22 March 2011
(days 67–81) and 2–5 March 2007 (days 61–64), are mea-
sured inside the polar vortex when the high-latitude mini-
mum temperature (calculated by Manney et al. [2011], not
shown here) is below the threshold for PSC formation
(TNAT). High OClO measurements do not always corre-
spond with local T490K < TNAT (Figure 1d), because the
time-scale for vortex mixing (�5–7 days) is smaller than the
time-scale for chlorine deactivation (�weeks). During the
period of elevated OClO in 2011, ozone, NO2, and T490K all
reach minima in the 11-year record, with ozone values
of 247 DU (237 DU) measured by the GBS (SAOZ) on
18 March (day 77).
[10] After 22 March 2011 (day 81), the instruments

primarily sample the lower stratosphere outside the polar
vortex. During this period, ozone and NO2 increase to levels
that are normal in the context of the 11-year data record. On
5 April (day 87) and 28 March (day 95), ozone and NO2

columns and T490K decrease sharply, as the instruments
sample air masses inside the vortex. After 5 April (day 95),
T490K and NO2 increase to maxima in the 11-year dataset.
This increase is the subject of a companion study.

4. Dynamical and Chemical Contributions to Low
Ozone

[11] As is evident in the DOAS timeseries (Figure 1),
2011 is extremely different from previous years. Ozone,
NO2, and OClO measurements taken inside the polar vortex
(sPV490K > 1.6 � 10�4 s�1) for days 55–80 (24 February to
19/20 March) were selected to investigate this further. The
time-period was limited in order to reduce the impact of

Figure 1. Timeseries of measurements and dynamical
parameters along the DOAS line-of-sight for 1999–2011
versus day of year. Year 2000 is shown in orange, 2005 in
cyan, 2007 in blue, 2011 in magenta, and all other years are
shown in grey. (a) Ozone total columns measured by the
GBS (closed diamonds) and SAOZ (open squares). (b) NO2

partial columns (17 km to top of atmosphere) measured by
GBS-vis (closed diamonds) and GBS-UV (open circles).
(c) OClO DSCDs measured by the GBS. (d) T490K and
(e) sPV490K.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL050478.
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seasonal variation on the results. NO2 measurements were
scaled to local solar noon using a photochemical model
[McLinden et al., 2000] initialized with temperature and
ozone from Eureka ozonesonde profiles from the nearest
available date.
[12] Figure 2 shows histograms of ozone, NO2, and OClO

for 1999–2010 (grey) and 2011 (transparent with thick black
outline). In 2011, the mean vortex ozone column measured
by the GBS (SAOZ) is 28� 13% (32 � 14%) lower than the
mean column from other years, where the error denotes the
1s statistical uncertainty. Similarly, GBS-vis (GBS-UV)
NO2 is 46 � 30% (45 � 27%) lower and GBS OClO is three
times higher in 2011 than in previous years.
[13] The unusual 2011 ozone and NO2 columns are a

result of both chemistry and transport, which contribute
approximately equally to year-to-year total ozone column
variability in the Arctic [Tegtmeier et al., 2008]. Figure 3
shows the correlation between vortex ozone/NO2 measure-
ments and the local T490K. Correlation between ozone and
local lower stratospheric temperature has been observed in
previous studies and points to replenishing of ozone through
vertical descent, horizontal mixing across the vortex edge,
and adiabatic compression of the column, which all increase
with higher stratospheric temperatures (e.g., supplementary
material of Manney et al. [2011, and references therein]). In

the present study, the strongest correlation between ozone
and T490K was calculated when data were excluded from
years with few vortex measurements above Eureka (grey)
and 12–20 March 2011 (days 71–79, red). The outliers for
years with few vortex measurements may result from errors
in matching T490K and sPV490K to measurements both spa-
tially and temporally when the vortex edge is near Eureka.
For 12–20 March 2011, the ozone columns remain low,
despite the rise in the local T490K. This deviation from the
correlation between T490K and ozone suggests chemical
depletion (supplementary material of Manney et al. [2011]).
NO2 is also correlated with local lower stratospheric tem-
perature, as has been observed in previous studies [e.g.,
Pommereau and Goutail, 1988; Dirksen et al., 2011]. The
correlation for NO2 is weaker than for ozone, likely due to
the seasonal increase in NO2 as it is released from night-time
reservoirs.
[14] Investigation of complementary datasets provides

further evidence of chemical ozone depletion and denitrifi-
cation above Eureka in 2011. For 9–18 March (days 68–77),
low HNO3 and ClONO2 columns over Eureka were mea-
sured by the CANDAC Bruker FTIR [Lindenmaier et al.,
2012]. This suggests that the extremely low NO2 columns
measured during the same period are not caused by con-
version to HNO3 or ClONO2. During this period of low
ClONO2, HNO3, and NO2, OClO DSCDs are elevated,
reinforcing that chlorine remains activated. Furthermore,
PSCs were measured above Eureka with the CANDAC

Figure 3. Correlation between T490K and (a) GBS ozone,
(b) SAOZ ozone, (c) GBS-vis NO2, and (d) GBS-UV NO2.
Measurements were taken inside the vortex for days 55–80
(24 February to 19/20 March). Data are shown for 2000,
2005, 2007, and 24 February to 11 March 2011 (blue);
12–20 March 2011 (red); and other years (grey). R and Rall

are correlation coefficients for data indicated by blue only
and for all data in the figure, respectively.

Figure 2. Histograms of (a) GBS ozone, (b) SAOZ ozone,
(c) GBS-vis NO2, (d) GBS-UV NO2, and (e) GBS OClO.
Measurements were taken inside the vortex for days 55–80
(24 February to 19/20 March), with 1999–2010 in gray
and 2011 transparent with thick black lines. N � M denotes
the average (N) and 1s standard deviation (M) in the
measurements.
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Rayleigh-Mie-Raman Lidar between 8–18March (days 67–77)
[Lindenmaier et al., 2012]. These measurements agree with
photochemical model runs in supplementary material of
Manney et al. [2011], which indicate that prolonged
denitrification by sedimentation of PSCs delayed chlorine
deactivation, leading to the record ozone loss.
[15] In order to isolate chemical ozone depletion from

dynamical features, the passive subtraction method [e.g.,
Manney et al., 1995; World Meteorological Organization,
2003; Feng et al., 2007] was employed using SLIMCAT
[Chipperfield, 2006], a three-dimensional off-line chemical
transport model. These ozone loss estimates are described in
detail in the auxiliary material. The average ozone loss for
12–20 March 2011 was 27% (29%) or 99 DU (108 DU), as
estimated from GBS (SAOZ) data. The maximum percent
ozone loss in the 11-year data record was calculated from
GBS (SAOZ) data on 5 April 2011 at 47% (47%) or 250 DU
(251 DU). A similar maximum ozone loss of 266 DU was
observed by Lindenmaier et al. [2012] on 5 April 2011
above Eureka.

5. Conclusion

[16] Unprecedentedly low ozone and NO2 columns were
measured in 2011 and correspond to elevated OClO, sug-
gesting chlorine activation and ozone depletion. Vortex
ozone and NO2 total columns from 1999–2011 are corre-
lated with the lower stratospheric temperature above Eureka,
indicating that transport also contributes to the low ozone
and NO2 measurements. Using the SLIMCAT passive tracer
model, a maximum percent ozone loss of 47% was observed
on 5 April 2011.
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