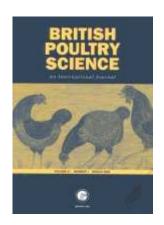


Double-yolked pheasant eggs provide an insight into the control of albumen secretion in bird eggs

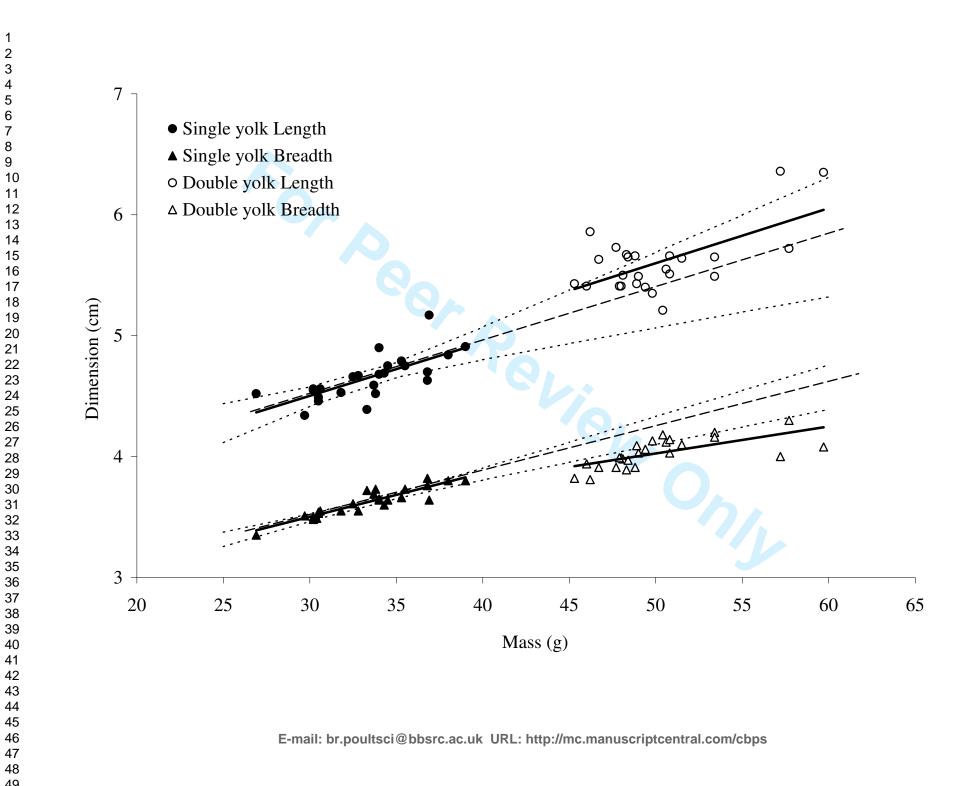
Charles Deeming

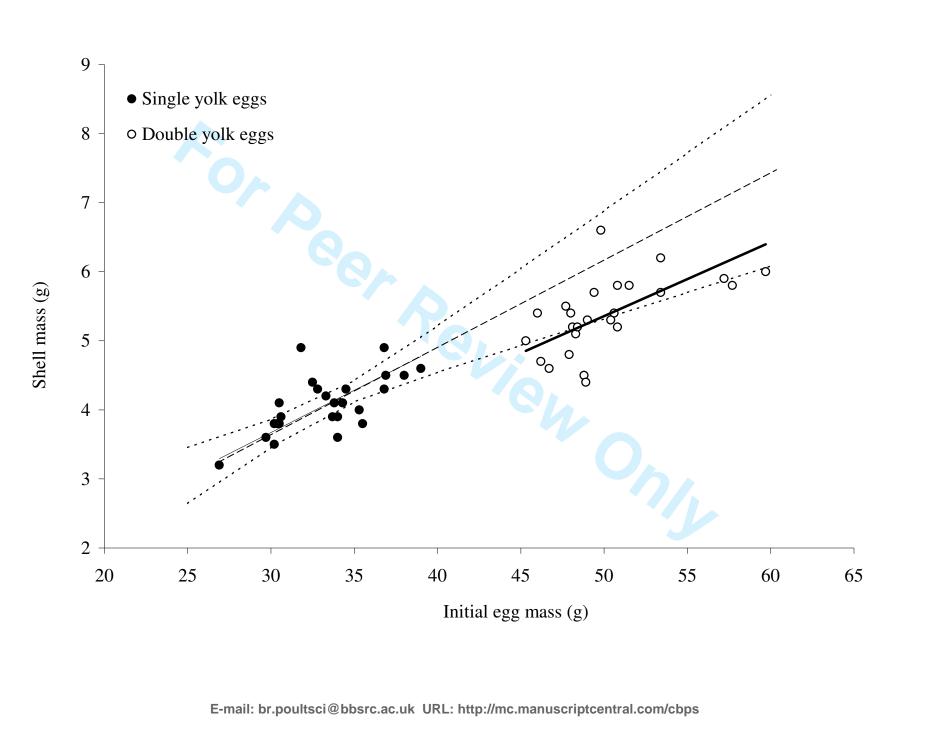

▶ To cite this version:

Charles Deeming. Double-yolked pheasant eggs provide an insight into the control of albumen secretion in bird eggs. British Poultry Science, 2011, 52 (01), pp.40-47. 10.1080/00071668.2010.538372. hal-00671639

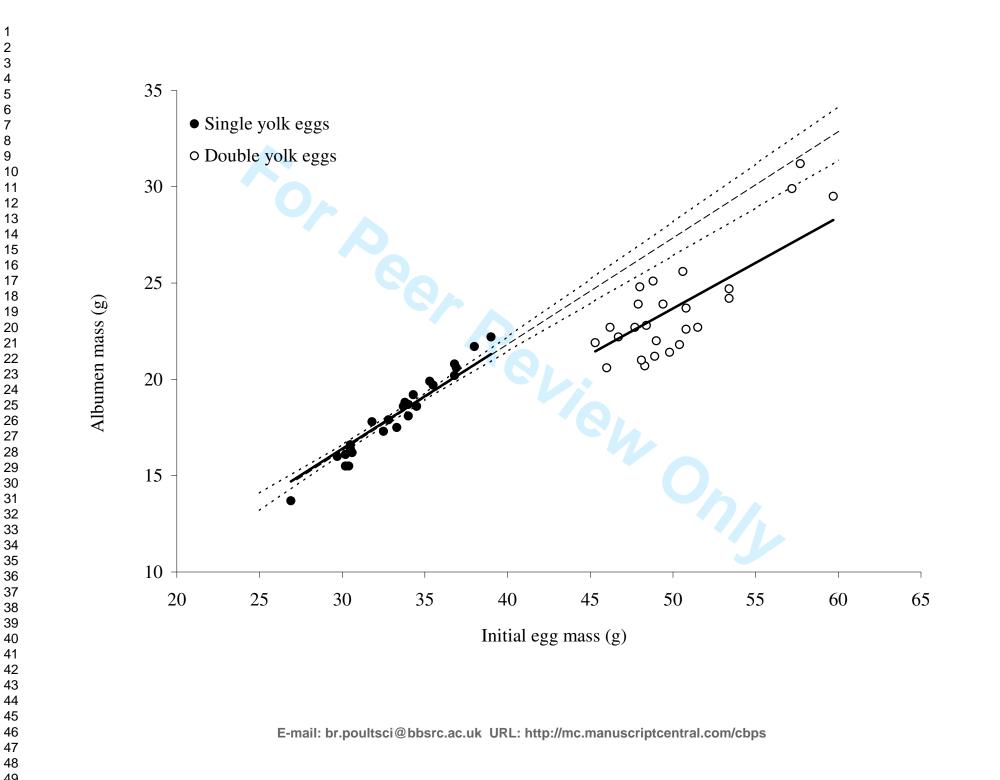
HAL Id: hal-00671639 https://hal.science/hal-00671639

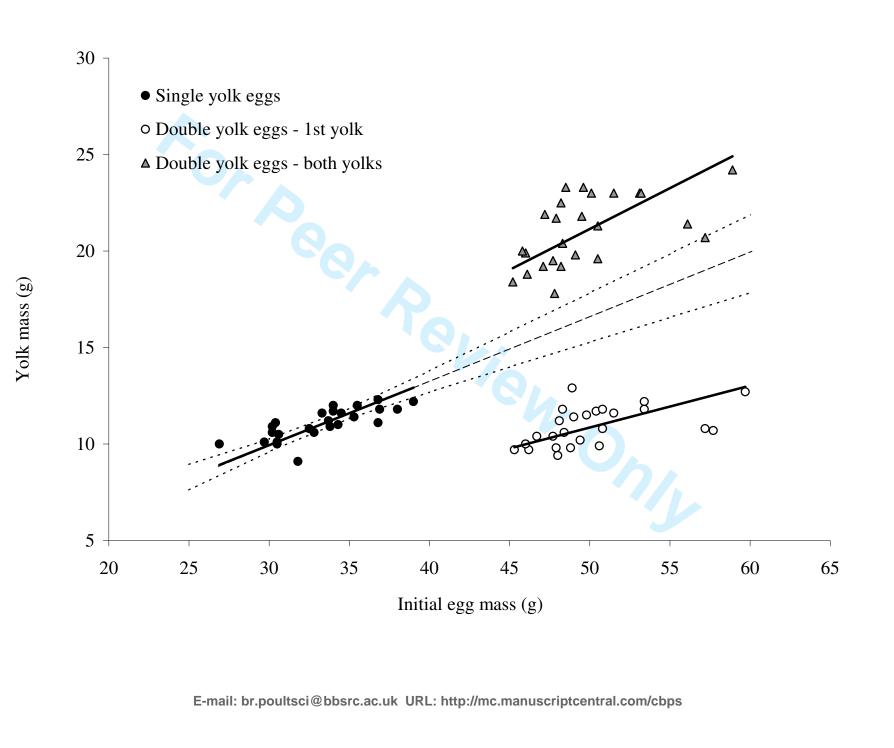
Submitted on 18 Feb2012

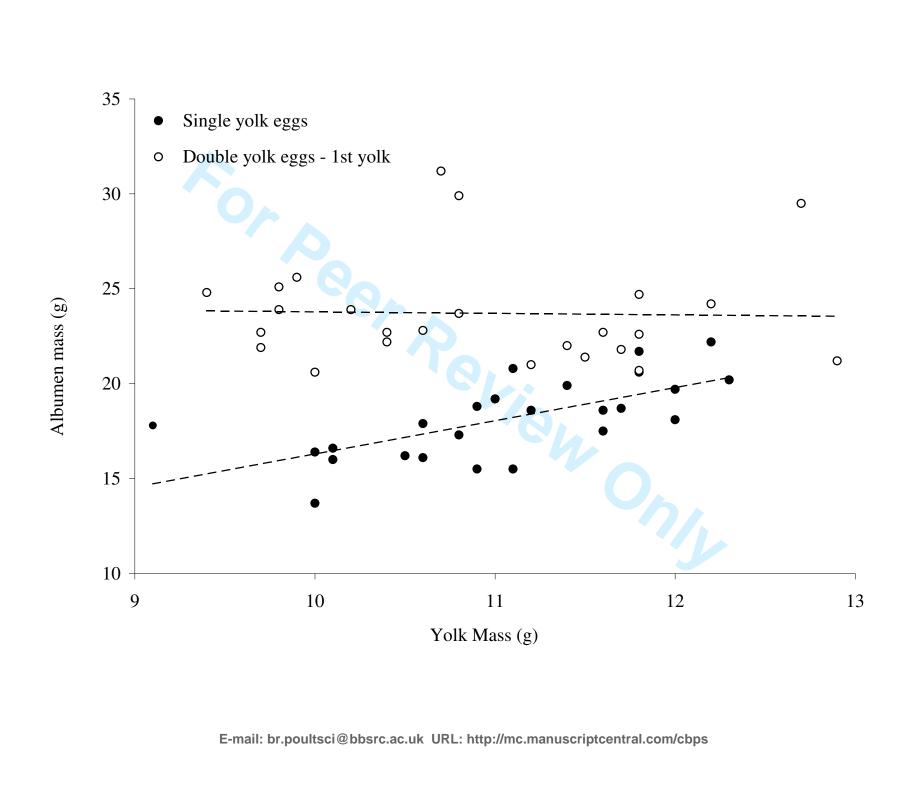

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Double-yolked pheasant eggs provide an insight into the control of albumen secretion in bird eggs


Journal:	British Poultry Science
Manuscript ID:	CBPS-2010-198.R1
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	21-Jul-2010
Complete List of Authors:	Deeming, Charles; University of Lincoln, Biological Sciences
Keywords:	Egg, pheasant, yolk, albumen, magnum


SCHOLARONE[™] Manuscripts



6

		4.65	3.63	1.284	33.0	33.4	4.1
		0.18	0.12	0.050	3.0	3.0	0.4
Normal	Number	Length (cm)	Breadth (cm)	е	Mass (g)	IEM (g)	Shell mass (g)
1	4	4.49	3.53	1.272	30.5	30.5	4.1
1	6	4.66	3.61	1.291	32.5	32.5	4.4
1	2	4.53	3.55	1.276	31.4	31.8	4.9
1	10	4.52	3.35	1.349	26.9	26.9	3.2
1	15	4.91	3.8	1.292	38.8	39	4.6
1	17	4.56	3.55	1.285	30.6	30.6	3.9
1	20	4.68	3.64	1.286	33.9	34	3.6
1	22	5.17 4.67	3.64	1.420	36.7 32.7	36.9	4.5 4.3
1 1	24 26	4.67	3.55 3.51	1.315 1.236	32.7 29.3	32.8 29.7	4.3 3.6
1	30	4.7	3.76	1.250	29.3 36.1	36.8	4.9
1	32	4.75	3.73	1.273	35.9	35.5	3.8
1	34	4.9	3.65	1.342	33.1	34	3.9
1	36	4.52	3.73	1.212	33.7	33.8	4.1
1	38	4.55	3.48	1.307	29.6	30.2	3.5
1	40	4.59	3.69	1.244	33.3	33.7	3.9
1	42	4.39	3.72	1.180	32.8	33.3	4.2
1	45	4.79	3.66	1.309	34.8	35.3	4
1	47	4.63	3.82	1.212	36.6	36.8	4.3
1	49	4.75	3.64	1.305	34.2	34.5	4.3
1	52	4.69	3.6	1.303	33	34.3	4.1
1	54	4.56	3.5	1.303	29.8	30.2	3.8
1	56	4.84	3.8	1.274	37.4	38	4.5
1	58	4.53	3.49	1.298	29.3	30.4	3.8
1	60	4.46	3.54	1.260	30.3	30.5	3.8
					30.3		

2						
3	10.0				0.400	0 5 4 4
4	18.2	11.1			0.122	0.544
	2.1	0.8			0.010	0.018
5						
6	Albumen mass (g)	Yolk mass (g) Yolk #1 cm3		Shell mass (g)	Albumen mass (g)
7	16.4	10	9.718173	2.65	0.134	0.538
8	17.3	10.8	10.49563	2.72	0.135	0.532
9	17.8	9.1	8.843537	2.57	0.154	0.560
10	13.7	10	9.718173	2.65	0.119	0.509
11	22.2	12.2	11.85617	2.83	0.118	0.569
12	16.2	10.5	10.20408	2.69	0.127	0.529
13	18.7	11.7	11.37026	2.79	0.106	0.550
14	20.6	11.8	11.46744	2.80	0.122	0.558
15	17.9	10.6	10.30126	2.70	0.131	0.546
16	16	10.1	9.815355	2.66	0.121	0.539
17	20.8	11.1	10.78717	2.74	0.133	0.565
18	19.7	12	11.66181	2.81	0.107	0.555
19	18.1	12	11.66181	2.81	0.115	0.532
	18.8	10.9	10.59281	2.72	0.121	0.556
20	16.1	10.6	10.30126	2.70	0.116	0.533
21	18.6	11.2	10.88435	2.75	0.116	0.552
22	17.5	11.6	11.27308	2.78	0.126	0.526
23	19.9	11.4	11.07872	2.77	0.113	0.564
24	20.2	12.3	11.95335	2.84	0.117	0.549
25	18.6	11.6	11.27308	2.78	0.125	0.539
26	19.2	11	10.68999	2.73	0.120	0.560
27	15.5	10.9	10.59281	2.72	0.126	0.513
28	21.7	11.8	11.46744	2.80	0.118	0.571
29	15.5	11.1	10.78717	2.74	0.125	0.510
30	16.6	10.1	9.815355	2.66	0.125	0.544
31		.0.1	0.010000	2.00	0.120	0.011
• ·						

10.1 9.815355 2.66 0.125 0.544

E-mail: br.poultsci@bbsrc.ac.uk URL: http://mc.manuscriptcentral.com/cbps

2	
3 4	
4	
5	
6	
7	
7	
8	
9	
10	
11	
11 12 13 14 15 16 17	
12	
13	
14	
15	
10	
10	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
20	
26	
27	
28	
29	
20	
30	
31	
32 33 34	
33	
34	
24	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40	
49	
49 50	
51	
52	
53	
23	
54	
55	
56	
57	
58	
59	
60	

1

0.333 0.020

Yolk mass (g) 0.328 0.332 0.286 0.372 0.313 0.343 0.344 0.320 0.323 0.340 0.302 0.338 0.353 0.322 0.351 0.332 0.348 0.323 0.334 0.336 0.321 0.361 0.311 0.365 0.331

British Poultry Science

0								
2 3								
4			5.61	4.03	1.390	49.7	50.2	5.4
			0.27	0.12	0.083	3.6	3.7	0.5
5								
6				Breadth (cm)	е	Mass (g)	IEM (g)	
7	2	3	5.73	3.91	1.465	47.7	47.7	5.5
8	2	5	5.4	4.06	1.330	49.1	49.4	5.7
9	2	7	5.55	4.12	1.347	50.5	50.6	5.4
10	2	9	5.43	3.82	1.421	45.2	45.3	5
11	2	11	5.63	3.91	1.440	46	46.7	4.6
12	2	14	5.86	3.81	1.538	46.1	46.2	4.7
13	2	21	5.35	4.13	1.295	49.5	49.8	6.6
14	2 2 2	25	5.72	4.3	1.330	57.2	57.7	5.8
15	2	27	5.64	4.1	1.376	51.5	51.5	5.8
16	2	29	5.49	4.2	1.307	53.1	53.4	6.2
17	2	31	5.51	4.14	1.331	50.5	50.8	5.8
18	2 2	33	5.67	3.89	1.458	48.2	48.3	5.1
19	2	35	6.35	4.08	1.556	58.9	59.7	6
20	2	37	5.66	3.91	1.448	48.2	48.8	4.5
20	2	39	5.41	3.94	1.373	45.8	46	5.4
	2	41	5.41	3.99	1.356	47.8	48	5.4
22	2 2 2	44	5.49	4.03	1.362	47.9	49	5.3
23	2	46	5.5	3.98	1.382	47.2	48.1	5.2
24	2 2	48	6.36	4	1.590	56.1	57.2	5.9
25	2	51	5.65	4.16	1.358	53.2	53.4	5.7
26	2	53	5.43	4.09	1.328	48.5	48.9	4.4
27	2	55	5.65	3.97	1.423	48.3	48.4	5.2
28	2	57	5.21	4.18	1.246	49.6	50.4	5.3
29	2	59	5.66	4.03	1.404	50.1	50.8	5.2
30	2	61	5.41	3.99	1.356	47.1	47.9	4.8
31								

3.99 1.356 47.1 47.9 4.8

23.7	10.9	10.2	21.1	0.93			
2.8	1.0	0.9	1.8	0.0			
23.7 2.8 Albumen mass (g) 22.7 23.9 25.6 21.9 22.2 22.7 21.4 31.2 22.7 24.2 23.7 20.7 29.5 25.1 20.6 24.8 22 21 29.9 24.7 21.2 22.8 21.8 22.6 23.9	1.0	10.2 0.9 Yolk #2 mass (g) 9.1 9.6 9.7 8.7 9.5 9.1 10.3 10 11.4 10.8 10.5 10.7 11.5 9.4 10 8.4 10.3 10.7 10.6 11.2 10.4 9.8 11.6 11.2 9.4	1.8	0.0 0.875 0.941176 0.979798 0.896907 0.913462 0.938144 0.895652 0.934579 0.982759 0.885246 0.972222 0.90678 0.905512 0.905512 0.905512 0.9055357 0.981481 0.949153 0.949153 0.949153 0.949153 0.959184	9.426628 8. 10.1069 9.4 9.426628 8.4 11.1759 10 10.39845 9. 11.27308 11 11.85617 10 10.49563 10 11.46744 10 12.34208 1° 9.52381 9. 9.718173 9. 9.135083 8. 11.07872 10 10.49563 10 10.49563 10 10.49563 10 11.46744 10 12.53644 10 12.53644 10 10.30126 9. 11.37026 11 11.46744 10	329446 426628 45481 232264 343537 .00972 718173 .07872 .49563 .20408 .39845 1.1759 135083 718173 163265	
E maile b	r noultooi@bbor				antial a and	la se e	

British Poultry Science

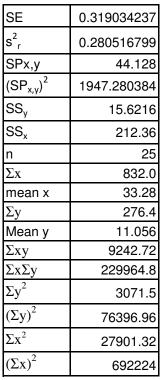
1							
2 3							
						0.107	0.472
4						0.009	0.033
5							
6						Shell mass (g)	Albumen mass (g)
7	2.68	2.57	5.25	18.95044	3.31	0.115	0.476
8	2.67	2.61	5.28	19.24198	3.32	0.115	0.484
9	2.64	2.62	5.26	19.04762	3.31	0.107	0.506
10	2.62	2.53	5.15	17.88144	3.24	0.110	0.483
11	2.68	2.60	5.29	19.33916	3.33	0.099	0.475
12	2.62	2.57	5.19	18.27017	3.27	0.102	0.491
13	2.77	2.67	5.45	21.18562	3.43	0.133	0.430
14	2.71	2.65	5.36	20.11662	3.37	0.101	0.541
15	2.78	2.77	5.55	22.3518	3.49	0.113	0.441
16	2.83	2.72	5.55	22.3518	3.49	0.116	0.453
17	2.72	2.69	5.41	20.69971	3.41	0.114	0.467
18	2.80	2.71	5.51	21.86589	3.47	0.106	0.429
19	2.87	2.77	5.64	23.51798	3.55	0.101	0.494
	2.63	2.59	5.22	18.65889	3.29	0.092	0.514
20	2.65	2.65	5.30	19.43635	3.34	0.117	0.448
21	2.59	2.50	5.09	17.29835	3.21	0.113	0.517
22	2.77	2.67	5.44	21.08844	3.43	0.108	0.449
23	2.75	2.71	5.46	21.2828	3.44	0.108	0.437
24	2.72	2.70	5.42	20.79689	3.41	0.103	0.523
25	2.80	2.75	5.55	22.3518	3.49	0.107	0.463
26	2.88	2.68	5.56	22.64334	3.51	0.090	0.434
27	2.70	2.63	5.33	19.82507	3.36	0.107	0.471
28	2.79	2.78	5.57	22.64334	3.51	0.105	0.433
29	2.80	2.75	5.55	22.3518	3.49	0.102	0.445
30	2.63	2.59	5.22	18.65889	3.29	0.100	0.499
31			0		0.20		000

0.218	0.203	0.421	27.387	0.864	17.895	5.817	0.337
0.018	0.015	0.031	2.000	0.060	1.740	3.354	0.204
						0.670864	0.040886
Yolk #1 mass ((g) Yolk #2 mass (g)	Total yolk	pred AM				
0.218	0.191	0.409	26.044	0.872	16.9984	5.7016	0.33542
0.206	0.194	0.401	26.972	0.886	16.6482	7.2518	0.435591
0.196	0.192	0.387	27.628	0.927	16.1229	9.4771	0.587804
0.214	0.192	0.406	24.734	0.885	15.7727	6.1273	0.388475
0.223	0.203	0.426	25.498	0.871	16.9984	5.2016	0.306005
0.210	0.197	0.407	25.225	0.900	15.7727	6.9273	0.439196
0.231	0.207	0.438	27.191	0.787	18.9245	2.4755	0.130809
0.185	0.173	0.359	31.504	0.990	17.5237	13.6763	0.780446
0.225	0.221	0.447	28.119	0.807	19.0996	3.6004	0.188507
0.228	0.202	0.431	29.156	0.830	20.1502	4.0498	0.200981
0.213	0.207	0.419	27.737	0.854	17.6988	6.0012	0.339074
0.244	0.222	0.466	26.372	0.785	19.4498	1.2502	0.064278
0.213	0.193	0.405	32.596	0.905	21.0257	8.4743	0.403045
0.201	0.193	0.393	26.645	0.942	15.9478	9.1522	0.573885
0.217	0.217	0.435	25.116	0.820	16.298	4.302	0.263959
0.196	0.175	0.371	26.208	0.946	15.2474	9.5526	0.626507
0.233	0.210	0.443	26.754	0.822	18.7494	3.2506	0.173371
0.233	0.222	0.455	26.263	0.800	18.3992	2.6008	0.141354
0.189	0.185	0.374	31.231	0.957	17.6988	12.2012	0.68938
0.221	0.210	0.431	29.156	0.847	19.4498	5.2502	0.269936
0.264	0.213	0.476	26.699	0.794	21.3759	-0.1759	-0.008229
0.219	0.202	0.421	26.426	0.863	17.3486	5.4514	0.314227
0.232	0.230	0.462	27.518	0.792	19.2747	2.5253	0.131016
0.232	0.220	0.453	27.737	0.815	19.4498	3.1502	0.161966
0.205	0.196	0.401	26.153	0.914	15.9478	7.9522	0.498639

British Poultry Science

	SE	0.674435333
0	s ² _r	0.133703836
0	SPx,y	148.702
268.96	$(SP_{x,y})^2$	22112.2848
299.29	SSy	107.2016
316.84	SS _x	212.36
187.69	n	25
492.84	Σx	832.0
262.44	mean x	33.28
349.69	Σy	453.6
424.36	Mean y	18.144
320.41	Σxy	15244.51
256	$\Sigma x \Sigma y$	377395.2
432.64	Σy^2	8337.32
388.09	$(\Sigma y)^2$	205752.96
327.61	Σx^2	27901.32
353.44	$(\Sigma x)^2$	692224
259.21 345.96 306.25		

х	Y XY		X ²	Y ²	SE	0.674435333
		0	0	0	s ² _r	0.133703836
		0	0	0	SPx,y	148.702
30.5	16.4	500.2	930.25	268.96	$(SP_{x,y})^2$	22112.2848
32.5	17.3	562.25	1056.25	299.29	SSγ	107.2016
31.8	17.8	566.04	1011.24	316.84	SS _x	212.36
26.9	13.7	368.53	723.61	187.69	n	25
39	22.2	865.8	1521	492.84	Σx	832.0
30.6	16.2	495.72	936.36	262.44	mean x	33.28
34	18.7	635.8	1156	349.69	Σy	453.6
36.9	20.6	760.14	1361.61	424.36	Mean y	18.144
32.8	17.9	587.12	1075.84	320.41	Σxy	15244.51
29.7	16	475.2	882.09	256	ΣxΣy	377395.2
36.8	20.8	765.44	1354.24	432.64	Σy^2	8337.32
35.5	19.7	699.35	1260.25	388.09	$(\Sigma y)^2$	205752.96
34	18.1	615.4	1156	327.61	Σx^2	27901.32
33.8	18.8	635.44	1142.44	353.44	$(\Sigma x)^2$	692224
30.2	16.1	486.22	912.04	259.21		
33.7	18.6	626.82	1135.69	345.96		
33.3	17.5	582.75		306.25		
35.3	19.9	702.47		396.01		
36.8	20.2	743.36		408.04		
34.5	18.6	641.7		345.96		
34.3	19.2	658.56		368.64		
30.2	15.5	468.1	912.04	240.25		
38	21.7	824.6		470.89		
30.4	15.5	471.2		240.25		
30.5	16.6	506.3	930.25	275.56		



x-valu	ie					
	60		t(n-2)	2.069	2.069	
Х	SE		Pred Y	-	Min	Max
	25	0.22	13.65	0.45518	13.19482	14.10518
	30	0.11	16.38	0.22759	16.15241	16.60759
	35	0.085	19.11	0.175865	18.93414	19.28587
	40	0.184	21.84	0.380696	21.4593	22.2207
	45	0.303	24.57	0.626907	23.94309	25.19691
	50	0.426	27.3	0.881394	26.41861	28.18139
	55	0.55	30.03	1.13795	28.89205	31.16795
	60	0.674	32.76	1.394506	31.36549	34.15451
	45 50 55	0.303 0.426 0.55	24.57 27.3 30.03	0.626907 0.881394 1.13795	23.94309 26.41861 28.89205	25.19691 28.18139 31.16795

- 1) Input data into B & C
- 2) Work out pred Y
- 3) Work out SE by putting x-value in L2
- 4) Input SE value into appropriate row from I1

British Poultry Science

2							_		
3 4	Х	Y	XY	>	۲ ²	Y ²		SE	0.31
5				0	0	0		s ² _r	0.28
6				0	0		·	SPx,y	0.20
7 8	00 F	10					·		104
o 9	30.5	10		305	930.25			$(SP_{x,y})^2$	194
10	32.5	10.8		351	1056.25	116.64		SSγ	
11	31.8	9.1		289.38	1011.24	82.81		SS _x	
12	26.9	10		269	723.61	100		n	
13 14	39	12.2		475.8	1521			Σx	
15	30.6	10.5		321.3	936.36			mean x	
16	34	11.7		397.8	1156			Σу	
17	36.9	11.8		435.42	1361.61		l l l l l l l l l l l l l l l l l l l	Mean y	
18 19	32.8	10.6		347.68	1075.84			Σxy	
20	29.7	10.1		299.97	882.09			ΣxΣy	
21	36.8	11.1		408.48	1354.24			$\frac{\Sigma y^2}{\Sigma y^2}$	
22									
23 24	35.5	12		426	1260.25	144		$(\Sigma y)^2$	
24 25	34	12		408	1156	144		Σx^2	
26	33.8	10.9		368.42	1142.44	118.81		$(\Sigma x)^2$	
27	30.2	10.6		320.12	912.04		Ţ		
28	33.7	11.2		377.44	1135.69				
29	33.3	11.6		386.28	1108.89	134.56			
30	35.3	11.4		402.42	1246.09	129.96			
31 32	36.8	12.3		452.64	1354.24	151.29			
33	34.5	11.6		400.2	1190.25	134.56			
34	34.3	11		377.3	1176.49	121			
35	30.2	10.9		329.18	912.04	118.81			
36	38	11.8		448.4	1444	139.24			
37	30.4	11.1		337.44	924.16	123.21			
38	30.5	10.1		308.05	930.25	102.01			
39									
40									
41									
42									
43									
44									
45									
46									
47									
48									
49									

E-mail: br.poultsci@bbsrc.ac.uk URL: http://mc.manuscriptcentral.com/cbps

x-valu	e					
	25		t(n-2)	2.069		
Х	SE		Pred Y		Min	Max
	25	0.319	8.275	0.660011	7.614989	8.935011
	30	0.159	9.93	0.328971	9.601029	10.25897
	35	0.123	11.585	0.254487	11.33051	11.83949
	40	0.266	13.24	0.550354	12.68965	13.79035
	45	0.439	14.895	0.908291	13.98671	15.80329
	50	0.617	16.55	1.276573	15.27343	17.82657
	55	0.796	18.205	1.646924	16.55808	19.85192
	60	0.977	19.86	2.021413	17.83859	21.88141

- 1) Input data into B & C
- 2) Work out pred Y
- 3) Work out SE by putting x-value in L2
- 4) Input SE value into appropriate row from I1

British Poultry Science

0.195546848

19.53 381.4209

4.22 212.36 832.0 33.28 4.08 3414.09 420.38 27901.32

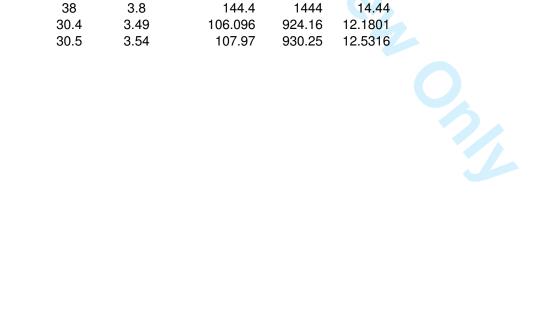
2							
2 3	Х	Y	XY	X ²	Y ²	SE	0.
4 5	χ	•				s ² _r	
6			0	0	0		-
7			0	0	0	SPx,y	
5 6 7 8 9	30.5	4.1	125.05	930.25	16.81	$(SP_{x,y})^2$	
9 10	32.5	4.4	143	1056.25	19.36	SSy	
11	31.8	4.9	155.82	1011.24	24.01	SS _x	
12	26.9	3.2	86.08	723.61	10.24	n	
13 14	39	4.6	179.4	1521	21.16	Σx	
15	30.6	3.9	119.34		15.21	mean x	
16	34	3.6	122.4		12.96	Σy	
17	36.9	4.5	166.05		20.25	Mean y	
18 19	32.8	4.3	141.04		18.49	Σxy	
20	29.7	3.6	106.92		12.96	$\Sigma x \Sigma y$	
21	36.8	4.9	180.32	1354.24	24.01	Σy^2	
22 23	35.5	3.8	134.9	1260.25	14.44	$(\Sigma y)^2$	
24 25	34	3.9	132.6	1156	15.21	Σx^2	
26	33.8	4.1	138.58	1142.44	16.81	$(\Sigma x)^2$	
27	30.2	3.5	105.7		12.25		
28	33.7	3.9	131.43		15.21		
29	33.3	4.2	139.86	1108.89	17.64		
30 31	35.3	4	141.2		16		
32	36.8	4.3	158.24		18.49		
33	34.5	4.3	148.35		18.49		
34	34.3	4.1	140.63		16.81		
35	30.2	3.8	114.76	912.04	14.44		
36	38 30.4	4.5	171 115.52	1444 924.16	20.25 14.44		
37		3.8	115.52				
38	30.5	3.8	115.9	930.25	14.44		
39 40							
41							
42							
43							
44							
45							
46							
47							
48							

x-valu	e					
	25		t(n-2)	2.069		
Х	SE		Pred Y		Min	Max
	25	0.196	3.05	0.405524	2.644476	3.455524
	30	0.098	3.66	0.202762	3.457238	3.862762
	35	0.075	4.27	0.155175	4.114825	4.425175
	40	0.163	4.88	0.337247	4.542753	5.217247
	45	0.269	5.49	0.556561	4.933439	6.046561
	50	0.378	6.1	0.782082	5.317918	6.882082
	55	0.488	6.71	1.009672	5.700328	7.719672
	60	0.599	7.32	1.239331	6.080669	8.559331

- 1) Input data into B & C
- 2) Work out pred Y
- 3) Work out SE by putting x-value in L2
- 4) Input SE value into appropriate row from I1

	X ²	Y ²	SE		0.2385
0	0	0	s ² ,		0.0167
0	0	0	SF	°x,y	ç
136.945	930.25	20.1601		$\left(P_{x,y} \right)^2$	88.127
151.45	1056.25	21.7156	SS		0.7
144.054	1011.24	20.5209	SS	S _x	2
121.588	723.61	20.4304	n		
191.49	1521	24.1081	Σx		
139.536	936.36	20.7936	me	ean x	
159.12	1156	21.9024	Σy	,	1
190.773	1361.61	26.7289	Me	ean y	4
153.176	1075.84	21.8089	Σx	y	387
128.898	882.09	18.8356		Σy	966
172.96	1354.24	22.09	Σу		540
168.625	1260.25	22.5625	(Σ)	$(y)^2$	13497
166.6	1156	24.01	Σx	.2	279
152.776	1142.44	20.4304	(Σ	$(\mathbf{x})^2$	6
137.41	912.04	20.7025			
154.683	1135.69	21.0681			
146.187	1108.89	19.2721			
169.087	1246.09	22.9441			
170.384	1354.24	21.4369			
163.875	1190.25	22.5625			
160.867	1176.49	21.9961			

Page 19 of 40				Britis	h Poultry S	Science		
1 2								
2 3 4	х	Y	XY	>	۲ ²	Y ²	SE	0.238547079
5				0	0	0	s ² _r	0.016726745
5 6 7				0	0	0	SPx,y	9.3876
7 8 9	30.5	4.49		136.945	930.25	20.1601	$(SP_{x,y})^2$	
9 10	32.5	4.66		151.45	1056.25	21.7156	SSy	0.799704
11	31.8	4.53		144.054	1011.24	20.5209	SS _x	212.36
12 13	26.9	4.52		121.588	723.61	20.4304	n	25
14	39	4.91		191.49	1521	24.1081	Σx	832.0
15	30.6	4.56		139.536	936.36	20.7936	mean x	
16 17	34	4.68		159.12	1156	21.9024	Σy	116.18
18	36.9 32.8	5.17 4.67		190.773 153.176	1361.61 1075.84	26.7289 21.8089	Mean y Σxy	4.6472 3875.858
19 20	32.8 29.7	4.07 4.34		128.898	882.09	18.8356	$\frac{\Sigma x y}{\Sigma x \Sigma y}$	96661.76
21	36.8	4.7		172.96	1354.24	22.09	$\frac{\Sigma x \Sigma y}{\Sigma y^2}$	540.7114
22 23	35.5	4.75		168.625	1260.25	22.5625	$(\Sigma y)^2$	13497.7924
24	34	4.9		166.6	1156	24.01	Σx^2	27901.32
25 26	33.8	4.52		152.776	1142.44	20.4304	$(\Sigma x)^2$	692224
27	30.2	4.55		137.41	912.04	20.7025	(21)	002224
28 29	33.7	4.59		154.683	1135.69	21.0681		
30	33.3 35.3	4.39 4.79		146.187 169.087	1108.89 1246.09	19.2721 22.9441		
31	36.8	4.79		170.384	1354.24	22.9441		
32 33	34.5	4.75		163.875	1190.25	22.5625		
34	34.3 30.2	4.69 4.56		160.867 137.712	1176.49 912.04	21.9961 20.7936		
35 36	30.2	4.50		183.92	1444	23.4256		
37	30.4	4.53		137.712	924.16	20.5209		
38	30.5	4.46		136.03	930.25	19.8916		
39 40								
41								
42 43								
44								
45								
46 47								
48								
49 50								
51								
52 53								
54								
55								
56 57								
58								
59 60								
	E-mai	il: br.poults	sci@h	bsrc.ac.uk	URL: http	://mc.manus	criptcentral.con	n/cbps


x-valu	ie					
	60		t(n-2)	2.069		
Х	SE		Pred Y	-	Min	Max
	25	0.078	4.276	0.161382	4.114618	4.437382
	30	0.039	4.496	0.080691	4.415309	4.576691
	35	0.03	4.716	0.06207	4.65393	4.77807
	40	0.065	4.936	0.134485	4.801515	5.070485
	45	0.107	5.156	0.221383	4.934617	5.377383
	50	0.151	5.376	0.312419	5.063581	5.688419
	55	0.194	5.596	0.401386	5.194614	5.997386
	60	0.239	5.816	0.494491	5.321509	6.310491

- 1) Input data into B & C
- 2) Work out pred Y
- 3) Work out SE by putting x-value in L2
- 4) Input SE value into appropriate row from I1

British Poultry Science

Х	•	Y	XY	X ²	Y ²	SE	
			0	0	0	s ² _r	
			0	0	0	SPx,y	
	30.5	3.53	107.665	930.25	12.4609	$(SP_{x,y})^2$	
	32.5	3.61	117.325	1056.25	13.0321	SSγ	
	31.8	3.55	112.89	1011.24	12.6025	SS _x	
	26.9	3.35	90.115	723.61	11.2225	n	
	39	3.8	148.2	1521	14.44	Σx	
	30.6	3.55	108.63	936.36	12.6025	mean x	
	34	3.64	123.76	1156	13.2496	Σy	
	36.9	3.64	134.316	1361.61	13.2496	Mean y	
	32.8	3.55	116.44	1075.84	12.6025	Σxy	
	29.7	3.51	104.247	882.09	12.3201	$\Sigma x \Sigma y$	
	36.8	3.76	138.368	1354.24	14.1376	Σy^2	
	35.5	3.73	132.415	1260.25	13.9129	$(\Sigma y)^2$	
	34	3.65	124.1	1156	13.3225	Σx^2	
	33.8	3.73	126.074	1142.44	13.9129	$(\Sigma x)^2$	
	30.2	3.48	105.096	912.04	12.1104		
	33.7	3.69	124.353				
	33.3	3.72	123.876				
	35.3	3.66	129.198				
	36.8	3.82	140.576				
	34.5	3.64	125.58				
	34.3	3.6	123.48	1176.49	12.96		
	30.2	3.5	105.7	912.04	12.25		
	38	3.8	144.4	1444	14.44		
	30.4	3.49	106.096	924.16	12.1801		

SE	0.029086197
s ² _r	0.002331622
SPx,y	7.6988
$(SP_{x,y})^2$	59.27152144
SSy	0.332736
SS _x	212.36
n	25
Σx	832.0
mean x	33.28
Σy	90.54
Mean y	3.6216
Σxy	3020.87
ΣxΣy	75329.28
Σy^2	328.2324
$(\Sigma y)^2$	8197.4916
Σx^2	27901.32
$(\Sigma x)^2$	692224

x-valu	ie					
	25		t(n-2)	2.069		
Х	SE		Pred Y		Min	Max
	25	0.029	3.315	0.060001	3.254999	3.375001
	30	0.015	3.495	0.031035	3.463965	3.526035
	35	0.011	3.675	0.022759	3.652241	3.697759
	40	0.024	3.855	0.049656	3.805344	3.904656
	45	0.04	4.035	0.08276	3.95224	4.11776
	50	0.056	4.215	0.115864	4.099136	4.330864
	55	0.073	4.395	0.151037	4.243963	4.546037
	60	0.089	4.575	0.184141	4.390859	4.759141

- 1) Input data into B & C
- 2) Work out pred Y
- 3) Work out SE by putting x-value in L2
- 4) Input SE value into appropriate row from I1

CBPS-2010-198 Edited Lewis September 2010 Edited Hocking 2 Nov 2010

1 2		Edited Hocking 2 Nov
3 4	1	Double-yolked pheasant eggs provide an insight into the control of albumen secretion in
5 6	2	bird eggs
7	3	
8 9	4	D.C. DEEMING
10 11	5	Department of Biological Sciences, University of Lincoln, Lincoln, UK.
12 13	6	
14	7	Correspondence to: Dr. D.C. Deeming, Department of Biological Sciences, University of
15 16	8	Lincoln, Riseholme Park, Lincoln, LN2 2LG, UK.
17 18	9	E-mail: cdeeming@lincoln.ac.uk
19 20	10	
$\begin{array}{c} 23\\ 24\\ 25\\ 27\\ 29\\ 30\\ 33\\ 33\\ 33\\ 35\\ 33\\ 30\\ 41\\ 42\\ 34\\ 45\\ 46\\ 78\\ 90\\ 12\\ 33\\ 45\\ 55\\ 55\\ 55\\ 56\end{array}$		Barry: I have failed to insert the Figures for this MS from Excel after they were edited by the author post PDL correction. I have uploaded the Excel file with the 5 figures in the first 5 worksheets. I hope you are able to insert then correctly – my computer simply screws them up (I hate Excel graphs and cannot use them) Note that the legend on Figure one has capital letters for the measurements but again I cannot change this.
57 58 59		Accepted for publication: 3rd Aug 2010
60		

Abstract 1. The possible role of the presence of the yolk in stimulating secretion of albumen
was investigated.

2. Double-yolked and single-yolked pheasant (*Phasianus colchinus*) eggs were opened to
determine the masses of the shell, albumen and yolk(s).

15 3. In double-yolked eggs, the two yolk masses were not significantly different. Albumen 16 mass was increased above that expected from an egg with a single-yolk of comparable size 17 but below that expected from an egg having a mass of the combined yolks. The mass of shell 18 per unit area reflected the mass of the initial mass of the egg irrespective of the number of 19 yolks.

4. The additional mass of albumen is unrelated to yolk or initial egg mass. It is postulated that
in double-yolked eggs the oviduct is mechanically stimulated by the presence of both yolks,
which empties the stores of water-soluble albumen proteins in the magnum wall. Such stores
are insufficient to provide the same amount of protein for the two yolks.

INTRODUCTION

Absolute and relative masses of the shell, albumen and yolk vary between bird species and are associated with the degree of hatchling maturity (Carey et al., 1980; Sotherland and Rahn, 1987; Deeming, 2007). There is also allometric scaling of these components with initial egg mass between species (Deeming, 2007) and within species (e.g., Anderson and Deeming, 2002; Fernández and Reboreda, 2008). In general, as egg mass increases it is associated with a bigger increase in albumen mass rather than the yolk or shell (Hill, 1995; Deeming 2007). Intra-clutch variation in egg composition appears to be small although within a clutch the first egg laid tends to have a higher proportion of albumen (Romanoff and Romanoff, 1949). For many bird species between-clutch variation in egg composition is the greatest between individuals. For example, 50-80% of the variation in the composition of duck eggs is related to the female that laid them (Rohwer, 1986; Hepp et al., 1987; Flint and Grand, 1999). In addition, variation in albumen mass is also explained more by between-female differences than by differences among eggs in yolk mass (Rohwer, 1986; Hepp et al., 1987). How can all of this variation in egg composition be explained in terms of the mechanism of egg production?

The physiological and biochemical processes of ovulation, fertilisation and then deposition of the albumen proteins, shell membranes and the calcitic shell are well described, at least in poultry species (Gilbert, 1971; Palmer & Guilette, 1991), but there are still aspects of these processes that are unclear.

Whilst the process and timing of yolk production is relatively well understood (*e.g.*,
McIndoe, 1971; Grau, 1982; Astheimer and Grau, 1985; Astheimer, 1986; Warham, 1990)
the same is not true for the deposition of albumen. The synthesis and the process of secretion
of albumen proteins are well described (see Gilbert, 1971; Edwards *et al.*, 1976; Palmer and
Gillette, 1991) but the mechanisms that control the secretion, and in particular, the quantity of

albumen proteins to be secreted, are undefined. This is important because published data
imply that, for an individual female, the composition of the eggs she lays in a clutch will
exhibit relatively more variation in albumen mass than in yolk mass (Rohwer, 1986; Hepp *et al.*, 1987).

Double-yolked eggs are common in the commercial production of poultry, waterfowl and game birds, where they are considered as a loss to overall egg production during the laying season. Double-yolked eggs tend to be more common during the start of a laying period and decrease in incidence as birds mature (e.g., Lewis et al., 1997). The absolute quantities of the egg components are greater in the double-yolked eggs as they become larger but their relative proportions also differ from those in single-yolked eggs (Romanoff and Romanoff, 1949). The internal structure of double-yolked eggs varies according to where the yolks meet in the oviduct and the relative sizes of the two yolks (Romanoff and Romanoff, 1949).

Despite the fact that double-yolked eggs are common there has been little interest in considering how such an egg is formed and how this process would differ from that for a single-yolked egg. Differences in composition of double-yolked and single-yolked eggs of differing sizes may provide an insight into mechanisms underlying the formation of the egg and in particular, secretion of albumen. To date our understanding of albumen secretion suggest that mechanical stimulation by the yolk may be crucial for controlling the secretion of proteins, though there may be neuronal or endocrine contributions (Palmer and Guillette, 1991).

Within this context, double-yolked eggs present a means to elucidate the mechanism for control of albumen secretion. If, in single-yolked eggs the quantity of albumen is fixed, then it will vary very little between eggs in a clutch and a double-yolked egg should contain the same mass of albumen as that produced in a single-yolked egg. Alternatively, the quantity of albumen in a double-yolked egg may be equivalent to that produced for an egg with a single

yolk of the combined masses of the two yolks and will be much greater than in a singleyolked egg. However, in the fowl, production of a single-yolked egg uses approximately twothirds of the available proteins in the magnum wall (Edwards *et al.*, 1976) and it is predicted that double-yolked eggs can only obtain approximately 50% more albumen than in a singleyolked egg.

These hypotheses were tested in this study by comparison of the allometric relationships between the mass of the whole egg and the shell, yolk and albumen in single- and doubleyolked eggs of the pheasant (*Phasianus colchinus*).

MATERIALS AND METHODS

Eggs were collected from semi-domesticated pheasants reared on a commercial game farm during the spring of 2010. Half of the eggs were large and assumed to be double-yolked, which, on opening, proved to be the case. The other half were of a size range typical for pheasant eggs. In the laboratory, the maximum length (L) and breadth (B) of each egg was measured using electronic callipers to 0.01 cm prior to weighing to the nearest 0.1 g. As the eggs were not freshly laid, a small hole was made in the blunt of the egg and water was introduced into the air space using a pipette to fill the air space within. The egg was then re-weighed to determine the initial egg mass (IEM, g) as described by Rahn et al. (1976). The egg was opened around the blunt end using curved forceps to expose the contents. For single-yolked eggs, the yolk was separated from the albumen and weighed to the nearest 0.1 g. For double-yolked eggs the two yolks were abutted with no albumen between them (Type I described by Romanoff and Romanoff, 1949). They were first removed from the surrounding albumen before being manually separated prior to weighing to determine the mass of each yolk (to the nearest 0.1 g). If the yolk was broken during separation from the albumen or from each other the egg was discarded. For all eggs, the shell was dried with a tissue and

weighed to the nearest 0.1 g. Albumen mass (AM, g) was calculated by subtracting shell and yolk masses from the value for IEM. For analysis, the heavier yolk in the double-yolked eggs, the 'first yolk', was considered to be the yolk that would have formed the basis of a singleyolked egg and would have been next in the laying sequence. The other yolk is referred to as the 'second yolk'.

Data were analysed using PASW Statistics (SPSS Inc.). Given that an egg with no mass will also have components with no mass, linear regression analysis that forced the line through the origin was used to determine the relationships between egg mass and the components. Slopes of regression estimates were compared using the method of Bailey (1981). A 95% confidence interval (Fowler et al., 1995) was calculated for each of these regression estimates to ease comparison between the two types of egg when the lines were extrapolated to accommodate the range of egg sizes for double-yolked eggs. Pearson correlation analysis was used to compare the relationships between yolk mass (YM) and albumen mass (AM) because it was unclear which component should be considered as independent. Analysis of covariance (ANCOVA) was used to determine the effect of the number of yolks on the mass of the albumen and shell in an egg, with total yolk mass as a covariate.

RESULTS

Double-yolked eggs were approximately 1.5 times heavier than single-yolked eggs (n = 25) for each group; Table 1). In all measurements, the double-yolked eggs were significantly different from the single-yolked eggs. The only exception was for the mass of the larger yolk in each of the double-yolked eggs, which was not significantly different from the single yolk in more typical eggs (Table 1). On average, weights of the two yolks in the double-yolked

eggs differed by 0.7 g (Table 1).

Insert Table 1 here

Page 29 of 40

British Poultry Science

Double-yolked eggs were longer and broader than single-yolked eggs, although the proportional increase in mean length over that of single-yolked eggs was greater than the increase in mean breadth (1.21 times versus 1.11 times, respectively). This meant that the ratio of length to breadth (L/B) was significantly greater in double-yolked eggs (Table 1). Extrapolation of regression analyses for the relationships between the maximum linear dimensions and mass showed that double-yolked eggs were longer than predicted, but two-thirds of the values were within the 95% confidence interval. By contrast, double-yolked eggs were narrower than predicted on the basis of a single-yolked egg of the same mass, with most values lying outside of the 95% confidence interval (Figure 1). The shell formed 0.122 of the initial mass of the single-yolked egg which was significantly greater than the 0.107 proportion of the IEM formed by the shell of double-yolked eggs (Table 1). For a given IEM, double-yolked eggs had lighter eggshells than would be predicted from a single-yolked egg of an equivalent mass (Figure 2; Table 2). Although there was some overlap with the lower part of the 95% confidence interval, the slopes of the regression lines shown in Figure 2 were significantly different from each other (Table 2). However, when the surface area of the eggs was calculated (SA = 4.835IEM⁰⁶⁶²; Paganelli *et* al., 1974) the masses of shell per cm² were not significantly different (0.083 \pm 0.007 g/cm² versus 0.083 ± 0.007 g/cm² for single- and double-yolked eggs respectively). Moreover, ANCOVA for shell mass showed no significant effect of either the number of yolks as a fixed factor, the yolk mass as a covariate or the interaction. Therefore, when the analysis was

144 controlled for yolk size, shell mass was unaffected by the number of yolks.

Not unsurprisingly the combined mass of two yolks was significantly greater than a single yolk (Table 1). For any given IEM for double-yolked eggs, the larger yolk was smaller than would be predicted on the basis of a single-yolked egg of an equivalent IEM (Table 2) whereas the combined yolk mass was far higher than expected from extrapolation of

regression estimates with both sets of values falling well outside of the 95% confidenceinterval (Figure 4). All the slopes of the lines shown in Figure 4 are significantly different

Insert Table 2 here

from each other (Table 2).

Double-yolked eggs had significantly more albumen mass than single-yolked eggs but this formed a significantly smaller proportion of their IEM (Table 1). Regression analysis showed that, for a given IEM, albumen mass in double-yolked eggs was less than predicted on the basis of the regression relationship for single-yolked eggs with almost all values falling well below the 95% confidence interval around the extrapolated regression (Figure 3; Table 2). The slope for the relationship between IEM and AM was significantly smaller for double-yolked eggs than for single-yolked eggs (Table 2). ANCOVA for AM showed significant effects of the number of yolks as a fixed factor, the yolk mass as a covariate and the interaction of these factors. Therefore, when analysis was controlled for yolk mass there were significant effects of number and mass of yolks on albumen mass.

There was a significant positive correlation between yolk mass and albumen for the single-yolked eggs but no correlation for double-yolked eggs (Figure 5; $r_{25} = 0.668$, $P < 10^{-10}$ 0.001 and $r_{25} = 0.015$, P > 0.05 respectively). In double-yolked eggs, the mass of albumen did not exhibit any significant relationship with the mass of either of the individual yolks (Figure 5). For double-yolked eggs, predicted albumen mass was calculated on the basis of yolk mass of single-yolked eggs (AM = 1.751YM – 1.212; Figure 5), which was subtracted from the observed albumen mass. On average, this additional albumen in double-yolked eggs weighed 5.82 g (SE = 0.67) and was 33.7% (SE = 4.0) of the albumen mass predicted on the basis of yolk size).

56 171

DISCUSSION

173 The two yolks in the doubled-yolked eggs were abutted in a manner comparable to Type I

British Poultry Science

defined by Romanoff and Romanoff (1949), who suggested that such yolks come together prior to the magnum. This interpretation is supported by the fact that the two yolks had no albumen between them and were of comparable size with the smaller yolk being on average 93% of the largest yolk. This suggests that the second yolk was next in the ovulation sequence, was released from the ovary prematurely and entered the infundibulum closely behind the first yolk.

Composition of single-yolked eggs was comparable to published values (Kirikçi et al., 2005). However, contrary to prediction, double-yolked pheasant eggs did not have a composition that was simply associated with the greater amount of yolk present. Instead, albumen mass was increased together with an increase in shell mass, but both had reduced values compared with those predicted on the basis of the relationship for a single-yolked egg of the same IEM (Figures 2 and 3, respectively). The quantity of albumen in the doubled-yolked eggs showed no correlation with the mass of the larger yolk or the combined yolk masses (Figure 5). Moreover, the mass of additional albumen, compared with that expected from the largest yolk mass, was around one third of that in a single-yolked egg rather than the 50% predicted from data for fowl eggs (Edwards et al., 1976).

For double-yolked eggs, the mass of the two yolks can be explained by premature ovulation of the second yolk, which then travels down the oviduct with the first yolk to be ovulated. The calcitic shell is deposited on the external surface of the outer shell membrane deposited in the isthmus and its size is presumably a function of the combined quantities of yolk and albumen proteins deposited in the magnum (Sparks and Board, 1991). Therefore, the mass of the shell in double-yolked eggs is simply a reflection of the large structure that it encloses and shell deposition per unit area does not differ between eggs types. By contrast, the difference in the masses of albumen between the two types of eggs is harder to explain. These results for double-yolked eggs firstly indicate that the avian oviduct is capable of

199 secreting considerably more albumen that would be normally expected during typical egg 200 formation, the quantity of albumen in any egg laid by the same bird is not fixed, and 201 secondly, there seems to be an upper limit to the amount of additional albumen mass that can 202 be incorporated into the egg.

Albumen is secreted in two discrete processes: the first involves secretion of watersoluble proteins from the magnum and the second involves the absorption of water by these proteins during 'plumping' (Gilbert, 1971; Palmer and Guillette, 1991). The final mass of albumen at oviposition is a function of the amount of water-soluble proteins secreted around the yolk. In the domestic fowl, the yolk spends around 3 h in the magnum (Melek *et al.*, 1973), during which period water-soluble proteins are secreted by the wall of the magnum and accumulate as albumen proteins around the yolk.

This process of secretion does not, however, lead to the depletion of the albumen proteins in the magnum wall (Edwards *et al.*, 1976). The process of accumulation of water-soluble proteins in readiness for the next yolk in the laying cycle starts from a level that is around a third of the maximum reached prior to secretion (Edwards *et al.*, 1976). It would seem that the production of double-yolked eggs is possible because the oviduct releases an additional, albeit limited, amount of albumen proteins. The mechanism behind this process may either be dependent on the time spent in the magnum or be the effect of a mechanical stimulus.

The time spent in the magnum is important because increasing the length of the effective daylength for domestic fowl to 27 h leads to significant increases in albumen mass (by 1.5 g in fowl eggs) and shell mass but with no significant effect on yolk mass (Morris, 1973). The explanation for this lies in the prolonged period of egg formation and, in particular, the time the yolk spends in the magnum and isthmus, which increases by 30 min (Melek *et al.*, 1973). In general, however, longer formation times for whole eggs are associated with increases in the three different components (reviews by Shanawany, 1982, 1990; see also Siopes and

British Poultry Science

Neely, 1997). In double-yolked eggs, the two yolks are abutted against each other when they enter the magnum and, as a consequence, are longer than a single yolk. This means that the yolks will spend more time in the magnum because as the leading yolk enters the isthmus the second yolk is still present. This may lead to a longer period of protein secretion. However, this cannot be sole explanation for the additional secretion of albumen proteins because long daylengths extend the period spent in the magnum by 16%, but only increase the mass of albumen by 4% (Morris, 1973; Melek *et al.*, 1973).

Introduction of foreign bodies into the magnum will stimulate secretion (Palmer and Guillette, 1991), supporting the hypothesis that mechanical stimulation by the yolk in the lumen stretching the wall of the magnum plays a key role in the process of albumen secretion, although the process may be under neuronal control. If, under normal circumstances, secretion is uniformly spread along the length of the magnum then as the yolk leaves any particular section of magnum there should remain in the walls approximately a third of the initial reserves of water-soluble proteins (Edwards *et al.*, 1976).

In double-yolked eggs this process is supplemented by the second yolk that is following close behind the first yolk. In the eggs studied here, because it is of comparable size, the second yolk may present a comparable mechanical stimulus to that presented by the first yolk. As the second yolk moves through the magnum it could stimulate the wall to continue the process of protein secretion at a near normal rate. However, the reserves of protein are such that they are quickly depleted before the second yolk can accumulate a mass of protein equivalent to that secreted for the first yolk. Although it is possible that the second yolk does not provide a comparable mechanical stimulus as the first yolk, the similarity in yolk sizes in this instance makes this unlikely. Accumulation of protein in the magnum takes hours (Edwards et al., 1976) and so it is more likely that the yolks have moved on down the oviduct before more albumen proteins can be manufactured by the magnum wall.

Thus, when two yolks in close proximity enter the magnum, secretion of water-soluble proteins is stimulated but the second yolk leads to the depletion of reserves and limits the quantity of albumen that is deposited in the developing egg. Contrary to the suggestion by Solomon (1991), the magnum does not have sufficient reserves of albumen proteins for two eggs. Ahemeral lighting programmes may increase albumen content of single-yolked eggs because the yolk spends more time in the magnum (Morris, 1973). In the isthmus, deposition of the shell membranes around the albumen proteins presumably reflects the combined quantities of albumen protein and yolk and physically constrains the volume of the egg once plumping is complete. Such a restraint implies that it is secretion of albumen proteins rather than plumping that determines final IEM.

In conclusion, double-yolked eggs provide an insight into the control of albumen secretion in the avian oviduct. The presence of a second yolk stimulates additional secretion of water-soluble albumen proteins by the magnum wall. The short time delay between the first and second yolk means that the wall is unable to produce sufficient new proteins to match the ratio between yolk and albumen and the reserves in the magnum wall are depleted by the presence of the second yolk. This means that egg size is effectively limited by the amount of albumen proteins that the magnum wall can produce. Whether there is neuronal control of the rate of secretion following mechanical stimulation remains unclear.

ACKNOWLEDGEMENTS

Many thanks to Bernard Voce of Shelford Pheasantries, Norwell Woodhouse, Nottinghamshire for generously supplying the eggs used in this study. Many thanks to Glenn Baggott, Stephen Hall and Paul Eady for constructive comments on a previous version of this manuscript.

-1	2
1	2

1		
2 3 4	274	REFERENCES
5 6 7	275	ANDERSON, S.J. & DEEMING, D.C. (2002) Dimensions and composition of eggs from
7 8 9	276	captive-bred bustards (Gruiformes: Otididae): Houbara (Chlamydotis undulata),
10 11	277	Rufous-crested (Eupodotis ruficrista), and Kori (Ardeotis kori). Zoo Biology, 21: 337-
12 13 14	278	346.
15 16	279	ASTHEIMER, L.B. (1986) Egg formation in Cassin's Auklet. Auk, 103: 682-693.
17 18 19	280	ASTHEIMER, L.B. & GRAU, C.R. (1985) The timing and energetic consequences of egg
20 21	281	formation in the Adelie penguin. Condor, 87: 256-268.
22 23	282	BAILEY, N.T.J. (1981) Statistical Methods in Biology, 2nd ed. (London, Hodder &
24 25 26	283	Stoughton).
27 28	284	CAREY, C., RAHN, H. AND PARISI, P. (1980) Calories, water, lipid and yolk in avian
29 30 31	285	eggs. Condor, 82: 335-343.
32 33	286	DEEMING, D.C. (2007) Allometry of mass and composition in bird eggs: Effects of
34 35	287	phylogeny and hatchling maturity. Avian & Poultry Biology Reviews, 18: 71-86.
36 37 38	288	EDWARDS, N.A., LUTTRELL, V. & NIR, I. (1976) The secretion and synthesis of albumen
39 40	289	by the magnum of the domestic fowl (Gallus domesticus). Comparative Biochemistry &
41 42	290	<i>Physiology</i> , 53B: 183-186.
43 44 45	291	FERNÁNDEZ, G.J. & REBOREDA, J.C. (2008) Between and within clutch variation of egg
46 47	292	size in greater rheas. Wilson Journal of Ornithology, 120: 674-682.
48 49 50	293	FLINT, P.L. & GRAND, J.B. (1999) Patterns of variation in size and composition of Greater
50 51 52	294	Scaup eggs: are they related? Wilson Bulletin, 111: 465–471.
53 54	295	FOWLER, J., COHEN. L. & JARVIS, P. (1995). Practical Staistics for Field Biologists, pp.
55 56 57	296	150-152 (Chichester, Wiley).
58 59	297	GILBERT, A.B. (1971) Egg albumen and its formation, in: BELL, D.J. & FREEMAN, B.M.
60	298	(Eds.) Physiology and Biochemistry of the Domestic Fowl, Vol. 3, pp. 1291-1329 (New

- - 299 York, Academic Press).
 - 300 GRAU, C.R. (1982) Egg formation in Fiordland crested penguins (*Eudyptes pachyrhynchus*).
 301 *Condor*, 84: 172-177.
 - HEPP, G.R., STANGOHR, D.J., BAKER, L.A. AND KENNAMER, R.A. (1987) Factors
 affecting variation in the egg and duckling components of wood ducks. *Auk*, 104: 435 –
 443.
 - HILL, W.L. (1995) Intraspecific variation in egg composition. *Wilson Bulletin*, 107: 382-387.
 KIRIKÇI, K., GÜNLÜ, A & GARÜP, M. (2005) Some quality characteristics of pheasant
 (*Phasianus colchicus*) eggs with different shell colors. *Turkish Journal of Veterinary and Animal Science*, 29:315-318.
 - 309 LEWIS, P.D., PERRY, G.C. & MORRIS, T.R. (1997) Effect of size and timing of
 310 photoperiod increase on age at first egg and subsequent performance of two breeds of
 311 laying hen. *British Poultry Science*, 38: 142-150.
 - McINDOE, W.M. (1971) Yolk synthesis, in: BELL, D.J. & FREEMAN, B.M. (Eds.)
 Physiology and Biochemistry of the Domestic Fowl, Vol. 3, pp. 1209-1224 (New York, Academic Press).
 - MELEK, O., MORRIS, T.R. & JENNINGS, R.C. (1973) The time factor in egg formation for
 hens exposed to ahemeral light-dark cycles. *British Poultry Science*, 14: 493-498.
 - MORRIS, T.R. (1973) The effects of ahemeral light and dark cycles on egg production in the fowl. *Poultry Science*, **52:** 423-445.
 - 319 PAGANELLI, C.V., OLSZOWKA, A. & AR, A. (1974) The avian egg: surface area and
 density. *Condor*, **76**: 319-325.
- PALMER, B.D. & GUILLETTE, L.J. (1991) Oviductal proteins and their influence on
 embryonic development in birds and reptiles, in: DEEMING D.C. & FERGUSON,
 M.W.J. (Eds.) Egg Incubation: Its Effects on Embryonic Development in Birds and

1		
2		
3 4	324	Reptiles, pp. 29-46 (Cambridge, Cambridge University Press).
5 6 7	325	RAHN, H., PAGANELLI, C.V., NISBET, I.C.T. & WHITTOW, G.C. (1976) Regulation of
8 9	326	incubation water loss in eggs of seven species of terns. Physiological Zoology, 49: 245-
10 11	327	259.
12 13 14	328	ROHWER, F.C. (1986) Composition of Blue-winged Teal eggs in relation to egg size, clutch
15 16	329	size and the timing of laying. Condor, 88: 513-519.
17 18	330	ROMANOFF, A.L. & ROMANOFF, A.J. (1949) The Avian Egg. (New York, John Wiley &
19 20 21	331	Sons).
22 23	332	SHANAWANY, M.M. (1982) The effect of ahemeral light and dark cycles on the
24 25	333	performance of laying hens – a review. World's Poultry Science Journal, 38: 120-126.
26 27 28	334	SHANAWANY, M.M. (1990) Ahemeral light cycles and egg quality. World's Poultry
29 30	335	Science Journal, 46: 101-108.
31 32 33	336	SIOPES. T.D. & NEELY, E.R. (1997) Ahemeral lighting of turkey breeder hens. I. Cycle
34 35	337	length effects on egg production and egg characteristics. <i>Poultry Science</i> , 76: 761-766.
36 37	338	SOLOMON, S.E. (1991) The ovary and oviduct, in: Egg and Eggshell Quality, pp. 11-32
38 39 40	339	(Aylesbury, Wolfe Publishing Ltd.)
40 41 42	340	SOTHERLAND, P.R. AND RAHN, H. (1987) On the composition of bird eggs. Condor, 89:
43 44	341	48-65.
45 46 47	342	SPARKS, N.H.C. & BOARD, R.G. (1991) Shell structure and formation in avian eggs, in:
48 49	343	DEEMING D.C. & FERGUSON, M.W.J. (Eds.) Egg Incubation: Its Effects on
50 51 52	344	Embryonic Development in Birds and Reptiles, pp. 71-86 (Cambridge, Cambridge
52 53 54	345	University Press).
55 56	346	WARHAM, J. (1990) The petrel egg in The Petrels: Their Ecology and Breeding Systems,
57 58 50	347	pp. 271-302 (London, Academic Press).
59 60	348	

349 Legends for Figures

Figure 1. Maximum linear dimension (cm) as a function of initial egg mass (g) for singleand double-yolked pheasant eggs (n = 25 for both cases). Solid lines illustrate regression equations (see Table 2). The dashed lines indicate relationships extrapolated from the linear regressions for single-yolked eggs and the dotted lines the upper and lower limits of the 95% confidence interval around these lines.

Figure 2. Shell mass (g) as a function of initial egg mass (g) for single- and double-yolked pheasant eggs (n = 25 for both cases). Solid lines illustrate regression equations (see Table 2). The dashed line indicates the relationship extrapolated from the linear regression for single-yolked eggs and the dotted lines the upper and lower limits of the 95% confidence interval around this line.

Figure 3. Albumen mass (g) as a function of initial egg mass (g) for single- and doubleyolked pheasant eggs (n = 25 for both cases). Solid lines illustrate regression equations (Table 2). The dashed line indicates the relationship extrapolated from the linear regression for single-yolked eggs and the dotted lines the upper and lower limits of the 95% confidence interval around this line.

Figure 4. Yolk mass (g) as a function of initial egg mass (g) for single- and double-yolked pheasant eggs (n = 25 for both cases). For double-yolked eggs data for the 1st yolk (heavier) and the mass of the two yolks combined are shown. Solid lines illustrate regression equations (Table 2). The dashed line indicates the relationship extrapolated from the linear regression for single-yolked eggs and the dotted lines the upper and lower limits of the 95% confidence interval around this line.

Figure 5. Albumen mass (g) as a function of yolk mass (g) for single- and double-yolked pheasant eggs (n = 25 for both cases). See text for regression estimates.

- 55 378
- 57 379

7	nt eggs. Compariso	·			upie i-iesis	
3 383 9 10 14 384	unless	indicated. Sample	e size is 25 in both	groups		
11 12 13 14 Trait 15	Single-	yolked	Double-yolked		Comparison between single- and double- yolked eggs	
16 17	Mean (± SD)	Range	Mean (± SD)	Range	t ₄₈	Р
¹⁸ ength (cm)	4.65 ± 0.18	4.34–5.17	5.61 ± 0.27	5.21-6.36	-14.799	< 0.001
Pereadth (cm)	3.63 ± 0.12	3.35-3.82	4.03 ± 0.12	3.81-4.30	-12.074	< 0.001
22 Length / Breadth 23	1.284 ± 0.050	1.180–1.420	1.390 ± 0.083	1.246-1.590	-5.666	< 0.001
24 Anitial egg mass 26IEM, g)	33.4 ± 3.0	26.9–39.0	50.2 ± 3.7	45.3–57.7	-17.887	< 0.001
27 Shell mass (g)	4.1 ± 0.4	3.2–4.9	5.4 ± 0.5	4.4–6.6	-9.490	< 0.001
29 Sohell mass as Boroportion of IEM 32	0.122 ± 0.010	0.106–0.154	0.107 ± 0.009	0.090-0.117	5.804	< 0.001
Albumen mass	18.2 ± 2.1	13.7–22.2	23.7 ± 2.8	20.6–31.2	-7.900	< 0.001
Albumen mass as proportion of IEM	0.544 ± 0.018	0.510-0.569	0.472 ± 0.033	0.429–0.541	9.699	< 0.001
38 39st yolk mass (g) 40	11.1 ± 0.8	10.0–12.3	10.9 ± 1.0	9.4–12.9	0.563	> 0.05
and yolk mass	-	-	10.2 ± 0.9	8.7–11.6	-	-
13 14 Total yolk mass	-	-	21.1 ± 1.8	17.8–24.2	-25.377^{1}	< 0.001
5 Gotal yolk mass as Groportion of IEM	0.333 ± 0.020	0.286-0.372	0.421 ± 0.031	0.359–0.476	-11.942	< 0.001
9 385	nple <i>t</i> -test indicated ggs.	here compared th	ne total yolk masse	s in the single- a	nd double-	

- 58
- 59
- 60

389	and co	omponent	mass (g) as shown i	in Figures	1-4	
Component	Single-yolked		Double-yolked		Comparison of slopes	
_	Slope (SE)	R²	Slope (SE)	R²	t ₄₈	P valu
Shell mass	0.122 (0.002)	0.994	0.107 (0.002)	0.993	-5.303	< 0.00
Albumen mass	0.546 (0.003)	0.999	0.474 (0.007)	0.995	9.454	< 0.00
1st yolk mass	0.331 (0.004)	0.997	0.217 (0.004)	0.993	20.153	< 0.00
Total yolk mass		-	0.419 (0.006)	0.994	-12.203	< 0.00