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Lamb shift of interactive electron-hole pairs in spherical semiconductor
quantum dots
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Abstract

The ground state Lamb shift of a semiconductor spherical Quantum Dot is computed in the effective mass
approximation. It appears to be significant enough to be detectable for a wide range of small quantum dots
synthesized in semiconductors. A possible way to observe it, via the Casimir effect, is suggested.
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1. Introduction

The investigation of atomic physics properties in semiconducting Quantum Dots (QDs) is a popular
topic for fundamental as well as applied physics. Such nanostructures restrict the motion of charge carriers
to a confined region of space. Two QDs are never identical, because of the crucial role of phonons, surface
effects or bulk disorder on their electronic structure, but they may be advantageously considered as artificial
giant atoms. Thanks to their adjustable quantized energy spectrum, controlled only by their size, they
may be used, for example, as semiconductor lasers [1], single-photon sources [2], qubits [3], single-electron
transistors [4], artificial fluorophores [5]. In the early 1980s, the so-called Quantum Size Effects (QSE),
characterized by a blue-shift of their optical spectra, has been observed in a large range of strongly confined
systems [6–10]. It comes from a widening of the semiconductor optical band gap, due to the increase of the
charge carriers confinement energy [11]. Modern methods as well as empirical pseudo-potential methods or
ab initio approaches, such as the Density Functional Theory (DFT), which are appropriate for numerical
determination of semiconductor bulk band structures or confinement energies, are discussed in [12, 13].
However, to the best of our knowledge, no comprehensive approach, which offers a significant analytic
treatment, seems to exist at present.

In this work, to explore their analogy with real atoms, we look at the interaction of a spherical semi-
conductor QD with a quantized electromagnetic field and investigate the Lamb shift of its energy levels.
Discovered and actively studied in the late 1940s [14–16], the Lamb shift still remains nowadays an area of
intense research, for example within dielectric materials [18], on the excitation modes of an electromagnetic
cavity [19], or on the coupling of electromagnetic modes to the semiconductor QD surface [20]. Recent
works also present experimental protocols, in which Lamb shifts enhanced by an electromagnetic cavity are
measured in nanostructures like transmon [21] or studied in semiconducting QDs coupled to a planar slab
of negative-index material [22]. However, the Lamb shift, well understood for real atoms, seems not to be
approached neither theoretically nor experimentally in semiconductor QDs.

The object of this paper is to fill this gap by offering a consistent theoretical treatment leading to the
evaluation of the shifts for a wide range of realistic spherical semiconductor QDs. To describe a confined
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electron-hole pair, it seems appropriate to use the popular effective mass approximation (EMA) model [23–
26]. The electron-hole Coulomb interaction is to be taken into account subsequently by the Ritz variational
principle. We first review the tools needed to work out the Lamb shift in section 2, and the basic properties
of a spherical semiconductor QD in section 3. From there on, we deduce, in sections 4 and 5, the Lamb
shift for a massive charged particle confined by an infinite potential well. In section 6, we finally treat the
case of a spherical semiconductor QD, and show that there exists a possibility to experimentally detect the
Lamb shift, at least in a so-called strong confinement regime and for an judiciously chosen semiconductor.
We also suggest a protocol, built on the Casimir effect, which might allow to observe of this predicted Lamb
shift, despite the non-degeneracy of semiconducting QD levels. A concluding section summarizes our main
results and indicates possible future research perspectives.

2. Considerations on Lamb shift

In 1947, investigations on Zeeman effect in hydrogen atom showed that its fine structure does not agree
with the predictions of Dirac theory [14]. The 2s-level, which should be degenerated with 2p-levels, is
actually shifted by an energy ≈1057MHz, the so-called Lamb shift. Theoretical work demonstrated that
it arises from the coupling of the electron motion with the surrounding quantized electromagnetic field
[15, 16]. Consider a non-relativistic spinless massive particle of mass m∗ and of charge qe in interaction with
a quantized electromagnetic field1. It is represented by the Pauli-Fierz Hamiltonian in the Coulomb gauge
[29], here written in units where ~ = c = 1,

HPF = H0 + eHint + e2H ′
int + Hem.

The particle Hamiltonian in absence of electromagnetic field H0 = p2

2m∗+V (r) is supposed to be diagonal in an
orthonormal basis of its eigenvectors {|n〉}n with energy eigenvalues {En}n. Hint = −qA·p

m∗ and H ′
int = q2 A2

2m∗

are interaction Hamiltonians, and Hem =
∫

d3r E2+B2

2 is the free electromagnetic field Hamiltonian, A being
the vector potential, E and B the electric and magnetic fields. The electromagnetic field is second quantized
in the Coulomb gauge [30], neglecting the interaction Hamiltonian H ′

int on the basis of weak intensities of
light sources involved2. We now review the results of the two main approaches to the Lamb shift.

The Bethe approach to the Lamb effect is purely pertubative. The quantum second order time indepen-
dent degenerate perturbation theory is applied to the Pauli-Fierz Hamiltonian HPF, where Hamiltonians
Hint and H ′

int are treated as perturbations in the weak field limit [15]. Using renormalization arguments,
the Lamb shift for an energy eigenstate |n〉 is found to be given by

∆En =
2α

3π

q2

m∗2 log
(

m∗

〈|Em − En|〉
) ∑

m

|〈m|p|n〉|2{Em −En}

=
α

3π

q2

m∗2 log
(

m∗

〈|Em − En|〉
)
〈n|∇2V (r)|n〉, (1)

where 〈|Em − En|〉 is the mean value of energy level difference absolute values. Historically, this predicts a
Lamb shift for the hydrogen atom 2s-level in excellent agreement with experimental values [15, 17].

In the Welton approach, the Lamb shift is interpreted as a fluctuation effect on the particle position due
to its interaction with the surrounding electromagnetic field. These fluctuations ∆r can be described as a
continuous random variable, whose probability density is a three-dimensional centered isotropic Gaussian
distribution of variance

〈(∆r)2〉 =
2α

π

q2

m∗2 log
(

m∗

κ

)
, (2)

1Relativistic corrections can generally be calculated [27, 28], but they are not relevant in the comprehension of Lamb effect,
particularly in spherical semiconductor QDs, where confined charged carriers are considered as non-relativistic particles.

2For more details, one can refer to complement AXIII of chapter XIII [31].
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where κ is a IR cut-off, and m∗ is used as a natural UV cut-off consistent with non-relativistic assumption,
discarding fluctuations modes of order of the particle Compton wavelength [16]. The particle then evolves
in a new effective potential 〈V (r + ∆r)〉, avegered on the fluctuation distribution, which can be written as3

〈V (r + ∆r)〉 =
{

1 +
〈(∆r)2〉

6
∇2 + . . .

}
V (r) = V (r) + ∆V (r).

where ellipsis dots “. . . ” denote terms of order higher than first order in α. The corrective term ∆V (r) of
the first order in α is precisely the term giving rise to the Lamb shift

∆En =
∫

d3r |〈r|n〉|2 ∆V (r) =
α

3π

q2

m∗2 log
(

m∗

κ

)
〈n|∇2V (r)|n〉.

Comparison of this result with Eq. (1) shows that the IR cut-off κ can be identified to 〈|Em − En|〉 = κ in
the Bethe result. This also means that κ should not depend on the quantum numbers n.

3. Physics of a spherical semiconductor QD

It is admitted that, under some physical assumptions, semiconductor QDs may be described by EMA
models as a first approximation. We use the standard EMA model presented in [26], as a first attempt to
apprehend the Lamb effect in semiconductor QDs. Electrons and holes are assumed to be non-relativistic
spinless particles of effective masses m∗

e,h, confined in an infinite spherical potential well

V∞(r) =
{

0 if 0 ≤ r ≤ R, region I ;
∞ if r > R, region II.

They are consequently isolated from the insulating surrounding of the QD. The electromagnetic field am-
plitude should not then exceed some threshold, so that charge carriers would not leak out by tunnel effect.
This working assumption is known as the weak field limit. Such model leads to an overestimation of the
electron-hole pair ground state energy for small QDs, which can be corrected by restoring a confining fi-
nite potential step of experimentally acceptable height [32]. Other QD models with parabolic confinement
[33, 34] or parabolic potential superimposed to an infinite potential well [35] exist. But, the concept of QD
size is no longer well-defined since their eigenfunctions are delocalized.

3.1. Interactive electron-hole pair EMA model
The electron-hole Coulomb interaction VC(reh) is taken into account in the total Hamiltonian

H0 = He + Hh + VC(reh),

where κ = 4πε, ε denotes the semiconductor dielectric constant, reh the electron-hole relative distance, and

He,h = − ∇2
e,h

2m∗
e,h

+ V∞(re,) the electron and hole confinement Hamiltonians. Without loss of generality, the
semiconductor energy band gap Eg may be set equal to be zero for convenience. Electron and hole, as
decoupled particles, have wave functions of the form

ψ∞lnm(re,h) = RI∞
ln (re,h)Y m

l (θe,h, ϕe,h)

=

√
2

R3

χ[0,R](re,h)
jl+1(k∞ln )

jl

(
k∞ln
R

re,h

)
Ym

l (θe,h, ϕe,h).

3Even if this Taylor expansion seems to converge only for sufficiently smooth potential V (r), it is summable in general.
However, a fully quantum treatment, i.e. both particle and electromagnetic field dynamics are quantized, is needed. It has
been then shown that the averaged effective potential 〈V (r + ∆r)〉 can be obtained from the bare potential V (r) by applying
the well-defined differential operator [16]

〈V (r + ∆r)〉 = e
〈(∆r)2〉

6 ∇2
V (r).
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where l ∈ N, n ∈ N r {0} and m ∈ [[−l, l]], Ym
l (θ, ϕ) are spherical harmonics and jl(x) spherical Bessel

functions of the first kind, χA(r) =
{

1 if r ∈ A
0 otherwise the radial characteristic function of the set A. Finally,

{kln}ln is the wave numbers set, defined as the nth non-zero root of jl(x), from the continuity conditions at
r = R [23]. The respective energy eigenvalues for electron and hole is expressed in terms of {kln}ln as

Ee,h∞
ln =

(k∞ln )2

2m∗
e,hR2

.

The interplay between quantum confinement energy, scaling as ∝ R−2, and Coulomb interaction, scaling
as ∝ R−1, can be described by the ratio R

a∗ of the QD radius R over the Bohr radius of the bulk Mott-
Wannier exciton a∗ = κ

e2µ , µ being the reduced mass of the exciton. As an exact analytic solution is beyond
reach, two regimes are discussed in [25].

3.2. Strong confinement regime
In this regime, valid for R . 2a∗, the electron-hole relative motion is so affected by the infinite potential

well, that exciton states should be considered as uncorrelated electronic and hole states. The Coulomb
potential is considered as a perturbation with respect to the infinite confining potential well. A variational
approach is used to obtain the electron-hole pair ground state, with the following trial function

φ∞(re, rh) = ψ∞010(re)ψ∞010(rh)φrel(reh), (3)

which is a product of non-interacting charge carriers ground state wave functions with an interaction wave
function of the form φrel(reh) = e−

σ
2 reh , σ being a variational parameter. The electron-hole pair energy

minimization selects the value σ0 = 4B′
a∗ , and yields the ground state energy4

Estrong
eh = E∞

eh −A
e2

κR
− 4B′2E∗,

where E∞
eh = Ee∞

01 + Eh∞
01 is the electron-hole pair ground state confinement energy, and E∗ = 1

2µa∗2 the
binding exciton Rydberg energy [25].

3.3. Weak confinement regime
In this regime, valid for R & 4a∗, the exciton retains its character of a quasi-particle of total mass

M = m∗
e + m∗

h. Its center-of-mass motion is confined, and should be quantized. The Coulomb interaction
remains a perturbation to the infinite confining potential well, and the variational function φ∞(re, rh)
should be kept. However, the QD size allows for a partial restoration of the long range Coulomb potential
between the charged carriers, such that the Coulomb energy and the kinetic energy in electron-hole relative
coordinates are of the same order of magnitude. Then, the leading contribution to the ground state energy
of the exciton should be −E∗, which may be viewed as the ground state energy of a hydrogen-like atom
of mass µ. The total translational motion of the exciton, should be restored and contribute to the exciton
total energy by a term π2

2MR2 , i.e. the ground state energy of a free particle trapped in a region of size R.
The exciton is treated as a rigid sphere of radius η(λ)a∗, where η(λ) is a phenomenologically determined

function of λ = m∗
h

m∗
e

[25]. The exciton center-of-mass cannot reach the infinite potential well surface unless
the electron-hole relative motion undergoes a strong deformation. On this basis, to improve the description
of the excitonic ground state, we let the center of mass motion in the variational procedure be represented
by a plane wave φG(rG) = ei π

R σG·rG , where rG is the center-of-mass coordinates and σG is vector quantum
number of unit norm |σG|2 = 1. The trial function φ∞(re, rh) takes now the form

ψ∞(re, rh) = φ∞(re, rh)φG(rG). (4)

4All constants appearing in the text and formulas are listed in appendix A.
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This leaves the exciton probability density unchanged as well as the Coulomb potential matrix element,
whereas the confinement Hamiltonian He + Hh mean value gets an appropriate further contribution π2

2MR2 .
The variational calculation yields σ0 ≈ 2a∗−1, and a ground state variational energy of

Eweak
eh = −E∗ +

π2

6µR2
+

π2

2M(R− η(λ)a∗)2
, (5)

where terms of second and third order terms in a∗
R . 1 are neglected. An analytical expression for η(λ) can

now be extracted from Eq. (5), as shown in [26].

3.4. Pseudo-potential-like method

The exciton ground state energy Eweak
eh of [25], differs from Eq. (5) by the term π2

6µR2 , interpreted as a
kinetic energy term in the relative coordinates. As the virial theorem in this set of coordinates should be
satisfied, this energy should be already contained in the Rydberg energy term −E∗, and therefore should
be removed. An elegant way to do this consists in introducing a pseudo-potential W (reh)

W (reh) = W
r2
eh

R2
e−2

reh
a∗ = −32π2

9
E∗ r2

eh

R2
e−2

reh
a∗ .

Inspection shows that it makes contributions to the second order of the exciton total energy but not to the
third one, while leaving the zeroth and first order terms. Higher order contributions are interpreted as higher
order corrections to the kinetic energy of the exciton π2

2MR2 . While the amplitude W is to be fixed to get the

correct kinetic energy 〈ψ|W (reh)|ψ〉
〈ψ|ψ〉 = − π2

6µR2

{
1 + O

(
a∗2
R2

)}
, the pseudo-potential form is not arbitrary. It is

attractive at distances ≈ a∗ to promote excitonic state with typical size around its Bohr radius, repulsive
at short distances to penalize excitonic state with small size, and exponentially small for large distances in
order not to perturb the long range Coulomb potential [26].

Adding the pseudo-potential W (reh) to the Hamiltonian H0 implies a significant decrease of the expected
value of the exciton energy in the strong confinement regime 〈φ|W (reh)|φ〉

〈φ|φ〉 = − 64π2

9 CE∗{1 + O
(

R
a∗

)}
, which is

now only valid for 2R . a∗. The excitonic energy computed in presence of the pseudo-potential gets a better
fit to experimental results in this validity domain, than those calculated without this tool. Nevertheless, the
divergence for very small QD size still persists as a relic of the infinite potential well assumption.

4. Lamb shift of a particle confined in a spherical potential well

This section deals with calculational steps of the Lamb shift for a particle of mass m∗ and of charge ±e,
i.e. q = ±1, confined in a theoretical spherical QD with a spherical infinite potential well V∞(r)5. The
difficulty then resides in the determination of the Poisson equation satisfied by this singular potential. To
overcome this issue, we will replace it by a potential step of finite constant height V ≥ 0

V (r) = V χ]R,∞[(r) =
{

0 if 0 ≤ r ≤ R, region I ;
∞ if r > R, region II.

When V → ∞, the Lamb shift undergone by any energy level of the particle in the infinite potential well
is supposed to be the finite part, independent from V , of the expansion in powers of V of the Lamb shift
undergone by the level with same quantum numbers of the particle in the finite potential step, given by Eq.
(1)

∆Elnm =
α

3πm∗2 log
(

m∗

κ

)
〈ψlnm|∇2V (r)|ψlnm〉,

5The notation X∞ = lim
V∞

X is adopted, for all physical quantities. This is the reason why we will choose to note the infinite

potential well V∞(r), and the finite potential step V (r), in sections 4 and 5.
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where, for fixed quantum numbers l ∈ N, n ∈ N r {0} and m ∈ [[−l, l]], the wave function ψlnm(r, θ, ϕ) is a
linear combination of the spherical Bessel function jl

(
kln

R r
)

and of the spherical Hankel function h(1)
l

(
iKln

R r
)

ψlnm(r) =
{
RI

ln(r)χ[0,R](r) + RII
ln(r)χ]R,∞[(r)

}
Y m

l (θ, ϕ)

=
{

Alnjl

(
kln

R
r

)
χ[0,R](r) + Clnh(1)

l

(
i
Kln

R
r

)
χ]R,∞[(r)

}
Y m

l (θ, ϕ).

Because of the limit V →∞, it is possible to adjust the step potential height V , so that the energy eigenvalue
Eln is written as function of the wave numbers kln and Kln in regions I and II

Eln =
k2

ln

2m∗R2
and V − Eln =

K2
ln

2m∗R2
≥ 0.

The normalization coefficients Aln and Cln, and the wave numbers kln and Kln are subjected to boundary
conditions at r = R, i.e. {

Alnjl(kln) = Clnh(1)
l (iKln)

Alnklnjl±1(kln) = iClnKlnh(1)
l±1(iKln)

and by orthonormalization conditions. In region I, the radial wave function RI
ln(r) has the same form as

the radial wave function RI∞
ln (r), which is then really the limit of RI

ln(r), when V →∞. The same remark
should be made for the radial wave function RII

ln(r) −−→
V∞

0, since, by construction, Kn ∼
V∞0. Nevertheless,

the introduction of the potential step allows the particle to get out the confining potential by tunnel effect,
even if the probability for such event is exponentially small.

4.1. Lamb shift via the Poisson equation
The potential step V (r) now satisfies the Poisson equation ∇2V (r) = V

{
2
Rδ(r −R) + δ′(r −R)

}
, δ(r)

being the Dirac distribution and δ′(r) its derivative. In our regularization method, the unique term indepen-
dent of V of the diagonal matrix element of the Laplacian of the potential step V (r) expansion in powers of
V should be retrieved when V →∞, since it is the only non-divergent and non-vanishing one. Expressions

〈ψlnm|∇2V (r)|ψlnm〉 = −4V

π
|Aln|2k2

lnjl(kln)j′l(kln) =
2

R3

√
2V

m∗ (k∞ln )2 − 8
R2

E∞
ln + o(1).

suggest that

∆E∞
ln = − 8

3π

α

m∗2
E∞

ln

R2
log

(
m∗

κ

)
. (6)

As expected, because of the spherical symmetry of the potentials V (r) and V∞(r), the Lamb shift is
independent of the azimuthal quantum number m. Furthermore, it is negative, since, as we shall see later,
the IR cut-off satisfies the constraint κ ≤ m∗. Hence, the Lamb effect brings down the energy levels of the
particle, instead of raising them up, as in real atoms. This is a remarkable characteristic of the Lamb shift
which, to the best of our knowledge, is noted for the first time.

4.2. Infrared cut-off κ

The evaluation of the IR cut-off κ =
〈|E∞

ln − E∞
ij |

〉
is also problematic. In the Bethe approach, the IR

cut-off explicitly depends on the considered quantum state, which is not the case in the Welton approach.
In real atoms, it has been shown that the IR cut-off is of about the same order of magnitude independently
of the energy levels [17]. To introduce a relevant and appropriate IR cut-off κ, we suggest to define it by
the following average

κ =
〈|E∞

ln − E∞
ij |

〉
=

1
2m∗R2

∑
ijln(2i + 1)(2l + 1)|(k∞ln )2 − (k∞ij )2|∑

ijln(2i + 1)(2l + 1)
. (7)
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As quantum numbers are not limited from bellow, and are infinite, this sum is infinite. To confer a rigorous
meaning to Eq. (7), a regularization method should be prescribed. First, the number of terms in the sum
is finite, since the trapped particle, being excited through its interaction with the electromagnetic field, can
have access only to a finite number of states. The highest accessible level is limited by the finite field energy
Elim = κ2

lim
2m∗R2 , which allows to define a UV cut-off κlim for authorized wave numbers.

In practice, the Feynman regularization method is used instead of this regularization method. A dimen-
sionless parameter ε > 0 is introduced, and the regularized sum

κ =
1

2m∗R2

∑
ijln(2i + 1)(2l + 1)|(k∞ln )2 − (k∞ij )2|e−iεe−jεe−lεe−nε

∑
ijln(2i + 1)(2l + 1)e−iεe−jεe−lεe−nε

.

should be expanded in powers of ε. The finite part of this expansion should be kept and identified with the
IR cut-off κ. Considering the Bessel functions asymptotical behavior and their roots repartition at infinity
[36], for sufficiently large quantum number q ∈ Nr {0}, but for all p ∈ N, we can assume that

k∞pq ≈ k∞p1 + (q − 1)π ≈ k∞01 + (q − 1) = qπ.

While this approximation is not valid for any quantum numbers q ∈ N, in the limit ε → 0, the most important
contribution to κ corresponds to high quantum numbers, i.e. it should be used for all wave numbers. Then,

κ =
π2

2m∗R2

∑
jn |n2 − j2|e−jεe−nε

∑
jn e−jεe−nε

=
π2

2m∗R2

{
4
ε2

+
3
ε

+
7
6

+ o(1)
}

,

which leads to the choice

κ =
7π2

12m∗R2
.

Thus, κ is of the order of magnitude of the ground state energy of the confined particle, contrary to the case
of real atoms [17]. Because of the state degeneracy, such behavior is a posteriori expected. Terms, whose
relative importance is the largest in Eq. (7), are terms of the order of magnitude ≈ |(k∞ln+1)

2− (k∞ln )2|. The
asymptotical behavior of the Bessel functions roots, for sufficiently large n ∈ Nr {0}, |(k∞ln+1)

2 − (k∞ln )2| ≈
π2(2n + 1). By regularizing sums over n, since sums over l do not play any role, we deduce that κ ≈ π2

m∗R2 .
Because of the non-relativistic condition in the IR and UV cut-offs κ(R) ≤ m∗, there exists an lower

potential radius bound R∗min = π
2

√
7
3
−λ∗ ≈ 2, 399−λ∗, of the same order of magnitude of the particle reduced

Compton wave length −λ∗ = m∗−1. Thus in a theoretical QD of radius R smaller than R∗min, the confined
particle should acquire at least a confinement energy E∞

01 of the order of magnitude of its rest mass energy
m∗ ∝ π2

2m∗R∗2min
≤ π2

2m∗R2 = E∞
01 , which will explicitly contravene to the non-relativistic assumption. Finally,

there exists another particular potential radius R∗max =
√

eR∗min ≈ 3, 956−λ∗, for which the Lamb shift of any

energy level represents a maximal fraction of it, i.e. d
dR

∆E∞ln
E∞ln

∣∣∣
R=R∗max

= 0.

4.3. Alternative route to the Lamb shift: a direct calculation
An alternative calculation of the Lamb shift undergone by a particle confined in the infinite potential

well V∞(r) is presented here. Starting with the regularized version by the finite potential step V (r) of Eq.
(1), but for which summations over the quantum numbers i, j and k are not performed

∆Elnm =
2
3π

α2

m∗2 log
(

m∗

κ

) ∑

ijk

|〈ψijk|p|ψlnm〉|2 {Eij − Eln},

we directly evaluate the sum
∑

ijk |〈ψijk|p|ψlnm〉|2 {Eij − Eln} = −〈ψlnm|∇ · H0∇ − Eln∇2|ψlnm〉, and
expand it in powers of V , as already mentioned in subsection 4.1. The obtained expansion does not have
divergent terms when V → ∞, such as terms scaling as ∝ √

V of subsection 4.1. So, obtaining the Lamb
7



shift for a state confined by the infinite potential well from the one confined by the finite potential step
defined by the same quantum numbers is rigorously justified.

Actually, it can be shown that

{∇ ·H0∇− Eln}ψlnm(r, θ, ϕ) =
RI′′

ln(R)−RII′′
ln (R)

2m∗

{
δ′(r −R) +

2
R

δ(r −R)
}

Y m
l (θ, ϕ),

from which one gets

∑

ijk

|〈ψijk|p|ψlnm〉|2 {Eij − Eln} =
R2

2m∗RI∞′′
ln (R)RI∞′

ln (R) + o(1)− 4
E∞

ln

R2
+ o(1).

As stated, the first term in this expansion, and therefore also in the Lamb shift expansion, is the finite
term. Despite an identical regularization method, no divergent terms appear in the limit V → ∞, which
is most satisfactory from the conceptual point of view. This corroborates that the fact that such a term
is not physical, when the trapped particle is confined by the infinite potential well V∞(r). As we will see
later, this property appears to be fundamental. Finally, this second calculation validates the regularization
of the confining potential by an intermediate finite potential step, since in the end it leads to a Lamb shift,
identical to Eq. (6).

5. Gauge invariance and Lamb shift

As an observable effect, the Lamb shift is indeed gauge invariant. Welton argument is clearly gauge
invariant, since the electromagnetic field only intervenes through its energy density, a gauge invariant quan-
tity. Bethe argument depends however on the gauge, since the interaction Hamiltonian Hint ∝ A · p in the
Pauli-Fierz Hamiltonian HPF, used as perturbation, is written in the Coulomb gauge. Therefore, it is useful
to check gauge invariance in calculations of the Lamb shift of the energy levels for a theoretical QD. To this
end, we study the Lamb effect in the gauge imposed by the electric dipole approximation.

In this approximation, the electric field spatial variation is negligible over typical particle distances —
i.e. E = E(t,0) and the related scalar potential is A0(t, r) = −r ·E(t,0) —, and that there is no magnetic
field B = 0, hence no vector potential A = 0. The system Hamiltonian is then of the form

H ′
PF = H0 + Hem + eH ′′

int,

where H ′′
int = −qr ·E(t,0) is the new interaction Hamiltonian of the particle with the electromagnetic field.

In particular, it is obvious to observe that Hint and H ′′
int contribute in the same way to the classical action

of the particle-electromagnetic field system, especially when terms scaling as ∝ A2 are neglected6. Thus,
quantization in the gauge fixed by the electric dipole approximation makes sense.

5.1. Bethe approach in the electric dipole approximation
We now go over Bethe argument with the dipole approximation. The second order correction is

∆En = −2α

3π
q2

∑
m

|〈m|r|n〉|2
{∫

dk
[
k2 − (Em − En)k + (Em − En)2

]−
∫

dk
(Em − En)3

Em − En + k

}

= −2α

3π
q2

∑
m

|〈m|r|n〉|2
{

m∗3

3
− (Em − En)

m∗2

2
+ (Em − En)2m∗ − (Em − En)3 log

(
m∗

κ

)}
.

The two integrals in this expression have respectively a cubic and a logarithmic UV divergence. Thus, the
second integral is the one which gives rise to the Lamb shift in the dipole approximation. It is natural to

6By a simple integration by parts, one can show that
∫
dt Hint =

∫
dt H′′

int.
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introduce m∗ as UV cut-off and κ as IR cut-off to regularize the integrals. Renormalization arguments of
the original Bethe article are used to get the corrective term

∆En = −2α

9π
q2m∗3〈n|r2|n〉+

α

2π
q2m∗ +

α

3π

q2

m∗2 log
(

m∗

κ

)
〈n|∇2V (r)|n〉.

The third term in ∆En is recognized as the Lamb shift for a state |n〉, as expected from the Welton approach
or the Bethe approach in the Coulomb gauge. The second term is simply a numerical constant, which can
be omitted using an additive renormalization argument. The first term is explicitly gauge dependent, since
〈n|r2|n〉 ∝ 〈n|H ′′2

int|n〉 =
∑

m |〈m|H ′′
int|n〉|2. So, the Lamb shift in the gauge fixed by the electric dipole

approximation is identical to the one computed in the Coulomb gauge.

5.2. Alternate route to Lamb shift: a direct calculation
Applying the reasoning of subsection 4.3 to the dipole approximation, we obtain once again the Lamb

shift given by Eq. (6). Using expressions

∆Elnm =
2α

3π
log

(
m∗

κ

)∑

ijk

|〈ψijk|r|ψlnm〉|2 (Eij − Eln)3

=
2α

3π
log

(
m∗

κ

)
〈ψlnm|[H0, r]† ·[H0, [H0, r]]|ψlnm〉,

and computing the following commutators

[H0, r]ψlnm(r, θ, ϕ) = − 1
m∗

{
∂rr∂r + ∂θr

∂θ

r2
+ ∂ϕr

∂ϕ

r2 sin2 θ

}
ψlnm(r, θ, ϕ),

and

[H0, [H0, r]]ψlnm(r, θ, ϕ) = −RI′′
ln(R)−RII′′

ln (R)
2m∗2 δ(r −R)

r
R

,

we come up with

〈ψlnm|[H0, r]†. [H0, [H0, r]]|ψlnm〉 = − 4
m∗2

E∞
ln

R2
+ o(1).

Hence, we can conclude that this Lamb shift is identical to the one given by Eq. (6). Let us also note that
this method does not generate divergent terms in the limit V →∞, as in subsection 4.3.

6. Lamb shift in spherical semiconductor QDs

In a spherical semiconductor QD, the interaction of the electron-hole pair with the quantized electromag-
netic field generates a Lamb shift in its energy levels. In the Welton approach, electron and hole positions
are fluctuating. Consequently, the Lamb shift of the electron-hole pair ground state consists of the sum of
the contributions of Lamb shift undergone by the electron and by the hole, when the pair is in its ground
state. It will be evaluated for each confinement regime of section 3. The electron and hole respective position
fluctuation variance

〈(∆re,h)2〉 =
2α

πε

1
m∗2

e,h

log

(
m∗

e,h

κ∗e,h

)
,

are given by expressions analogous to Eq. (2), where κ∗e,h are electron and hole IR cut-offs. Then, in a
semiconductor for which the fluctuations are large enough, i.e. for which the effective masses m∗

e,h are
significantly smaller than the electron bare mass me, there exists a possibility to detect experimentally the
Lamb shift for a range of reasonable QD sizes.

In this section, we perform Taylor expansions of the Lamb shift in both confinement regimes to the
second order terms to account for the pseudo-potential W (reh). As the contributions to the electron-hole

9



pair confinement energy come only from second order terms, diagonal matrix elements of the action of the
Laplacian on potentials are to be evaluated to this order. Therefore, the Lamb shift undergone by the
electron or by the hole has three contributions. The first one is a boundary effect due to the confinement
step-potential V∞(re,h), which is of the same nature as the one experienced by a confined particle in section
4. The second one is due to the Coulomb interaction VC(reh) between the electron and the hole, analogous
to the Lamb shift in real atoms. And, finally, the third comes from the pseudo-potential W (reh).

6.1. General considerations
Let the non-normalized wave functions of the electron-hole pair ground state, confined by the step

potential V (re,h) in both confinement regimes of Eqs. (3) and (4) be

φ(re, rh) = ψe
010(re)ψh

010(rh)φeh(reh) and ψ(re, rh) = ψ(re, rh)φG(rG).

Here, electron and hole ground state wave functions confined individually ψe,h
010(re,h) depend on the quantum

numbers ke,h
01 and Ke,h

01 , subjected to ke,h2
01 +Ke,h2

01 = 2m∗
e,hR2V . The function φG(rG) is a pure phase factor

and can be dropped. Since the variational parameter σ appears in φ∞(re, rh), it should be replaced by its
variational value σ0, proper to each confinement regime. Then, the electron or the hole Lamb shift is

∆E∞
e,h =

α

3πε

1
m∗2

e,h

log

(
m∗

e,h

κ∗e,h

){ 〈φ∞|∇2V∞(re,h)|φ∞〉
〈φ∞|φ∞〉 +

〈φ∞|∇2VC(reh)|φ∞〉
〈φ∞|φ∞〉 +

〈φ∞|∇2W (reh)|φ∞〉
〈φ∞|φ∞〉

}
,

where

∇2V (re,h) = V

{
2
R

δ(re,h −R) + δ′(re,h −R)
}

, ∇2VC(reh) =
4πα

ε
δ(3)(reh),

and

∇2W (reh) =
W

R2

{
6− 8

reh

a∗
+ 4

r2
eh

a∗2

}
e−2

reh
a∗ .

The previous mean values are indeed confinement regime dependent, as well as the Lamb shift, because of
the IR cut-offs κ∗e,h. Thus, we shall examine them in each confinement regime. To this end, we give some
general results on diagonal matrix elements of the action of the Laplacian on potentials.

First, the case of Coulomb potential VC(reh) is trivially obtained since integrals over the electron (or the
hole) coordinates are carried out over δ(3)(reh). This eliminates dependence on σ, so that

〈φ∞|∇2VC(reh)|φ∞〉 =
e2

ε

∫
d3rψ∞4

010(r) =
8e2

κR3
D

is independent from the confinement regime.
Following section 3, we have for the pseudo-potential W (reh)

〈φ∞|∇2W (reh)|φ∞〉 = −W
8

R4

{
6∂Σ − 8

a∗
∂2
Σ +

4
a∗2

∂3
Σ

}
1
Σ

∫ 1

0

∫ y

0

dx

x

dy

y
sin2(πx) sin2(πy) sinh(ΣRx)e−ΣRy,

where Σ = σ + 2
a∗ accounts for the exponential dependence of the pseudo-potential W (reh).

The determination of the formal quantities 〈φ∞|∇2V∞(re,h)|φ∞〉 is more cumbersome. As before, this
is done using the regularization method of section 4, i.e. we expand the diagonal matrix element of the
Laplacian of the finite potential step 〈φ|∇2V (re,h)|φ〉 in powers of V , and assume that 〈φ∞|∇2V∞(re,h)|φ∞〉
corresponds to the unique term independent from V . This calculation yields a term scaling as ∝ √

V , as in
subsection 4.1. The results of subsections 4.3 and 5.2 suggest to drop it, because it is not physical, so that

〈φ∞|∇2V∞(re,h)|φ∞〉 =
4

R3
Ee,h∞

01 ∂σ

{
e−σR

[
3

σR
− 1

]∫ 1

0

dx

x
sin2(πx) sinh(σRx)

}
.

We now give the behavior of the Lamb shift of the confined electron-hole pair ground state in both con-
finement regimes for CdS0.12Se0.88 and InAs quantum dots, with the numerical data collected in Table 1.
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Table 1: Numerical values of material parameters in CdS0.12Se0.88 et InAs, where the electron bare mass is me ≈ 9.1110−31kg.
a0 ≈ 0.529Å and EI ≈ 13.6eV are the Bohr radius and the ionization energy of the hydrogen atom.

Semiconductor in units of CdS0.12Se0.88 InAs
m∗

e me 0.13 0.026
m∗

h me 0.46 0.41
ε 9.3 14.5
a∗ a0 91.8 595
E∗ EI 1.17 10−3 1.16 10−4

6.2. Strong confinement regime
Here R . a∗, Taylor expansions of the diagonal matrix elements of the action of the Laplacian on various

potentials give the following expressions




〈φ∞|∇2V∞(re,h)|φ∞〉
〈φ∞|φ∞〉 = − 8

R2
Ee,h∞

01

{
1− F

R

a∗
+ F ′

R2

a∗2
+ O

(
R3

a∗3

)}
,

〈φ∞|∇2VC(reh)|φ∞〉
〈φ∞|φ∞〉 =

8e2

κR3

{
D + F ′′

R

a∗
+ O

(
R2

a∗2

)}
,

〈φ∞|∇2W (reh)|φ∞〉
〈φ∞|φ∞〉 = −64

3
E∞

eh

a∗2

{
1 + O

(
R

a∗

)}
.

In the strong confinement regime, the electron and the hole are essentially uncorrelated, so that the IR
cut-offs κ∗e,h should be chosen independently as, according to subsection 4.2,

κ∗e,h =
7π2

12m∗
e,hR2

.

Omitting terms of the third order or higher in R
a∗ and dropping off the exponent “ ∞ ”, we conclude that

the Lamb shift undergone by the ground state of the electron-hole pair in the strong confinement regime is

∆Estrong
Lamb = ∆Estrong

e + ∆Estrong
h ,

where

∆Estrong
e,h

E∞
eh

= −16α

3πε

−λ∗2e,h

R2
log

(
R

Re,h
min

){
1−

[
µ

m∗
e,h

F +
2
π2

D

]
R

a∗
+

[
µ

m∗
e,h

F ′ − 2
π2

F ′′ +
8
3

]
R2

a∗2

}
,

−λ∗e,h = m∗−1
e,h and Re,h

min = π
2

√
7
3
−λ∗e,h are respectively the reduced Compton wave lengths and minimal radii

of the electron and of the hole in the considered semiconductor.
Figure 1 shows the behavior of the Lamb shift of the electron-hole pair ground state in spherical

CdS0.12Se0.88 or InAs QDs. Their order of magnitude suggests a possible detection for experimentally
accessible QD radii7. This is confirmed by table 2 a.-b., since the energy orders of magnitude are equivalent
to those theoretically predicted and experimentally observed in hydrogen atom, at least in semiconductors
with material parameters of the same order of magnitude than those of InAs, e.g. GaAs. Here, we do
not identify the finite potential step V (reh) used for the regularization of 〈φ∞|V∞(reh)|φ∞〉, which is a
calculational intermediate tool, with the real potential step, which confines the charge carriers inside the
QD and is a physical quantity of the problem. Results of sections 4 and 5 impose that electron and hole

7There exists a large number of references on spherical CdS0.12Se0.88 or InAs microcrystallites with nm radius which are
synthesized and experimentally used, see e.g. respectively [37] or [38].
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Figure 1: Lamb shift undergone by the electron (––), the hole (– ·–) and the exciton (—), when the exciton occupies its ground
state in the strong confinement regime in a. CdS0.12Se0.88 and b. InAs microcrystallites as a function of the QD radius.
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Table 2: Lamb shift undergone by the electron-hole pair ground state in CdS0.12Se0.88 or InAs microcrystals a. for R = 10Å or
for R = 30Å in the strong confinement regime and c. in the weak confinement regime.

Semiconductor CdS0.12Se0.88 InAs
a. E∞eh (eV) 3.71 15.38

∆E
strong
Lamb

E∞eh
-5.52 10−9 -6.17 10−7

b. E∞eh (eV) 0.412 1.71

∆E
strong
Lamb

E∞eh
-5.13 10−9 -8.64 10−8

Semiconductor CdS0.12Se0.88 InAs
c. E∗ (meV) 15.9 1.58

∆Eweak
Lamb

E∗ 4.56 10−7 1.70 10−10

masses inside or outside the QD should be identical. This means that the charge carriers are first excited,
and then confined. However, in reality, electrons and holes are excited in a semiconducting microcrystallite.
In this situation, electrons and holes should have different masses inside as well as outside of the QD [32].

If we want to identify the effective confining potential step at the surface of the microcrystal with V (reh),
then the possibility for the electron, and to a lesser extent the hole — the notion of hole is not clearly defined
in the surrounding insulating matrix —, to escape of the semiconducting QD by tunnel conductivity should
be taken into account rigourously. Since sections 4 and 5 show that the only explicit dependence on the
step potential appears as a non-physical term in the Lamb shift expression, this refinement is superfluous.
This reflects the coherence of the reasoning made.

Finally, in the strong confinement regime, the proposed analytical expression for the Lamb shift ∆Estrong
Lamb

displays a linear dependence on the electron-hole pair confinement energy E∞
eh . This does not contradict

the assumption of charge carriers confined by a infinite potential well. Table 1 shows its order of magnitude
exceeds the typical height of the effective potential step at the surface of the QD. As shown by analytical
study of Stark Effect in spherical semiconductor QDs [39], the confinement energy itself should not be a
relevant quantity, as far as energy shifts are concerned. Then, to validate the modeling of the confining
potential by the infinite potential well, it is sufficient to compare the order of magnitude of Lamb shifts to
the height of the real potential step. This is confirmed by table 2 a.-b., since the examples of Lamb shifts
it presents are of the order of magnitude at most of tens µeV, a negligible value compared to the effective
confinement potential, which is of the order of eV [32].
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6.3. Weak confinement regime
For R & πa∗, Taylor expansions of the Laplacian action diagonal matrix elements yield





〈φ∞|∇2VC(re,h)|φ∞〉
〈φ∞|φ∞〉 = 8

E∗

a∗2

{
1 +

2
3
π2 a∗2

R2
+ O

(
a∗3

R3

)}
,

〈φ∞|∇2W (reh)|φ∞〉
〈φ∞|φ∞〉 = 8

E∗

a∗2

{
−2

3
π2 a∗2

R2
+ O

(
a∗3

R3

)}
.

In this weak confinement regime, the contribution of the pseudo-potential W (reh) to the electron-hole pair
ground state Lamb shift cancels the second order correction of the contribution of the Coulomb potential
VC(reh). Since they both scale as ∝ π2 E∗

R2 = E∞eh
a∗2 , the presence of W (reh) allows the removal of contributions

proportional to the electron-hole pair kinetic energy in relative coordinates, which are still contained in
the exciton Rydberg energy. Finally, it is important to explain why it is not necessary to account for
contributions coming from the confinement potential well V∞(reh) in the weak confinement regime. Direct
calculations show that such contributions arise as a fifth order correction term in a∗

R to E∗
a∗2

〈φ∞|∇2V∞(re,h)|φ∞〉
〈φ∞|φ∞〉 ∝ E0∞

e,h

R3
a∗ ∝ E∗

a∗2
a∗5

R5
.

Omitting terms of the third order or higher in R
a∗ and dropping off the exponent “ ∞ ”, we conclude that

the Lamb shift undergone by the ground state of the electron-hole pair in the weak confinement regime is

∆Eweak
Lamb = ∆Eweak

e + ∆Eweak
h , where

∆Eweak
e,h

E∗ =
8α

3πε

−λ∗2e,h

a∗2
log

(
m∗

e,h

κ∗e,h

)
.

In the limit of infinite hole mass, i.e. in the limit
−λ ∗

h

−λ ∗
e

= m∗
e

m∗
h
→ 0, in the weak confinement regime, only

the electronic term ∆Eweak
e contributes to the exciton ground state Lamb shift. Then, after some trivial

manipulations, the Lamb shift of the ground state of an hydrogen-like atom of reduced mass µ in a dielectric
medium characterized by its dielectric constant ε is recognized. These observations show that electron-hole
pair states behave as excitonic bound states in this regime. Using known results for the hydrogen-like atom
[17], they suggest to take an acceptable approximate value for the IR cut-off as

κ∗e,h ≈ 19.8E∗.

Thus, the Lamb shift undergone by the exciton ground state does not depend on the QD radius, at least up
to the third order in a∗

R . This is a strong argument in favor of the validity of the pseudo-potential W (reh),
while it was introduced as a phenomenological effective potential.

Table 2 c. gives values of the exciton ground state Lamb shift in CdS0.12Se0.88 or InAs microcrystals.
They are not experimentally accessible at present.

6.4. Observability of the Lamb shift in spherical semiconductor QDs
As known, the experimental observability of the Lamb shift in hydrogen atom is due to the s- and p-level

degeneracy, when the principal quantum number is n ≥ 2, in absence of interaction with the quantized
electromagnetic field. The Lamb shift arises as a separation of the ns-spectral band from np-spectral band,
while they should stay merged in absence of Lamb effect. So, how would an energy level Lamb shift be
detected for quantum systems displaying no spectral band degeneracy such as a QD? In such systems each
non-degenerate energy level is dressed by the quantum zero-point fluctuations of the electromagnetic field,
forbidding the detection of the corresponding bare level. This may be the reason for the lack of articles
addressing the Lamb effect in such structures.
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In Quantum Field Theory, the summation of the zero-point energy fluctuations yields a divergent ground
state energy. In the absence of gravity, this divergence is subtracted off in an additive renormalization scheme.
However, a careful analysis on its volume dependence (via boundary conditions) shows the occurrence of
a finite and observable force, known as Casimir force [40, 41]. This effect can be intuitively understood
as follows. In vacuum, two parallel perfectly conducting squared plates of linear size L are placed at a
separation d ¿ L. Since the zero-point energy fluctuations are more important outside than inside the
plates, they are subjected to an attractive the Casimir force.

If we adopt the Welton framework, we may view the Lamb shift as due to the particle position fluctuations
induced by the zero-point energy fluctuations energy of the electromagnetic field. So, by placing a QD in two
different quantized electromagnetic surroundings (vacuum and inside the Casimir pair of conducting plates),
one would be able to detect an energy level difference between two Lamb shifted levels. An experimental
protocol according to which the energy levels dressed by the zero-point fluctuations energy with or without
the two Casimir plates are to be compared. It should allow to overcome the need of degenerate energy levels,
or of exactly computed energy levels.

There exist some theoretical works dealing with Lamb effect of real atoms confining in a Casimir device,
but they are based on a relativistic Bethe approach [42, 43]. They predict an additional shift to the standard
Lamb shift, which depends on the separation distance between the mirrors such that it goes to zero in the
limit d →∞. On the other hand the Welton approach suggests, in this limit, that the Lamb shift in presence
of the Casimir device should go to the Lamb shift in absence of such device. While the predicted additional
shifts should be experimentally measured, they seem to not be available in the literature. The protocol
suggested here should be also able to discriminate between the Bethe and Welton approaches. This is the
reason why, as a continuation of this work, we shall investigate a generalization of the Welton approach to
evaluate the particle position fluctuations, in the presence of two Casimir plates.

7. Conclusion

Following the conventional approaches for computing the Lamb shift in real atoms, we have worked
out, in this paper, an analytical expression of the Lamb shift for an arbitrary energy level of a spherical
semiconductor QD. An explicit expression is obtained in the framework of the EMA model augmented
by the Coulomb interaction, for both strong and weak confinement regimes. We find that, in the strong
confinement regime and for sufficiently small but experimentally realistic QD sizes, this Lamb shift has an
order of magnitude comparable to the Lamb shift in atoms.

However, the observability of such a Lamb shift is put to question since the energy levels are not de-
generate as in the hydrogen atom. A way out, based on the Welton approach, is suggested. It consists in
comparing the energy levels of the same spherical semiconductor QD in two different quantized electromag-
netic field environments: the vacuum and the Casimir cavity. It is amusing to see that the two foremost
effects which have served to validate Quantum Electrodynamics over the years may be now reunited to
demonstrate the existence of the Lamb shift in semiconductor QDs.

A. Constants

In the following tables, we sum up all appearing constants and give their approximate values. The
function Si(x) =

∫ x

0
dt
t sin(t) denotes the standard sine integral. Table 3 a. presents analytical expressions

and approximate values of constants occurring in section 3. Table 3 b. presents analytical expressions and
approximate values of constants occurring in section 6.
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