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We consider finite state space stationary hidden Markov models (HMMs) in the situation where
the number of hidden states is unknown. We provide a frequentist asymptotic evaluation of
Bayesian analysis methods. Our main result gives posterior concentration rates for the marginal
densities, that is for the density of a fixed number of consecutive observations. Using conditions
on the prior, we are then able to define a consistent Bayesian estimator of the number of
hidden states. It is known that the likelihood ratio test statistic for overfitted HMMs has a non
standard behaviour and is unbounded. Our conditions on the prior may be seen as a way to
penalize parameters to avoid this phenomenon. Inference of parameters is a much more difficult
task than inference of marginal densities, we still provide a precise description of the situation
when the observations are i.i.d. and we allow for 2 possible hidden states.
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1. Introduction

Finite state space hidden Markov models (which will be shortened to HMMs throughout
the paper) are stochastic processes (Xj , Yj)j≥1 where (Xj)j≥1 is a Markov chain living
in a finite state space X and conditionally on (Xj)j≥1 the Yj ’s are independent with a
distribution depending only on Xj and living in Y. HMMs are useful tools to model time
series where the observed phenomenon is driven by a latent Markov chain. They have been
used successfully in a variety of applications, the books MacDonald and Zucchini (1997),
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2 Gassiat and Rousseau

MacDonald and Zucchini (2009) and Cappé et al. (2004) provide several examples of
applications of HMMs and give a recent (for the latter) state of the art in the statistical
analysis of HMMs. Finite state space HMMs may also be seen as a dynamic extension of
finite mixture models and may be used to do unsupervised clustering. The hidden states
often have a practical interpretation in the modelling of the underlying phenomenon. It
is thus of importance to be able to infer both the number of hidden states (which we call
the order of the HMM) from the data, and the associated parameters.

The aim of this paper is to provide a frequentist asymptotic analysis of Bayesian
methods used for statistical inference in finite state space HMMs when the order is
unknown. Let us first review what is known on the subject and important questions that
still stay unsolved.

In the frequentist literature, penalized likelihood methods have been proposed to
estimate the order of a HMM, using for instance Bayesian information criteria (BIC
for short). These methods were applied for instance in Leroux and Putterman (1992),
Rydén et al. (1998), but without theoretical consistency results. Later, it has been ob-
served that the likelihood ratio statistics is unbounded, in the very simple situation
where one wants to test between 1 or 2 hidden states, see Gassiat and Kéribin (2000).
The question whether BIC penalized likelihood methods lead to consistent order esti-
mation stayed open. Using tools borrowed from information theory, it has been possible
to calibrate heavier penalties in maximum likelihood methods to obtain consistent esti-
mators of the order, see Gassiat and Boucheron (2003), Chambaz et al. (2009). The use
of penalized marginal pseudo likelihood was also proved to lead to weakly consistent
estimators by Gassiat (2002).

On the Bayesian side, various methods were proposed to deal with an unknown num-
ber of hidden states, but no frequentist theoretical result exists for these methods. Notice
though that, if the number of states is known, de Gunst and Shcherbakova (2008) ob-
tain a Bernstein - von Mises theorem for the posterior distribution, under additional
(but usual) regularity conditions. When the order is unknown, reversible jump meth-
ods have been built, leading to satisfactory results on simulation and real data, see
Boys and Henderson (2004), Green and Richardson (2002), Robert et al. (2000), Spezia
(2010). The ideas of variational Bayesian methods were developed in McGrory and Titterington
(2009). Recently, one of the authors proposed a frequentist asymptotic analysis of the pos-
terior distribution for overfitted mixtures when the observations are i.i.d., see Rousseau and Mengersen
(2011). In this paper, it is proved that one may choose the prior in such a way that extra
components are emptied, or in such a way that extra components merge with true ones.
More precisely, if a Dirichlet prior D(α1, . . . , αk) is considered on the k weights of the
mixture components, small values of the αj ’s imply that the posterior distribution will
tend to empty the extra components of the mixture when the true distribution has a
smaller number, say k0 < k of true components. One aim of our paper is to understand
if such an analysis may be extended to HMMs.

As is well known in the statistical analysis of overfitted finite mixtures, the difficulty
of the problem comes from the non identifiability of the parameters. But what is specific
to HMMs is that the non identifiability of the parameters leads to the fact that neigh-
bourhoods of the “true” parameter values contain transition matrices arbitrarily close to
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posterior distribution for HMM 3

non ergodic transition matrices. To understand this on a simple example, just consider
the case of HMMs with two hidden states, say p is the probability of going from state 1
to state 2 and q the probability of going from state 2 to state 1. If the observations are
in fact independently distributed, their distribution may be seen as a HMM with two
hidden states where q = 1 − p. Neighbourhoods of the “true” values (p, 1 − p) contain
parameters such that p is small or 1−p is small, leading to hidden Markov chains having
mixing coefficients very close to 1. Imposing a prior condition such as δ ≤ p ≤ 1− δ for
some δ > 0 is not satisfactory.

Our first main result Theorem 1 gives concentration rates for the posterior distribution
of the marginal densities of a fixed number of consecutive observations. First, under
mild assumptions on the densities and the prior, we obtain the asymptotic posterior
concentration rate

√
n, n the number of observations, up to a log n factor, when the loss

function is the L1 norm between densities multiplied by some function of the ergodicity
coefficient of the hidden Markov chain. Then, with more stringent assumptions on the
prior, we give posterior concentration rates for the marginal densities in L1 norm only
(without the ergodicity coefficient). For instance, consider a finite state space HMM, with
k states and with independent Dirichlet prior distributions D(α1, . . . , αk) on each row
of the transition matrix of the latent Markov chain. Then our theorem says that if the
sum of the parameters αj ’s is large enough, the posterior distribution of the marginal
densities in L1 norm concentrates at a polynomial rate in n. These results are obtained
as applications of a general theorem we prove about concentration rates for the posterior
distribution of the marginal densities when the state space of the HMM is not constrained
to be a finite set, see Theorem 4.

A byproduct of the non identifiability for overfitted mixtures or HMMs is the fact that,
going back from marginal densities to the parameters is not easy. The local geometry
of finite mixtures has been understood by Gassiat and van Handel (2013), and following
their approach in the HMM context we can go back from the L1 norm between densities
to the parameters. We are then able to propose a Bayesian consistent estimator of the
number of hidden states, see Theorem 2, under the same conditions on the prior as
in Theorem 1. To our knowledge, this is the first consistency result on Bayesian order
estimation in the case of HMMs.

Finally, obtaining posterior concentration rates for the parameters themselves seems
to be very difficult, and we propose a more complete analysis in the simple situation of
HMMs with 2 hidden states and independent observations. In such a case, we prove that,
if all the parameters (not only the sum of them) of the prior Dirichlet distribution are
large enough, then extra components merge with true ones, see Theorem 3. We believe
this to be more general but have not been able to prove it.

The organization of the paper is the following. In section 2, we first set the model and
notations. In subsequent subsections, we give Theorems 1, 2 and 3. In section 3, we give
the posterior concentration theorem for general HMMs, Theorem 4, on which Theorem
1 is based. All proofs are given in section 4.
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2. Finite state space hidden Markov models

2.1. Model and notations

Recall that finite state space HMMs model pairs (Xi, Yi)i≥1 where (Xi)i≥1 is the unob-
served Markov chain living on a finite state space X = {1, · · · , k} and the observations
(Yi)i≥1 are conditionally independent given the (Xi)i≥1. The observations take value in
Y, which is assumed to be a Polish space endowed with its σ-field. Throughout the paper
we denote x1:n = (x1, . . . , xn).

The hidden Markov chain (Xi)i≥1 has a Markov transition matrix Q = (qij)1≤i,j≤k.
The conditional distribution of Yi given Xi has a density with respect to some given
measure ν on Y. We denote by gγj (y), j = 1, . . . , k, the conditional density of Yi given
Xi = j. Here, γj ∈ Γ ⊂ Rd for j = 1, . . . , k, the γj ’s are called the emission parameters. In
the following we parametrize the transition matrices on {1, . . . , k} as (qij)1≤i≤k,1≤j≤k−1

(implying that qik = 1−
∑k−1
j=1 qij for all i ≤ k) and we denote by ∆k the set of probability

mass functions ∆k = {(u1, . . . , uk−1) : u1 ≥ 0, . . . , uk−1 ≥ 0,
∑k−1
i=1 ui ≤ 1}. We shall

also use the set of positive probability mass functions ∆0
k = {(u1, . . . , uk−1) : u1 >

0, . . . , uk−1 > 0,
∑k−1
i=1 ui < 1}. Thus, we may denote the overall parameter by θ =

(qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1; γ1, . . . , γk) ∈ Θk where Θk = ∆k
k × Γk. To alleviate

notations we will write θ = (Q; γ1, . . . , γk), where Q = (qij)1≤i,j≤k, qik = 1 −
∑k−1
j=1 qij

for all i ≤ k.
Throughout the paper ∇θh denotes the gradient vector of the function h when consid-

ered as a function of θ, and Di
θh its i-th derivative operator with respect to θ, for i ≥ 1.

We denote by Bd(γ, ε) the d dimensional ball centered at γ with radius ε, when γ ∈ Rd.
The notation an & bn means that an is larger than bn up to a positive constant that is
fixed throughout.

Any Markov chain on a finite state space with transition matrix Q admits a stationary
distribution which we denote by µQ, if it admits more than one we choose one of them.
Then for any finite state space Markov chain with transition matrix Q it is possible to
define real numbers ρQ ≥ 1 such that, for any integer m, any j ≤ k

k∑
j=1

|(Qm)ij − µQ(j)| ≤ ρ−mQ , ρQ =

1−
k∑
j=1

min
1≤i≤k

qij

−1

(1)

where Qm is the m-step transition matrix of the Markov chain. If ρQ > 1, the Markov
chain (Xn)n≥1 is uniformly geometrically ergodic and µQ is its unique stationary distri-
bution. In the following we shall also denote µθ and ρθ in the place of µQ and ρQ when
θ = (Q; γ1, . . . , γk).

We write Pθ for the probability distribution of the stationary HMM (Xj , Yj)j≥1 with
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parameter θ. That is, for any integer n, any set A in the Borel σ-field of Xn × Yn:

Pθ ((X1, . . . , Xn, Y1, . . . , Yn) ∈ A)

=
k∑

x1,...,xn=1

∫
Yn

1lA(x1:n, y1:n)µQ(x1)
n−1∏
i=1

qxixi+1

n∏
i=1

gγxi (yi) ν(dy1) . . . ν(dyn).
(2)

Thus for any integer n, under Pθ, Y1:n = (Y1, . . . , Yn) has a probability density with
respect to ν(dy1) · · · ν(dyn) equal to

fn,θ(y1, . . . , yn) =
k∑

x1,...,xn=1

µQ(x1)
n−1∏
i=1

qxixi+1

n∏
i=1

gγxi (yi) . (3)

We note Eθ for the expectation under Pθ.
We denote Πk the prior distribution on Θk. As is often the case in Bayesian analysis

of HMMs, instead of computing the stationary distribution µQ of the hidden Markov
chain with transition matrix Q, we consider a probability distribution πX on the un-
observed initial state X0. Denote `n(θ, x0) the log-likelihood starting from x0, for all
x0 ∈ {1, . . . , k}, we have

`n (θ, x0) = log

[
k∑

x1,...,xn=1

n−1∏
i=0

qxixi+1

n∏
i=1

gγxi (yi)

]
.

The log-likelihood starting from a probability distribution πX on X is then given by
log
[∑k

x0=1 e
`n(θ,x0)πX (x0)

]
. This may also be interpreted as taking a prior Π = Πk⊗πX

over Θk × {1, . . . , k}. The posterior distribution can then be written as

PΠ (A|Y1:n) =

∑k
x0=1

∫
A
e`n(θ,x0)Πk (dθ)πX (x0)∑k

x0=1

∫
Θ
e`n(θ,x0)Πk (dθ)πX (x0)

(4)

for any Borel set A ⊂ Θk.
Let Mk be the set of all possible probability distributions Pθ for all θ ∈ Θk. We

say that the HMM Pθ has order k0 if the probability distribution of (Yn)n≥1 under Pθ
is in Mk0 and not in Mk for all k < k0. Notice that a HMM of order k0 may be
represented as a HMM of order k for any k > k0. Indeed, let Q0 be a k0 × k0 transition
matrix, and (γ0

1 , ...., γ
0
k0

) ∈ Γk0 be parameters that define a HMM of order k0. Then,
θ = (Q; γ0

1 , ...., γ
0
k0
, . . . , γ0

k0
) ∈ Θk with Q = (qij , 1 ≤ i, j ≤ k) such that :

qij = q0
ij i, j < k0

qij = q0
k0j i ≥ k0, j < k0,

k∑
l=k0

qil = q0
ik0

i ≤ k0, and
k∑

l=k0

qil = q0
k0k0

, i ≥ k0

(5)

imsart-bj ver. 2012/08/31 file: HMM-rev2.tex date: July 9, 2013
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gives Pθ = Pθ0 . Indeed, let (Xn)n≥1 be a Markov chain on {1, . . . , k} with transition
matrix Q. Let Z be the function from {1, . . . , k} to {1, . . . , k0} defined by Z(x) = x if
x ≤ k0 and Z(x) = k0 if x ≥ k0. Then (Z(Xn))n≥1 is a Markov chain on {1, . . . , k0} with
transition matrix Q0.

2.2. Posterior convergence rates for the finite marginal densities

Let θ0 = (Q0; γ0
1 , ...., γ

0
k0

) ∈ Θk0 , Q0 = (q0
ij)1≤i≤k0,1≤j≤k0 , be the parameter of a HMM

of order k0 ≤ k. We now assume that Pθ0 is the distribution of the observations. In
this section we fix an integer l and study the posterior distribution of the density of l
consecutive observations, that is fl,θ, given by (3) with n = l. We study the posterior
concentration rate around fl,θ0 in terms of the L1 loss function, when Pθ0 is possibly of
order k0 < k. In this case, Theorem 2.1 of de Gunst and Shcherbakova (2008) does not
apply and there is no result in the literature about the frequentist asymptotic properties
of the posterior distribution. The interesting and difficult feature of this case is that
even though θ0 is parameterized as an ergodic Markov chain Q0 with k states and some
identical emission parameters as described in (5), fl,θ0 can be approached by marginals
fl,θ for which ρθ is arbitrarily close to 1, which deteriorates the posterior concentration
rate, see Theorem 1.

Let π(u1, . . . , uk−1) be a prior density with respect to the Lebesgue measure on ∆k,
and let ω(γ) be a prior density on Γ (with respect to the Lebesgue measure on Rd). We
consider prior distributions such that the rows of the transitions matrix Q are indepen-
dently distributed from π and independent of the component parameters γi, i = 1, ..., k,
which are independently distributed from ω. Hence the prior density of Πk (with respect
to the Lebesgue measure) is equal to πk = π⊗k⊗ω⊗k. We still denote by πX a probability
on {1, . . . , k}, we assume that πX (x) > 0 for all x ∈ {1, . . . , k} and set Π = Πk⊗πX . We
shall use the following assumptions.

• A0 q0
ij > 0, 1 ≤ i ≤ k0, 1 ≤ j ≤ k0

• A1 The function γ 7→ gγ(y) is twice continuously differentiable in Γ, and for any
γ ∈ Γ, there exists ε > 0 such that∫

sup
γ′∈Bd(γ,ε)

‖∇γ log gγ′ (y) ‖2gγ (y) ν(dy) < +∞,
∫

sup
γ′∈Bd(γ,ε)

‖D2
γ log gγ′ (y) ‖2gγ (y) ν(dy) < +∞,

‖ supγ′∈Bd(γ,ε)∇γgγ′ (y) ‖ ∈ L1(ν) and ‖ supγ′∈Bd(γ,ε)D
2
γgγ′ (y) ‖ ∈ L1(ν)

• A2 There exist a > 0 and b > 0 such that

sup
‖γ‖≤nb

∫
‖∇γgγ (y) ‖dν(y) ≤ na.

• A3 π is continuous and positive on ∆0
k, and there exists C, α1 > 0, . . ., αk > 0

such that (Dirichlet type priors):

∀(u1, . . . , uk−1) ∈ ∆0
k, uk = 1−

k−1∑
i=1

ui, 0 < π (u1, . . . , uk−1) ≤ Cuα1−1
1 · · ·uαk−1

k
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and ω is continuous and positive on Γ and satisfies∫
‖x‖≥nb

ω(x)dx = o(n−k(k−1+d)/2), (6)

with b defined in assumption A2.

We will alternatively replace A3 by

• A3bis π is continuous and positive on ∆0
k, and there exists C such that (exponential

type priors):

∀(u1, . . . , uk−1) ∈ ∆0
k, uk = 1−

k−1∑
i=1

ui,

0 < π (u1, . . . , uk−1) ≤ C exp(−C/u1) · · · exp(−C/uk)

and ω is continuous and positive on Γ and satisfies (6).

Theorem 1 Assume A0-A3. Then, there exists K large enough such that

PΠ

[
θ : ‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
log n
n

∣∣∣∣∣Y1:n

]
= oPθ0 (1) (7)

where ρθ =
(

1−
∑k
j=1 inf1≤i≤k qij

)−1

. If moreover ᾱ :=
∑

1≤i≤k αi > k(k− 1 +d), then

PΠ
[
θ : ‖fl,θ − fl,θ0‖1 ≥ 2Kn−

ᾱ−k(k−1+d)
2ᾱ (log n)

∣∣∣Y1:n

]
= oPθ0 (1) . (8)

If we replace A3 by A3bis, then there exists K large enough such that

PΠ
[
θ : ‖fl,θ − fl,θ0‖1 ≥ 2Kn−1/2(log n)3/2

∣∣∣Y1:n

]
= oPθ0 (1) . (9)

Theorem 1 is proved in Section 4.1 as a consequence of Theorem 4 stated in Section
3, which gives posterior concentration rates for general HMMs.

Assumption A0 is the usual ergodic condition on the finite state space Markov chain.
Assumptions A1 and A2 are mild usual regularity conditions on the emission densities gγ
and hold for instance for multidimensional Gaussian distributions, Poisson distributions,
or any regular exponential families. Assumption A3 on the prior distribution of the
transition matrixQ is satisfied for instance if each row ofQ follows a Dirichlet distribution
or a mixture of Dirichlet distributions, as used in Nur et al. (2009), and assumption (6)
is verified for densities ω that have at most polynomial tails.

The constraint on ᾱ =
∑
i αi or condition A3bis are used to ensure that (8) and

(9) hold respectively. The posterior concentration result (7) implies that the posterior
distribution might put non negligible mass on values of θ for which ρθ − 1 is small
and ‖fl,θ − fl,θ0‖1 is not. These are parameter values associated to nearly non ergodic
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8 Gassiat and Rousseau

latent Markov chains. Since ρθ − 1 is small is equivalent to
∑
j mini qij is small, the

condition ᾱ > k(k − 1 + d) prevents such pathological behaviour by ensuring that the
prior mass of such sets is small enough. This condition is therefore of a different nature
than Rousseau and Mengersen (2011)’s condition on the prior, which characterizes the
asymptotic behaviour of the posterior distribution on the parameter θ. In other words,
their condition allows in (static) mixture models to go from a posterior concentration
result on fl,θ to a posterior concentration result on θ whereas, here, the constraint on ᾱ is
used to obtain a posterior concentration result on fl,θ. Going back from ‖fl,θ− fl,θ0‖1 to
the parameters requires a deeper understanding of the geometry of finite HMMs, similar
to the one developed in Gassiat and van Handel (2013). This will be needed to estimate
the order of the HMM in Section 2.3, and fully explored when k0 = 1 and k = 2 in
Section 2.4.

For general priors, we do not know whether the
√

log n factor appearing in (7) could
be replaced or not by any sequence tending to infinity. In the case where the αi’s are large
enough (Dirichlet type priors), and when k0 = 1 and k = 2, we obtain a concentration
rate without the

√
log n factor, see Lemma 2 in Section 3. To do so, we prove Lemma

3 in Section 3 for which we need to compute explicitely the stationary distribution and
the predictive probabilities to obtain a precise control of the likelihood, for θ’s such that
Pθ is near Pθ0 , and to control local entropies of slices for θ’s such that Pθ is near Pθ0 and
where ρθ − 1 might be small. It is not clear to us that extending such computations to
the general case is possible in a similar fashion. The log n terms appearing in (8) and (9)
are consequences of the

√
log n term appearing in (7).

2.3. Consistent Bayesian estimation of the number of states

To define a Bayesian estimator of the number of hidden states k0 , we need to de-
cide how many states have enough probability mass, and are such that their emission
parameters are different enough. We will be able to do it under the assumptions of The-
orem 1. Set wn = n−(ᾱ−k(k+d−1))/(2ᾱ) log n if A3 holds and ᾱ > k(k + d − 1), and set
wn = n−1/2(log n)3/2 if instead A3bis holds. Let (un)n≥1 and (vn)n≥1 be sequences of
positive real numbers tending to 0 as n tends to infinity such that wn = o(unvn). As in
Rousseau and Mengersen (2011), in the case of a misspecified model with k0 < k, fl,θ0
can be represented by merging components or by emptying extra components. For any
θ ∈ Θk, we thus define J (θ) as

J (θ) = {j : Pθ (X1 = j) ≥ un} ,

i.e. J(θ) corresponds to the set of non empty components. To cluster the components
that have similar emission parameters we define for all j ∈ J(θ)

Aj (θ) =
{
i ∈ J (θ) : ‖γj − γi‖2 ≤ vn

}
.

and the clusters are defined by : for all j1, j2 ∈ J(θ), j1 and j2 belong to the same cluster
(noted j1 ∼ j2) if and only if there exist r > 1 and i1, . . . , ir ∈ J(θ) with i1 = j1 and
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ir = j2 such that for all 1 ≤ l ≤ r− 1 Ail (θ)∩Ail+1 (θ) 6= ∅. We then define the effective
order of the HMM at θ as the number L (θ) of different clusters, i.e. as the number of
equivalent classes with respect to the equivalence relation ∼ defined above. By a good
choice of un and vn, we construct a consistent estimator of k0 by considering either the
posterior mode of L(θ) or its posterior median. This is presented in Theorem 2.

To prove that this gives a consistent estimator, we need an inequality that relates the
L1 distance between the l-marginals, ‖fl,θ− fl,θ0‖1, to a distance between the parameter
θ and parameters θ̃0 in Θk such that fl,θ̃0 = fl,θ0 . Such an inequality will be proved in
section 4.2, under the following structural assumption.

Let T = {t = (t1, . . . , tk0) ∈ {1, . . . , k}k0 : ti < ti+1, i = 0, . . . , k0 − 1}. If b is a vector,
bTdenotes its transpose.

• A4
For any t = (t1, . . . , tk0) ∈ T , any (πi)

k−tk0
i=1 ∈ (R+)k−tk0 (if tk0 < k), any

(ai)k0
i=1, (ci)

k0
i=1 ∈ Rk0 , (bi)k0

i=1 ∈ (Rd)k0 , any zi,j ∈ Rd, αi,j ∈ R, i = 1, . . . , k0, j =
1, . . . , ti − ti−1, (with t0 = 0), such that ‖zi,j‖ = 1, αi,j ≥ 0 and

∑ti−ti−1
j=1 αi,j = 1,

for any (γi)
k−tk0
i=1 which belong to Γ \ {γ0

i , i = 1, . . . , k0},

k−tk0∑
i=1

πigγi +
k0∑
i=1

(
aigγ0

i
+ bTi D

1gγ0
i

)
+

k0∑
i=1

c2i

ti−ti−1∑
j=1

αi,jz
T
i,jD

2gγ0
i
zi,j = 0, (10)

if and only if

ai = 0, bi = 0, ci = 0 ∀i = 1, . . . , k0, πi = 0 ∀i = 1, . . . , k − tk0 .

Assumption A4 is a weak identifiability condition for situations when k0 < k. Notice
that A4 is the same condition as in Rousseau and Mengersen (2011), it is satisfied in
particular for Poisson mixtures, location-scale Gaussian mixtures and any mixtures of
regular exponential families.

The following theorem says that the posterior distribution of L (θ) concentrates on
the true number k0 of hidden states.

Theorem 2 Assume that assumptions A0- A2 and A4 are verified. If either of the
following two situations holds

• Under assumption A3 (Dirichlet type prior), if ᾱ > k(k + d− 1) and

unvnn
(ᾱ−k(k+d−1))/(2ᾱ)

log n
→ +∞

• Under assumption A3bis (exponential type prior), if unvnn1/2/(log n)3/2 → +∞,

then
PΠ [ θ : L (θ) 6= k0|Y1:n] = oPθ0 (1) . (11)
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10 Gassiat and Rousseau

If k̂n is either the mode or the median of the posterior distribution of L(θ), then

k̂n = k0 + oPθ0 (1) (12)

One of the advantages of using such an estimate of the order of the HMM, is that we do
not need to consider a prior on k and use reversible-jump methods, see Richardson and Green
(1997), which can be tricky to implement. In particular we can consider a two - stage
procedure where k̂n is computed based on a model with k components where k is a
reasonable upper bound on k0 and then, fixing k = k̂n an empirical Bayes procedure
is defined on (Qi,j , i, j ≤ k̂n, γ1, . . . γk̂n). On the event k̂n = k0, which has probability
going to 1 under Pθ0 the model is regular and using the Bernstein - von Mises theorem
of de Gunst and Shcherbakova (2008), we obtain that with probability Pθ0 going to 1,
the posterior distribution of

√
n(θ − θ̂n) converges in distribution to the centered Gaus-

sian with variance V0, the inverse of Fisher information at parameter θ0, where θ̂n is an
efficient estimator of θ0 when the order is known to be k0, and

√
n(θ̂n− θ0) converges in

distribution to the centered Gaussian with variance V0 under Pθ0 .
The main point in the proof of Theorem 2 is to prove an inequality that relates the

L1 distance between the l-marginals, to a distance between the parameters of the HMM.
Under condition A4, we prove that there exists a constant c(θ0) > 0 such that for any
small enough positive ε,

‖fl,θ − fl,θ0‖1
c(θ0)

≥
∑

1≤j≤k:∀i,‖γj−γ0
i
‖>ε

Pθ (X1 = j) +
k0∑
i=1

|Pθ (X1 ∈ B(i))− Pθ0 (X1 = i)|

+
k0∑
i=1

‖ ∑
j∈B(i)

Pθ (X1 = j) (γj − γ0
i )‖+

1
2

∑
j∈B(i)

Pθ (X1 = j)
∥∥γj − γ0

i

∥∥2

 (13)

where B(i) = {j : ‖γj − γ0
i ‖ ≤ ε}. The above lower bound essentially corresponds to a

partition of {1, . . . , k} into k0 + 1 groups, where the first k0 groups correspond to the
components that are close to true distinct components in the multivariate mixture and
the last corresponds to components that are emptied. The first term on the right hand
side controls the weights of the components that are emptied (group k0 + 1), the second
term controls the sum of the weights of the components belonging to the i-th group,
for i = 1, . . . , k0 (components merging with the true i-th component), the third term
controls the distance between the mean value over the group i and the true value of the
i-th component in the true mixture while the last term controls the distance between
each parameter value in group i and the true value of the i-th component. A general
inequality implying (13), obtained under a weaker condition, namely A4bis, holds and
is stated and proved in Section 4.2.

As we have seen with Theorem 2, we can recover the true parameter θ0 using a two-
stage procedure where first k̂n is estimated. However it is also of interest to understand
better the behaviour of the posterior distribution in the first stage procedure and see if
some behaviour similar to what was observed in Rousseau and Mengersen (2011) holds

imsart-bj ver. 2012/08/31 file: HMM-rev2.tex date: July 9, 2013



posterior distribution for HMM 11

in the case of HMMs. From Theorem 1, it appears that HMMs present an extra difficulty
due to the fact that, when the order is overestimated, the neighbourhood of θ’s such that
Pθ = Pθ0 contains parameters leading to non ergodic HMMs. To have a more refined
understanding of the posterior distribution we restrict our attention in Section 2.4 to
the case where k = 2 and k0 = 1 which is still non trivial, see also Gassiat and Kéribin
(2000) for the description of pathological behaviours of the likelihood in such a case.

2.4. Posterior concentration for the parameters: the case k0 = 1
and k = 2

In this section we restrict our attention to the simpler case where k0 = 1 and k = 2. In
Theorem 3 below we prove that if a Dirichlet type prior is considered on the rows of the
transition matrix with parameters αj ’s that are large enough the posterior distribution
concentrates on the configuration where the two components (states) are merged (γ1 and
γ2 are close to one another). When k = 2, we can parameterize θ as θ = (p, q, γ1, γ2),
with 0 ≤ p ≤ 1, 0 ≤ q ≤ 1, so that

Qθ =
(

1− p p
q 1− q

)
, µθ =

(
q

p+ q
,

p

p+ q

)
when p 6= 0 or q 6= 0. If p = 0 and q = 0, set µθ =

(
1
2 ,

1
2

)
for instance. Also, we may take

ρθ − 1 = (p+ q) ∧ (2− (p+ q)) .

When k0 = 1, the observations are i.i.d. with distribution gγ0dν, so that one may take
θ0 = (p, 1− p, γ0, γ0) for any 0 < p < 1, or θ0 = (0, q, γ0, γ) for any 0 < q ≤ 1 and any γ,
or θ0 = (p, 0, γ, γ0) for any 0 < p ≤ 1 and any γ. Also, for any x ∈ X , Pθ0,x = Pθ0 and

`n(θ, x)− `n(θ0, x0) = `n(θ, x)− `n(θ0, x).

We take independent Beta priors on (p, q) :

Π2(dp, dq) = Cα,βp
α−1(1− p)β−1qα−1(1− q)β−11l0<p<11l0<q<1dpdq,

thus satisfying A3. Then the following holds:

Theorem 3 Assume that assumptions A0- A2 together with assumption A4 are verified
and consider the prior described above with ω(.) verifying A3. Assume moreover that for
all x, γ 7→ gγ(x) is four times continuously differentiable on Γ, and that for any γ ∈ Γ
there exists ε > 0 such that for any i ≤ 4,∫

sup
γ′∈Bd(γ,ε)

‖
Di
γgγ′

gγ′
(y) ‖4gγ (y) ν(dy) < +∞. (14)

Then, as soon as α > 3d/4 and β > 3d/4, for any sequence εn tending to 0,
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12 Gassiat and Rousseau

PΠ

(
p

p+ q
≤ εn or

q

p+ q
≤ εn|Y1:n

)
= oPθ0 (1),

and for any sequence Mn going to infinity,

PΠ
(
‖γ1 − γ0‖+ ‖γ2 − γ0‖ ≤Mnn

−1/4|Y1:n

)
= 1 + oPθ0 (1).

Theorem 3 says that the extra component cannot be emptied at rate εn, where the
sequence εn can be chosen to converge to 0 as slowly as we want, so that asymptotically,
under the posterior distribution neither p/(p+q) nor q/(p+p) are small, and the posterior
distribution concentrates on the configuration where the components merge, with the
emission parameters merging at rate n−1/4. Similarly in Rousseau and Mengersen (2011)
the authors obtain that, for independent variables, under a Dirichlet D(α1, . . . , αk) prior
on the weights of the mixture and if minαi > d/2, the posterior distribution concentrates
on configurations which do not empty the extra-components but merge them to true
components. The threshold here is 3d/2 instead of d/2. This is due to the fact that there
are more parameters involved in a HMM model associated to k states than in a k -
components mixture model. No result is obtained here in the case where the αi’s are
small. This is due to the existence of non ergodic Pθ in the vicinity of Pθ0 that are not
penalized by the prior in such cases. Our conclusion is thus to favour large values of the
αi’s.

3. A general theorem

In this section, we present a general theorem which is used to prove Theorem 1 but which
can be of interest in more general HMMs. We assume here that the unobserved Markov
chain (Xi)i≥1 lives in a Polish space X and the observations (Yi)i≥1 are conditionally
independent given (Xi)i≥1 and live in a Polish space Y. X ,Y are endowed with their
Borel σ-fields. We denote by θ ∈ Θ, where Θ is a subset of an Euclidian space, the
parameter describing the distribution of the HMM, so that Qθ, θ ∈ Θ is the Markov
kernel of (Xi)i≥1 and the conditional distribution of Yi given Xi has density with respect
to some given measure ν on Y denoted by gθ(y|x), x ∈ X , θ ∈ Θ. We assume that
the Markov kernels Qθ admit a (not necessarily unique) stationary distribution µθ, for
each θ ∈ Θ. We still write Pθ for the probability distribution of the stationary HMM
(Xj , Yj)j≥1 with parameter θ. That is, for any integer n, any set A in the Borel σ-field
of Xn × Yn:

Pθ ((X1, . . . , Xn, Y1, . . . , Yn) ∈ A) =
∫
A

µθ(dx1)
n−1∏
i=1

Qθ (xi, dxi+1)
n∏
i=1

gθ (yi|xi) ν(dy1) . . . ν(dyn).

(15)
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posterior distribution for HMM 13

Thus for any integer n, under Pθ, Y1:n = (Y1, . . . , Yn) has a probability density with
respect to ν(dy1) · · · ν(dyn) equal to

fn,θ(y1, . . . , yn) =
∫
Xn

µθ(dx1)
n−1∏
i=1

Qθ (xi, dxi+1)
n∏
i=1

gθ (yi|xi) . (16)

We denote by ΠΘ the prior distribution on Θ and by πX the prior probability on the
unobserved initial state, which might be different from the stationary distribution µθ.
We set Π = ΠΘ⊗πX . Similarly to before denote `n(θ, x) the log-likelihood starting from
x, for all x ∈ X .

We assume that we are given a stationary HMM (Xj , Yj)j≥1 with distribution Pθ0 for
some θ0 ∈ Θ.

For any θ ∈ Θ, it is possible to define real numbers ρθ ≥ 1 and 0 < Rθ ≤ 2 such that,
for any integer m, any x ∈ X

‖Qmθ (x, .)− µθ‖TV ≤ Rθρ−mθ (17)

where ‖ · ‖TV is the total variation norm. If it is possible to set ρθ > 1, the Markov
chain (Xn)n≥1 is uniformly ergodic and µθ is its unique stationary distribution. The
following theorem provides a posterior concentration result in a general HMM setting,
be it parametric or nonparametric and is an adaptation of Ghosal and van der Vaart
(2007) to the setup of HMMs. We present the assumptions needed to derive the posterior
concentration rate.

• C1 There exists A > 0 such that for any (x0, x1) ∈ X 2, Pθ0 almost surely, ∀n ∈ N,
|`n(θ0, x0) − `n(θ0, x1)| ≤ A, and there exist Sn ⊂ Θ × X , Cn > 0 and ε̃n > 0 a
sequence going to 0 with nε̃2n → +∞ such that

sup
(θ,x)∈Sn

Pθ0
[
`n(θ, x)− `n(θ0, x0) ≤ −nε̃2n

]
= o(1),Π[Sn] & e−Cnnε̃

2
n

• C2 There exists a sequence (Fn)n≥1 of subsets of Θ

ΠΘ(Fcn) = o(e−nε̃
2
n(1+Cn))

• C3 There exists a sequence εn ≥ ε̃n going to 0, such that (nε̃2n(1 +Cn))/(nε2n) goes
to 0 and

N
( εn

12
,Fn, dl(., .)

)
≤ e

nε2n(ρθ0
−1)2

16l(2Rθ0
+ρθ0

−1)2

where N(δ,Fn, dl(., .)) is the smallest number of θj ∈ Fn such that for all θ ∈ Fn
there exists a θj with dl(θj , θ) ≤ δ.
Here dl(θ, θj) = ‖fl,θ − fl,θj‖1 :=

∫
Yl |fl,θ − fl,θj |(y)dν⊗l(y).

• C3bis There exists a sequence εn ≥ ε̃n going to 0 such that∑
m≥1

ΠΘ (An,m (εn))
Π (Sn)

e−
nm2ε2n

32l = o(e−nε̃
2
n)
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14 Gassiat and Rousseau

and

N
(mεn

12
, An,m (εn) , dl(., .)

)
≤ e

nm2ε2n(ρθ0
−1)2

16l(2Rθ0
+ρθ0

−1)2 .

where

An,m (ε) = Fn ∩
{
θ : mε ≤ ‖fl,θ − fl,θ0‖1

ρθ − 1
2Rθ + ρθ − 1

≤ (m+ 1)ε
}
.

Theorem 4 Assume that ρθ0 > 1 and that assumptions C1-C2 are satisfied, together
with either assumption C3 or C3bis. Then

PΠ

[
θ : ‖fl,θ − fl,θ0‖1

ρθ − 1
2Rθ + ρθ − 1

≥ εn|Y1:n

]
= oPθ0 (1) .

Theorem 4 gives the posterior concentration rate of ‖fl,θ−fl,θ0‖1 up to the parameter
ρθ−1

2Rθ+ρθ−1 . In Ghosal and van der Vaart (2007), for models of non independent variables,
the authors consider a parameter space where the mixing coefficient term (for us ρθ − 1)
is uniformly bounded from below by a positive constant over Θ (see their assumption
(4.1) for the application to Markov chains or their assumption on F in Theorem 7 for
the application to Gaussian time series), or equivalently they consider a prior whose
support in Θ is included in a set where ρθ−1

2Rθ+ρθ−1 is uniformly bounded from below, so
that their posterior concentration rate is directly expressed in terms of ‖fl,θ − fl,θ0‖1.
Since we do not restrict ourselves to such frameworks the penalty term ρθ − 1 is incor-
porated in our result. However Theorem 4 is proved along the same lines as Theorem 1
of Ghosal and van der Vaart (2007).

The assumption ρθ0 > 1 implies that the hidden Markov chain X is uniformly ergodic.
Assumptions C1-C2 and either C3 or C3bis are similar in spirit to those considered
in general theorems on posterior consistency or posterior convergence rates, see for in-
stance Ghosh and Ramamoorthi (2003) and Ghosal and van der Vaart (2007). Assump-
tion C3bis is often used to eliminate some extra log n term which typically appear in
nonparametric posterior concentration rates and is used in particular in the proof of
Theorem 3.

4. Proofs

4.1. Proof of Theorem 1

The proof consists in showing that the assumptions of Theorem 4 are satisfied.
Following the proof of Lemma 2 of Douc et al. (2004) we find that, since ρθ0 > 1, for any
x0 ∈ X ,

|`n (θ0, x0)− `n (θ0, x1) | ≤ 2
(

ρθ0
ρθ0 − 1

)2

.
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posterior distribution for HMM 15

so that setting A = 2
(

ρθ0
ρθ0−1

)2

the first point of C1 holds.

We shall verify assumption C1 with ε̃n = Mn/
√
n for some Mn tending slowly enough to

infinity and that will be chosen later. Note that the assumption A0 and the construction
(5) allow to define a θ̃0 ∈ Θk such that , writing θ̃0 = (Q̃0, γ̃0

1 , . . . , γ̃
0
k) with Q̃0 =

(q̃0
i,j , i, j ≤ k), if V is a bounded subset of {θ = (Q, γ1, . . . , γk); |qi,j − q̃0

i,j | ≤ ε̃n}, then

inf
θ∈V

ρθ > 1, (18)

for large enough n, and

sup
θ∈V

sup
x,x0∈X

|`n (θ, x)− `n (θ, x0)| ≤ 2 sup
θ∈V

(
ρθ

ρθ − 1

)2

.

Following the proof of Lemma 2 of Douc et al. (2004) gives that, if A0 and A1 hold, for
all θ ∈ V Pθ0-a.s.,

`n (θ, x0)− `n (θ0, x0) = (θ − θ0)T ∇θ`n (θ0, x0)

+
∫ 1

0

(θ − θ0)T D2
θ`n (θ0 + u(θ − θ0), x0) (θ − θ0) (1− u)du.

(19)

Following Theorem 2 in Douc et al. (2004), n−1/2∇θ`n(θ0, x) converges in distribution
under Pθ0 to N (0, V0) for some positive definite matrix V0, and following Theorem 3 in
Douc et al. (2004), we get that supθ∈V n−1D2

θ`n(θ, x0) converges Pθ0 a.s. to V0. Thus, we
may set:

Sn =
{
θ ∈ V ; ‖γj − γ0

j ‖ ≤ 1/
√
n∀j ≤ k

}
×X

so that
sup

(θ,x)∈Sn
Pθ0 [`n(θ, x)− `n(θ0, x0) < −Mn] = o(1). (20)

Moreover, letting D = k(k − 1 + d), we have Π ⊗ ΠX (Sn) & n−D/2 and C1 is then
satisfied setting Cn = D log n/(2M2

n).

Let now vn = n−D/(2 min1≤i≤k αi)/
√

log n and un = n
−D/(2

∑
1≤i≤k

αi)/
√

log n, and define

Fn = {θ = (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1; γ1, ...., γk) : qij ≥ vn, 1 ≤ i ≤ k, 1 ≤ j ≤ k,
k∑
j=1

inf
1≤i≤k

qij ≥ un, ‖γi‖ ≤ nb, 1 ≤ i ≤ k

 .

Now, if θ ∈ Fcn, then there exist 1 ≤ i, j ≤ k such that qij ≤ vn, or
∑k
j=1 inf1≤i≤k qij ≤

un, or there exists 1 ≤ i ≤ k such that ‖γi‖ ≥ nb. Using A3 we easily obtain that for
fixed i and j, Π({θ : qij ≤ vn}) = O(vαjn ) and Π({θ : ‖γi‖ ≥ nb}) = o(n−D/2). Also,
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16 Gassiat and Rousseau

if
∑k
j=1 inf1≤i≤k qij ≤ un, then there exists a function i(·) from {1, . . . , k} to {1, . . . , k}

whose image set has cardinality at least 2 such that
∑k
j=1 qi(j)j ≤ un. This gives, using

A3, Π({θ :
∑k
j=1 inf1≤i≤k qij ≤ un}) = O(u

∑
1≤i≤k

αi
n ). Thus,

Π(Fcn) = O(vmin1≤i≤k αi
n + u

∑
1≤i≤k

αi
n ) + o

(
n−D/2

)
.

We may now chooseMn tending to infinity slowly enough so that vmin1≤i≤k αi
n +u

∑
1≤i≤k

αi
n =

o(e−Mnn−D/2) and Π(Fcn) = o(e−Mnn−D/2). Then, C2 holds.
Now, using the definition of fl,θ, we obtain that

‖fl,θ1 − fl,θ2‖1 ≤
k∑
j=1

|µθ1 − µθ2 |+ l

k∑
i,j=1

|Q1
i,j −Q2

i,j |+ lmax
j≤k
‖gγ1

j
− gγ2

j
‖1

so that using Lemma 1 below, A1 and A2 we get that for some constant B, ∀(θ1, θ2) ∈ F2
n

‖fl,θ1 − fl,θ2‖1 ≤ B
(

1
v2c
n

+ na
)
‖θ1 − θ2‖ .

Thus for some other constant B̃,

N(δ,Fn, d(., .)) ≤

[
B̃

δ

(
1
v2c
n

+ na
)]k(k−1)+kd

and C3 holds when setting εn = K
√

logn
n with K large enough.

We have proved that under assumptions A0, A1, A2, A3, Theorem 4 applies with

εn = K
√

logn
n so that

PΠ

[
‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
log n
n

∣∣∣∣∣Y1:n

]
= oPθ0 (1)

and the first part of Theorem 1 is proved. Now

oPθ0 (1) = PΠ

[
‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
log n
n

∣∣∣∣∣Y1:n

]

= PΠ

[
θ ∈ Fn and ‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
log n
n

∣∣∣∣∣Y1:n

]
+ oPθ0 (1) .

Since ρθ − 1 ≥
∑k
j=1 min1≤i≤k qij , for all θ ∈ Fn, ρθ − 1 ≥ un,

PΠ

[
‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
log n
n
|Y1:n

]
≥ PΠ

[
‖fl,θ − fl,θ0‖1 ≥ 2K

1
un

√
log n
n
|Y1:n

]
,
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and the theorem follows when A3 holds. If now A3bis holds instead of A3, one gets,
taking un = vn = h/ log n, with h > 2C/(k + d− 1)

Π(Fcn) = O(vn exp(−C/vn)) + o
(
n−D/2

)
= o(e−Mnn−D/2)

by choosing Mn increasing to infinity slowly enough so that C2 and C3 hold. The end
of the proof follows similarly as before.

To finish the proof of Theorem 1 we need to prove

Lemma 1 The function θ 7→ µθ is continuously differentiable in (∆0
k)k × Γk and there

exists an integer c > 0 and a constant C > 0 such that for any 1 ≤ i ≤ k, 1 ≤ j ≤ k− 1,
any m = 1, . . . , k, ∣∣∣∣∂µθ (m)

∂qij

∣∣∣∣ ≤ C

(infi′ 6=j′ qi′j′)2c
.

One may take c = k − 1.

Let θ = (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1; γ1, ...., γk) be such that (qij , 1 ≤ i ≤ k, 1 ≤ j ≤
k − 1) ∈ ∆k

0 , Qθ = (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k) is a k × k stochastic matrix with positive
entries, and µθ is uniquely defined by the equation

µTθ Qθ = µTθ

if µθ is the vector (µθ(m))1≤m≤k. This equation is solved by linear algebra as

µθ (m) =
Pm(qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1)
R(qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1)

, m = 1, . . . , k − 1, µθ (k) = 1−
k−1∑
m=1

µθ (m) ,

(21)
where Pm, l = 1, . . . , k − 1 and R are polynomials where the coefficients are integers
(bounded by k) and the monomials are all of degree k − 1, each variable qij , 1 ≤ i ≤
k, 1 ≤ j ≤ k − 1 appearing with power 0 or 1. Now, since the equation has a unique
solution as soon as (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1) ∈ ∆k

0 , then R is never 0 on ∆k
0 ,

so it may be 0 only at the boundary. Thus, as a fraction of polynomials with non zero
denominator, θ 7→ µθ is infinitely differentiable in (∆0

k)k × Γk, and the derivative has
components all of form

P (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1)
R(qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1)2

where again P is a polynomial where the coefficients are integers (bounded by 2k) and
the monomials are all of degree k−1, each variable qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k−1 appearing
with power 0 or 1. Thus, since all qij ’s are bounded by 1 there exists a constant C such
that for all m = 1, . . . , k, i = 1, . . . , k, j = 1, . . . , k − 1,∣∣∣∣∂µθ(m)

∂qij

∣∣∣∣ ≤ C

R(qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1)2
. (22)
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18 Gassiat and Rousseau

We shall now prove that

R (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1) ≥ ( inf
1≤i≤k,1≤j≤k,i 6=j

qij)k−1, (23)

which combined with (22) and (23) implies Lemma 1. Note that we can express R as a
polynomial function of Q = qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j. Indeed, µ := (µθ(i))1≤i≤k−1

is solution of
µT ·M = V T

where V is the (k − 1)-dimensional vector (qkj)1≤j≤k−1, and M is the (k − 1)× (k − 1)-
matrix with components Mi,j = qkj − qij + 1li=j . Since R is the determinant of M , this
leads to, for any k ≥ 2 :

R =
∑

σ∈Sk−1

ε (σ)
∏

1≤i≤k−1,σ(i)=i

qki +
∑

1≤j≤k−1,j 6=i

qij

 ∏
1≤i≤k−1,σ(i)6=i

(
qki − qσ(i)i

)
(24)

where for any integer n, Sn is the set of permutations of {1, . . . , n}, and for each permu-
tation σ, ε (σ) is its signature. Thus R is a polynomial in the components of Q where each
monomial has integer coefficient and has k− 1 different factors. The possible monomials
are of form

β
∏
i∈A

qki
∏
i∈B

qij(i)

where (A,B) is a partition of {1, . . . , k − 1}, and for all i ∈ B, j(i) ∈ {1, . . . , k − 1} and
j(i) 6= i. In case B = ∅, the coefficient β of the monomial is

∑
σ∈Sk−1

ε (σ) = 0, so that we
only consider partitions such that B 6= ∅ . Fix such a monomial with non nul coefficient,
let (A,B) be the associated partition. Let Q be such that, for all i ∈ A, qki > 0, for all
i /∈ A, qki = 0 and qkk > 0 (used to handle the case A = ∅). Fix also qij(i) = 1 for all
i ∈ B. Then, if (A′, B′) is another partition of {1, . . . , k− 1} with B′ 6= ∅, the monomial∏
i∈A′ qki

∏
i∈B′ qij(i) = 0. Thus, R(Q) equals

∏
i∈A qki

∏
i∈B qij(i) times the coefficient

of the monomial. But R(Q) ≥ 0, so that this coefficient is a positive integer and (23)
follows.

4.2. Proof of Theorem 2

Applying Theorem 1, we get that under the assumptions of Theorem 2, there exists K
such that

Pθ0
(
‖fl,θ − fl,θ0‖1 ≤ 2Kwn|Y1:n

)
= 1 + oPθ0 (1).

But if inequality (13) holds, then as soon as

‖fl,θ − fl,θ0‖1 . wn (25)

we get that, for any j ∈ {1, . . . , k}, either Pθ (X1 = j) . wn, or

∃i ∈ {1, . . . , k0}, Pθ (X1 = j) ‖γj − γ0
i ‖2 . wn.
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Let us choose ε ≤ mini 6=j ‖γ0
i − γ0

j ‖/4 in the definition of B(i) in (13). We then obtain
that for large enough n, all j1, j2 ∈ J(θ), we have j1 ∼ j2 if and only if they belong to
the same B(i), i = 1, . . . , k0, so that L(θ) ≤ k0. On the other hand, L(θ) < k0 would
mean that at least one B(i) would be empty which contradicts the fact that

|Pθ (X1 ∈ B(i))− Pθ0 (X1 = i)| ≤ wn.

Thus, for large enough n, if (25) holds, then L(θ) = k0, so that

PΠ [L(θ) = k0|Y n] = 1 + oPθ0 (1).

To finish the proof we now prove that (13) holds under the assumptions of Theorem
2. This will follow from Proposition 1 below which is slightly more general.
An inequality that relates the L1 distance of the l-marginals to the parameters of the
HMM is proved in Gassiat and van Handel (2013) for translation mixture models, with
the strength of being uniform over the number (possibly infinite) of populations in
the mixture. However for our purpose, we do not need such a general result, and it
is possible to obtain it for more general situations than families of translated distribu-
tions, under the structural assumption A4. The inequality following Theorem 3.10 of
Gassiat and van Handel (2013) says that there exists a constant c(θ0) > 0 such that for
any small enough positive ε,

‖fl,θ − fl,θ0‖1
c(θ0)

≥
∑

1≤j≤k:∀i,‖γj−γ0
i
‖>ε

Pθ (X1 = j)

+
∑

1≤i1,...,il≤k0

[|Pθ (X1:l ∈ A(i1, . . . , il))− Pθ0 (X1:l = i1 · · · il)|

+

∥∥∥∥∥∥
∑

(j1,...,jl)∈A(i1,...,il)

Pθ (X1:l = j1 · · · jl)


 γj1
· · ·
γjl

−
 γ0

i1
· · ·
γ0
il


∥∥∥∥∥∥

+
1
2

∑
(j1,...,jl)∈A(i1,...,il)

Pθ (X1:l = j1 · · · jl)

∥∥∥∥∥∥
 γj1
· · ·
γjl

−
 γ0

i1
· · ·
γ0
il

∥∥∥∥∥∥
2
 (26)

where A(i1, . . . , il) = {(j1, . . . , jl) : ‖γj1 − γ0
i1
‖ ≤ ε, . . . , ‖γjl − γ0

il
‖ ≤ ε}. The above

lower bound essentially corresponds to a partition of {1, . . . , k}l into kl0 + 1 groups,
where the first kl0 groups correspond to the components that are close to true distinct
components in the multivariate mixture and the last corresponds to components that are
emptied. The first term on the right hand side controls the weights of the components
that are emptied (group kl0 + 1), the second term controls the sum of the weights of the
components belonging to the i-th group, for i = 1, . . . , kl0 (components merging with the
true i-th component), the third term controls the distance between the mean value over
the group i and the true value of the i-th component in the true mixture while the last
term controls the distance between each parameter value in group i and the true value
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of the i-th component.
Notice that (13) is a consequence of (26). We shall prove that (26) holds under an
assumption slightly more general than A4. For this we need to introduce some notations.
For all I = (i1, . . . , il) ∈ {1, · · · , k}l, define γI = (γi1 , . . . , γil), GγI =

∏l
t=1 gγit (yt),

D1GγI the vector of first derivatives of GγI with respect to each of the distinct elements in
γI , note that it has dimension d×|I|, where |I| denotes the number of distinct indices in I,
and similarly define D2GγI the symmetric matrix in Rd|I|×d|I| made of second derivatives
of GγI with respect to the distinct elements (indices) in γI . For any t = (t1, . . . , tk0) ∈ T ,
define for all i ∈ {1, . . . , k0} the set J(i) = {ti−1 + 1, . . . , ti}, using t0 = 0.

We then consider the following condition :

• Assumption A4bis For any t = (t1, . . . , tk0) ∈ T , for all collections (πI)I , (γI)I ,
I /∈ {1, . . . , tk0}l satisfying πI ≥ 0, γI = (γi1 , . . . , γil) such that γij = γ0

i when
ij ∈ J(i) for some i ≤ k0 and γij ∈ Γ \ {γ0

i , i = 1, . . . , k0} when ij /∈ {1, . . . , tk0},
for all collections (aI)I , (cI)I , (bI)I , I ∈ {1, . . . , k0}l, aI ∈ R, cI ≥ 0 and bI ∈ Rd|I|,
for all collection of vectors zI,J ∈ Rd|I| with I ∈ {1, . . . , k0}l and J ∈ J(i1) ×
· · · × J(il) satisfying ‖zI,J‖ = 1, and all sequences (αI,J), satisfying αI,J ≥ 0 and∑
J∈J(i1)×···×J(il)

αI,J = 1,∑
I /∈{1,...,tk0}l

πIGγI +
∑

I∈{1,...,k0}l

(
aIGγ0

I
+ bTI D

1Gγ0
I

)
+

∑
I∈{1,...,k0}l

cI
∑

J∈J(i1)×···×J(il)

αI,Jz
T
I,JD

2Gγ0
I
zI,J = 0

⇔ ∑
I /∈{1,...,tk0}l

πI +
∑

I∈{1,...,k0}l
(|aI |+ ‖bI‖+ cI) = 0

(27)

We have:

Proposition 1 Assume that the function γ 7→ gγ(y) is twice continuously differentiable
in Γ and that for all y, gγ(y) vanishes as ‖γ‖ tends to infinity. Then, if Assumption
A4bis is verified, (26) holds. Moreover, condition A4bis is verified as soon as condition
A4 (corresponding to l = 1) is verified.

Let us now prove Proposition 1. To prove the first part of the Proposition we follow the
ideas of the beginning of the proof of Theorem 5.11 in Gassiat and van Handel (2013).
If (26) does not hold, there exist a sequence of l-marginals (fl,θn)n≥1 with parameters
(θn)n≥1 such that for some positive sequence εn tending to 0, ‖fl,θn − fl,θ0‖1/Nn(θn)
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tends to 0 as n tends to infinity, with

Nn (θ) =
∑

1≤j≤l:∀i,‖γj−γ0
i
‖>εn

Pθ (X1 = j)

+
∑

1≤i1,...,il≤k0

| ∑
(j1,...,jl)∈An(i1,...,il)

Pθ (X1:l = j1 · · · jl)− Pθ0 (X1:l = i1 · · · il) |

+

∥∥∥∥∥∥
∑

(j1,...,jl)∈An(i1,...,il)

Pθ (X1:l = j1 . . . jl)


 γj1
· · ·
γjl

−
 γ0

i1
· · ·
γ0
il


∥∥∥∥∥∥

+
1
2

∑
(j1,...,jl)∈An(i1,...,il)

Pθ (X1:l = j1 · · · jl)

∥∥∥∥∥∥
 γj1
· · ·
γjl

−
 γ0

i1
· · ·
γ0
il

∥∥∥∥∥∥
2


with An(i1, . . . , il) = {(j1, . . . , jl) : ‖γj1 − γ0
i1
‖ ≤ εn, . . . , ‖γjl − γ0

il
‖ ≤ εn}.

Now, fl,θn =
∑
I∈{1,...,k}l Pθn (X1, . . . , Xl = I)Gγn

I
where θn = (Qn, (γn1 , . . . , γ

n
k )), Qn a

transition matrix on {1, . . . , k}. It is possible to extract a subsequence along which, for
all i = 1, . . . , k, either γni converges to some limit γi or ‖γni ‖ tends to infinity. Choose
now the indexation such that for i = 1, . . . , t1, γni converges to γ0

1 , for i = t1 + 1, . . . , t2,
γni converges to γ0

2 , and so on, for i = tk0−1 + 1, . . . , tk0 , γni converges to γ0
k0

, and if
tk0 < k, for some k̃ ≤ k, for i = tk0 + 1, . . . , k̃, γni converges to some γi /∈ {γ0

1 , . . . , γ
0
k0
},

and for i = k̃ + 1, . . . , k, ‖γni ‖ tends to infinity. It is possible that k̃ = tk0 in which case
no γni converges to some γi /∈ {γ0

1 , . . . , γ
0
k0
}. Such a t = (t1, . . . , tk0) ∈ T exists, because

if ‖fl,θn − fl,θ0‖1/Nn(θn) tends to 0 as n tends to infinity, ‖fl,θn − fl,θ0‖1, and Nn(θn)
tends to 0 as n tends to infinity (if it was not the case, using the regularity of θ 7→ fl,θ we
would have a contradiction). Now along the subsequence we may write, for large enough
n:

Nn (θn) =
∑

I /∈{1,...,tk0}l
Pθ (X1:l = I)+

∑
I∈{1,...,k0}l

∣∣∣∣∣∣
∑

J∈J(i1)×···×J(il)

Pθ (X1:l = J)− Pθ0 (X1:l = I)

∣∣∣∣∣∣
+‖

∑
J∈J(i1)×···×J(il)

Pθ (X1:l = J)
(
γJ − γ0

I

)
‖+

1
2

∑
J∈J(i1)×···×J(il)

Pθ (X1:l = J)
∥∥γJ − γ0

I

∥∥2

 .
We shall use a Taylor expansion till order 2. To be perfectly rigorous in the following,
we need to express explicitely I in terms of its distinct indices, (̃i1, · · · , ĩ|I|), so that
GγI =

∏|I|
t=1

∏
j:ij=ĩt

gγĩt
(yj), but to keep notations concise we do not make such a

distinction and for instance (γnJ − γ0
I )TD1Gγ0

I
means

|I|∑
t=1

(γĩt − γ
0
ĩt

)T
∂GγI
∂γĩt

,
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and similarly for the second derivatives. We have

fl,θn − fl,θ0 =
∑

I /∈{1,...,tk0}l
Pθ (X1:l = I)Gγn

I

+
∑

I∈{1,...,k0}l


 ∑
J∈J(i1)×···×J(il)

Pθ (X1:l = J)− Pθ0 (X1:l = I)

Gγ0
I

+
∑

J∈J(i1)×···×J(il)

Pθ (X1:l = J)
(
γJ − γ0

I

)T
D1Gγ0

I

+
1
2

∑
J∈J(i1)×···×J(il)

Pθ (X1:l = J)
(
γJ − γ0

I

)T
D2Gγ∗

I

(
γJ − γ0

I

)
with γ∗I ∈ (γnI , γ

0
I ). Thus, using the fact that for all y, gγ(y) vanishes as ‖γ‖ tends to

infinity, fl,θn − fl,θ0/Nn(θn) converges pointwise along a subsequence to a function h of
form

h =
∑

I /∈{1,...,tk0}l
πIGγI +

∑
I∈{1,...,k0}l

(
aIGγ0

I
+ bTI D

1Gγ0
I

)
+

∑
I∈{1,...,k0}l

cI
∑

J∈J(i1)×···×J(il)

αI,Jz
T
I,JD

2Gγ0
I
zI,J

as in condition L(l), with
∑
I /∈{1,...,tk0}l

πI +
∑
I∈{1,...,k0}l (|aI |+ ‖bI‖+ cI) = 1. But as

‖fl,θn − fl,θ0‖1/Nn(θn) tends to 0 as n tends to infinity, we have ‖h‖1 = 0 by Fatou’s
lemma, and thus h = 0, contradicting the assumption.

Let us now prove that A4 implies A4bis. Let∑
I /∈{1,...,tk0}l

πIGγI +
∑

I∈{1,...,k0}l

(
aIGγ0

I
+ bTI D

1Gγ0
I

)
+

∑
I∈{1,...,k0}l

cI
∑

J∈J(i1)×···×J(il)

αI,Jz
T
I,JD

2Gγ0
I
zI,J = 0

⇔ ∑
I /∈{1,...,tk0}l

πI +
∑

I∈{1,...,k0}l
(|aI |+ ‖bI‖+ cI) = 0

with πI , aI , bI , αI,J and zI,J be as in assumption A4bis. We group the terms depending
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only on y1 and we can rewrite the equation as

k∑
i=tk0+1

π′i(y2, · · · , yl)gγi(y1) +
k0∑
i=1

(
a′i(y2, · · · , yl)gγ0

i
(y1) + b′Ti (y2, · · · , yl)D1gγ0

i
(y1)

)

+
k0∑
i=1

ti−ti−1∑
j=1

k0∑
i2,··· ,il=1

c′I
∑

(j2,··· ,jl)∈J(i2)×···×J(il)

αI,JzI,J(i)TD2gγ0
i
(y1)zI,J(i) = 0

(28)

where we have written

zI,J = (zI,J(i1), · · · , zI,J(il)), with I = (i, i2, · · · , il) J = (j1, · · · , jl), zI,J(i) ∈ Rd

and

c′I = cI

l∏
t=2

gγ0
it

(yt)

Note that if for i = 1, · · · , k0 and j = 1, · · · , ti − ti−1, there exists wi,j ∈ Rd such that

k0∑
i2,··· ,il=1

c′I
∑

(j2,··· ,jl)∈J(i2)×···×J(il)

αI,JzI,J(i)TD2gγ0
i
(y1)zI,J(i) = wTi,jD

2gγ0
i
(y1)wi,j

where possibly wi,j = 0. Let αi,j = ‖wi,j‖2/(
∑ti−ti−1
j=1 ‖wi,j‖2) if there exists j such that

‖wi,j‖2 > 0 and c′i =
∑
i2,··· ,il c

′
I

∑ti−ti−1
j=1 ‖wi,j‖2, then

ti−ti−1∑
j=1

k0∑
i2,··· ,il=1

c′I
∑

(j2,··· ,jl)∈J(i2)×···×J(il)

αI,JzI,J(i)TD2gγ0
i
(y1)zI,J(i) = c′i

ti−ti−1∑
j=1

αi,jw
T
i,jD

2gγ0
i
(y1)wi,j .

and (10) implies that

a′i = c′i = 0, b′i = 0 i = 1, · · · , k0, π′i = 0, i = tk0 + 1, · · · k

Simple calculations imply that

π′i =
k∑

i2,··· ,il=1

πI

l∏
t=2

gγ0
it

(yt) = 0 ⇔ ∀(i2, · · · , il) ∈ {1, · · · , k}l−2πi,i2,··· ,il = 0

and similarly if i is such that there exists j = 1, · · · , ti − ti−1, I = (i, i2, · · · , il) and
J = (j, j2, · · · , jl) ∈ J(i) × · · · × J(il) such that cI > 0, αJ > 0 and ‖zI,J(i)‖ > 0, then
ci,i2,··· ,il = 0 for all i2, · · · , il. Else, by considering yt for some other t, we obtain that
(28) implies that

πI = 0 ∀I /∈ {1, . . . , tk0}l, cI = 0 ∀I ∈ {1, . . . , tk0}l.
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This leads to

b′i =
k0∑

i2,··· ,il=1

bI
∏
t≥2

gγ0
it

(yt) = 0 ∀i = 1, · · · , k0.

A simple recursive argument implies that bI = 0 for all I ∈ {1, . . . , tk0}l which in turns
implies that aI = 0 for all I ∈ {1, . . . , tk0}l and condition A4bis is verified.

4.3. Proof of Theorem 3

First we obtain

Lemma 2 Under the assumptions of Theorem 3, for any sequence Mn tending to infin-
ity,

PΠ

(
(p+ q) ∧ (2− (p+ q)) ‖f2,θ − f2,θ0‖1 ≤

Mn√
n

)
= 1 + oPθ0 (1).

We prove Lemma 2 by applying Theorem 4, using some of the computations of the
proof of Theorem 1 but verifying assumption C3bis instead of C3. Set Sn = Un × X
with

Un =
{
θ = (p, q, γ1, γ2) : ‖γ1 − γ0‖2 ≤ 1√

n
, ‖γ2 − γ0‖2 ≤ 1√

n
, ‖q(γ1 − γ0) + p(γ2 − γ0)‖ ≤ 1√

n
,

|q − 1
2
| ≤ ε, |p− 1

2
| ≤ ε

}
for small but fixed ε. We shall prove later the following:

Lemma 3 Let Mn tend to infinity. Then

sup
(θ,x)∈Sn

Pθ0 [`n(θ, x)− `n(θ0, x0) < −Mn] = o(1)

and
Π(Sn) & n−3d/4. (29)

Now we prove that assumption C3bis holds with εn = Mn/
√
n, which will finish the

proof of Lemma 2.By Proposition 1 we obtain that there exists c(θ0) > 0 and η > 0 such
that:

• If ‖γ1 − γ0‖ ≤ η and ‖γ2 − γ0‖ ≤ η,

‖f2,θ − f2,θ0‖1 ≥ c(θ0)
1

p+ q

[∥∥q(γ1 − γ0) + p(γ2 − γ0)
∥∥+ q

∥∥γ1 − γ0
∥∥2

+ p
∥∥γ2 − γ0

∥∥2
]
,
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• If ‖γ1 − γ0‖ ≤ η and ‖γ1 − γ0‖+ ‖γ2 − γ0‖ > 2η,

‖f2,θ − f2,θ0‖1 ≥ c(θ0)
[

p

p+ q
+

q

p+ q

∥∥γ1 − γ0
∥∥] ,

• If ‖γ2 − γ0‖ ≤ η and ‖γ1 − γ0‖+ ‖γ2 − γ0‖ > 2η,

‖f2,θ − f2,θ0‖1 ≥ c(θ0)
[

q

p+ q
+

p

p+ q

∥∥γ2 − γ0
∥∥] ,

• If ‖γ1 − γ0‖ > η and ‖γ2 − γ0‖ > η,

‖f2,θ − f2,θ0‖1 ≥ c(θ0).

Similar upper bounds hold also by Taylor expansion. Thus, for any m, An,m(εn) is a
subset of the set of θ’s such that

min
{

(p+ q) ∧ (2− (p+ q))
p+ q

[∥∥q(γ1 − γ0) + p(γ2 − γ0)
∥∥+ q

∥∥γ1 − γ0
∥∥2

+ p
∥∥γ2 − γ0

∥∥2
]

;

(p+ q) ∧ (2− (p+ q))
p+ q

[
p+ q

∥∥γ1 − γ0
∥∥] ;

(p+ q) ∧ (2− (p+ q))
p+ q

[
q + p

∥∥γ2 − γ0
∥∥] ;

(p+ q) ∧ (2− (p+ q))} . (m+ 1)εn.

This leads to

Π2 (An,m(εn)) . [(m+ 1)εn]2α + [(m+ 1)εn]2β + [(m+ 1)εn]α+d

so that if α, β > 3d/4 and (29) holds, there exists δ > 0 such that

Π2 (An,m(εn)) e−
nm2ε2n

32l

Π(Sn)
. n−δ[(Mnm)2α + (Mnm)2β + (Mnm)α+d]e−

M2
nm

2

32l .

Also for all ε > 0 small enough An,m(ε) contains the set of θ’s such that

max
{

(p+ q) ∧ (2− (p+ q))
p+ q

[∥∥q(γ1 − γ0) + p(γ2 − γ0)
∥∥+ q

∥∥γ1 − γ0
∥∥2

+ p
∥∥γ2 − γ0

∥∥2
]

;

(p+ q) ∧ (2− (p+ q))
p+ q

[
p+ q

∥∥γ1 − γ0
∥∥] ;

(p+ q) ∧ (2− (p+ q))
p+ q

[
q + p

∥∥γ2 − γ0
∥∥] ;

(p+ q) ∧ (2− (p+ q))} . (m+ 1)ε

therefore

N(
mεn
12

, An,m (εn) , dl(., .)) . m2+2d . e

nε2nm
2(ρθ0

−1)2

16l(2+ρθ0
−1)2 ,

so that assumption C3bis is verified.
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We now prove Theorem 3. Notice first that, by settingDn =
∫

Θ×X e
`n(θ,x)−`n(θ0,x0)Π2(dθ)πX (dx),

as in the proof of Theorem 4 we get that for any sequence Cn tending to infinity,

Pθ0
(
Dn ≤ Cnn−D/2

)
= o (1) (30)

with D = d+ d/2.
Let now εn be any sequence going to 0 and let An =

{
p
p+q ≤ εn or q

p+q ≤ εn
}
. For some

sequenceMn going to infinity and δn = Mn/
√
n, letBn = {(p+ q)∧(2− (p+ q)) ‖f2,θ − f2,θ0‖1 ≤

δn}. We then control with D = d+ d/2, using Lemma 2

Eθ0
[
PΠ (An|Y1:n)

]
= Eθ0

[
PΠ (An ∩Bn|Y1:n)

]
+ o (1)

= Eθ0

[∫
An∩Bn×X e

`n(θ,x)−`n(θ0,x0)Π2(dθ)πX (dx)∫
Θ×X e

`n(θ,x)−`n(θ0,x0)Π2(dθ)πX (dx)

]
+ o (1)

:= Eθ0

[
Nn
Dn

]
+ o (1)

≤ Pθ0
(
Dn ≤ Cnn−D/2

)
+
nD/2

Cn
Π2(An ∩Bn) + o (1) .

Thus using (30) the first part of Theorem 3 is proved by showing that

Π2(An ∩Bn) . δ2α
n + δα+d

n + δd+d/2
n εα−d/2n . (31)

Then, the second part of Theorem 3 follows from its first part and Lemma 2.

We now prove that (31) holds. Define

B1
n =

{
(p+ q) ∧ (2− (p+ q))

p+ q

[∥∥q(γ1 − γ0) + p(γ2 − γ0)
∥∥+ q

∥∥γ1 − γ0
∥∥2

+ p
∥∥γ2 − γ0

∥∥2
]
≤ δn

}
,

B2
n =

{
(p+ q) ∧ (2− (p+ q))

p+ q

[
p+ q

∥∥γ1 − γ0
∥∥]] ≤ δn} ,

B3
n =

{
(p+ q) ∧ (2− (p+ q))

p+ q

[
q + p

∥∥γ2 − γ0
∥∥] ≤ δn}

and
B4
n = {(p+ q) ∧ (2− (p+ q)) ≤ δn} .

Then

Π2(An ∩Bn) ≤ Π2(An ∩B1
n) + Π2(An ∩B2

n) + Π2(An ∩B3
n) + Π2(An ∩B4

n).

Notice that on An, if p+ q ≥ 1, then p ≤ εn and q ≥ 1− εn, or q ≤ εn and p ≥ 1− εn, so
that also 2− (p+ q) ≥ 1− εn.
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• On An∩B1
n,
∥∥q(γ1 − γ0) + p(γ2 − γ0)

∥∥ . δn, q
∥∥γ1 − γ0

∥∥2
. δn, p

∥∥γ2 − γ0
∥∥2

. δn,
and p . εn or q . εn. This gives Π2(An ∩B1

n) . δ
d+d/2
n ε

α−d/2
n .

• On An ∩B2
n, p . δn and q

∥∥γ1 − γ0
∥∥ . δn in case p+ q ≤ 1, and p . δn, 1− q . δn

and q
∥∥γ1 − γ0

∥∥ . δn in case p+ q ≥ 1, leading to Π2(An ∩B2
n) . δα+d

n + δα+β+d
n .

• For symmetry reasons, Π2(An ∩B3
n) = Π2(An ∩B2

n).
• On An ∩B4

n, p . δn and q . δn, so that Π2(An ∩B4
n) . δ2α

n .

Keeping only the leading terms, we see that (31) holds and this terminates the proof
Theorem 3.

We now prove Lemma 3. We easily get Π2(Un) & n−3d/4, and

Dn ≥
∫
Un×X

e`n(θ,x)−`n(θ0,x)Π2(dθ)πX (dx) .

Let us now study `n(θ, x)−`n(θ0, x). First, following the proof of Lemma 2 of Douc et al.
(2004) we find that, for any θ ∈ Un, for any x,

|`n (θ)− `n (θ, x)| ≤
(

1 + 2ε
1− 2ε

)2

,

where `n (θ) =
∑k
x=1 µθ(x)`n(θ, x). Thus, for any θ ∈ Un and any x, and since `n(θ0, x)

does not depend on x,

`n(θ, x)− `n(θ0, x) ≥ `n(θ)− `n(θ0)−
(

1 + 2ε
1− 2ε

)2

. (32)

Let us now study `n(θ)− `n(θ0).

`n(θ)− `n(θ0) =
n∑
k=1

log
[
Pθ (Xk = 1|Y1:k−1)

gγ1

gγ0
(Yk) + Pθ (Xk = 2|Y1:k−1)

gγ2

gγ0
(Yk)

]
and we set for k = 1

Pθ (Xk = 1|Y1:k−1) = Pθ (X1 = 1) =
q

p+ q
,

Pθ (Xk = 2|Y1:k−1) = Pθ (X1 = 2) =
p

p+ q
.

Denote pk(θ) the random variable Pθ (Xk = 1|Y1:k−1), which is a function of Y1:k−1 and
thus independent of Yk. We have the recursion

pk+1 (θ) =
(1− p)pk(θ)gγ1(Yk) + q(1− pk(θ))gγ2(Yk)

pk(θ)gγ1(Yk) + (1− pk(θ))gγ2(Yk)
. (33)

Note that, for any p, q in ]0, 1[, for any k ≥ 1,

pk(p, q, γ0, γ0) =
q

p+ q
.
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We shall denote by Di
(γ1)j ,(γ2)i−j the i-th partial derivative operator j times with respect

to γ1 and i − j times with respect to γ2 (0 ≤ j ≤ i, the order in which derivatives are
taken does not matter). Fix θ = (p, q, γ1, γ2) ∈ Un. When derivatives are taken at point
(p, q, γ0, γ0), they are written with 0 as superscript.
Using Taylor expansion till order 4, there exists t ∈ [0, 1] such that denoting θt = tθ +
(1− t)(p, q, γ0, γ0):

`n(θ)− `n(θ0) = (γ1 − γ0)D1
γ1
`0n + (γ2 − γ0)D1

γ2
`0n + Sn(θ) + Tn(θ) +Rn(θ, t) (34)

where Sn(θ) denotes the term of order 2, Tn(θ) denotes the term of order 3, and Rn(θ, t)
the remainder, that is

Sn(θ) = (γ1 − γ0)2D2
(γ1)2`0n + 2(γ1 − γ0)(γ2 − γ0)D2

γ1,γ2
`0n + (γ2 − γ0)2D2

(γ2)2`0n,

Tn(θ) = (γ1 − γ0)3D3
(γ1)3`0n + 3(γ1 − γ0)2(γ2 − γ0)D3

(γ1)2,γ2
`0n

+ 3(γ1 − γ0)(γ2 − γ0)2D3
γ1,(γ2)2`0n + (γ2 − γ0)3D3

(γ2)3`0n

and

Rn(θ, t) =
4∑
k=0

(
k
4

)
(γ1 − γ0)k(γ2 − γ0)4−kD4

(γ1)k,(γ2)4−k`n(θt).

Easy but tedious computations lead to the following results.

(γ1 − γ0)D1
γ1
`0n + (γ2 − γ0)D1

γ2
`0n

=

[
n∑
k=1

D1
γgγ0

gγ0

(Yk)

] [
q(γ1 − γ0) + p(γ2 − γ0)

p+ q

]

=

[
1√
n

n∑
k=1

D1
γgγ0

gγ0

(Yk)

] [√
n
q(γ1 − γ0) + p(γ2 − γ0)

p+ q

]
so that

sup
θ∈Un

∣∣(γ1 − γ0)D1
γ1
`0n + (γ2 − γ0)D1

γ2
`0n
∣∣ = OPθ0 (1) . (35)
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Also,

Sn(θ) = −

 1
n

n∑
k=1

(
D1
γgγ0

gγ0

(Yk)

)2
[√nq(γ1 − γ0) + p(γ2 − γ0)

p+ q

]2

+

[
1√
n

n∑
k=1

D2
γ2gγ0

gγ0

(Yk)

] [
q

p+ q

(
n1/4(γ1 − γ0)

)2

+
p

p+ q

(
n1/4(γ2 − γ0)

)2
]

+2
(
n1/4(γ1 − γ0)

)2
[

1√
n

n∑
k=1

(D1
γ1
p0
k)
D1
γgγ0

gγ0

(Yk)

]
−2
(
n1/4(γ2 − γ0)

)2
[

1√
n

n∑
k=1

(D1
γ2
p0
k)
D1
γgγ0

gγ0

(Yk)

]

+ 2
(
n1/4(γ1 − γ0)(γ2 − γ0)

)[ 1√
n

n∑
k=1

(D1
γ2
p0
k −D1

γ1
p0
k)
D1
γgγ0

gγ0

(Yk)

]
.

Using (33) one gets that for all integer k ≥ 2, (D1
γ1
p0

1 = 0 and D1
γ2
p0

1 = 0):

D1
γ1
p0
k =

pq

(p+ q)2

k−1∑
l=1

(1− p− q)k−l
D1
γgγ0

gγ0

(Yl)

and
D1
γ2
p0
k = −D1

γ1
p0
k

which leads to

Eθ0

( 1√
n

n∑
k=1

(D1
γ1
p0
k)
D1
γgγ0

gγ0

(Yk)

)2
 ≤

Eθ0
(
D1
γgγ0

gγ0

(Y1)

)2
2

.

and

Eθ0

( 1√
n

n∑
k=1

(D1
γ2
p0
k)
D1
γgγ0

gγ0

(Yk)

)2
 ≤

Eθ0
(
D1
γgγ0

gγ0

(Y1)

)2
2

.

Thus, we obtain
sup
θ∈Un

|Sn(θ)| = OPθ0 (1) . (36)
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For the order 3 term, as soon as θ ∈ Un:

Tn(θ) = −

 n∑
k=1

(
D1
γgγ0

gγ0

(Yk)

)3
[q(γ1 − γ0) + p(γ2 − γ0)

p+ q

]3

+

[
n∑
k=1

D3
γ3gγ0

gγ0

(Yk)

] [
q

p+ q

(
γ1 − γ0

)3
+

p

p+ q

(
γ2 − γ0

)3]

−3

[
n∑
k=1

D1
γgγ0

gγ0

(Yk)
D2
γ2gγ0

gγ0

(Yk)

] [
q(γ1 − γ0) + p(γ2 − γ0)

p+ q

] [
q

(p+ q)2

(
γ1 − γ0

)2
+

p

(p+ q)2

(
γ2 − γ0

)2]

+O
(
n−3/4

)
n∑
k=1

(D1
γ1
p0
k)

(
D1
γgγ0

gγ0

(Yk)

)2

+
n∑
k=1

(D1
γ1
p0
k)
D2
γ2gγ0

gγ0

(Yk)

n∑
k=1

(D2
(γ1)2p0

k)
D1
γgγ0

gγ0

(Yk) +
n∑
k=1

(D2
(γ2)2p0

k)
D1
γgγ0

gγ0

(Yk)

+
n∑
k=1

(D2
(γ1,γ2)p

0
k)
D1
γgγ0

gγ0

(Yk)

}

so that using assumptions (14)

sup
θ∈Un

|Tn(θ)| = OPθ0

(
n−1/4

)
+OPθ0 (1) +O

(
n−1/4

)
Zn

with

Zn =
1√
n

n∑
k=1


(D1

γgγ0

gγ0

(Yk)

)2

+
D2
γ2gγ0

gγ0

(Yk)

D1
γ1
p0
k +

D1
γgγ0

gγ0

(Yk)
[
D2

(γ1)2p0
k +D2

(γ2)2p0
k +D2

(γ1,γ2)p
0
k

] .

Now using (33) one gets that for all integer k ≥ 1,

1
1− p− q

D2
(γ1)2p0

k+1 = −2
pq2

(p+ q)3

(
D1
γgγ0

gγ0

(Yk)

)2

+2(D1
γ1
p0
k)
D1
γgγ0

gγ0

(Yk)+
pq

(p+ q)2

D2
γ2gγ0

gγ0

(Yk)+D2
(γ1)2p0

k,

1
1− p− q

D2
(γ2)2p0

k+1 = 2
p2q

(p+ q)3

(
D1
γgγ0

gγ0

(Yk)

)2

−2(D1
γ1
p0
k)
D1
γgγ0

gγ0

(Yk)− pq

(p+ q)2

D2
γ2gγ0

gγ0

(Yk)+D2
(γ2)2p0

k,

1
1− p− q

D2
(γ1,γ2)p

0
k+1 = 2

pq(q − p)
(p+ q)3

(
D1
γgγ0

gγ0

(Yk)

)2

+ 2(D1
γ1
p0
k)
D1
γgγ0

gγ0

(Yk) +D2
(γ1,γ2)p

0
k,
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and using D2
(γ1)2p0

1 = 0, D2
(γ2)2p0

1 = 0, D2
(γ1,γ2)p

0
1 = 0 and easy but tedious computations

one gets that for some finite C > 0,

Eθ0
(
Z2
n

)
≤ CEθ0

(
D1
γgγ0

gγ0

(Y1)

)2
Eθ0

(
D1
γgγ0

gγ0

(Y1)

)4

+ Eθ0

(
D2
γ2gγ0

gγ0

(Y1)

)2

+

Eθ0
(
D1
γgγ0

gγ0

(Y1)

)2
2


so that we finally obtain
sup
θ∈Un

|Tn(θ)| = OPθ0 (1) . (37)

Let us finally study the fourth order remainder Rn(θ, t). We have

sup
θ∈Un

|Rn(θ, t)| ≤ 1
n

n∑
k=1

Ak,nBk,n,

where, for big enough n,Ak,n is a polynomial of degree at most 4 in supγ′∈Bd(γ0,ε) ‖
Diγgγ′

gγ′
(Yk) ‖,

and Bk,n is a sum of terms of form

sup
θ∈Un

∣∣∣∣∣∣
4∏
i=1

i∏
j=0

(
Di

(γ1)j ,(γ2)i−jpk(θt)
)ai,j ∣∣∣∣∣∣ (38)

where the ai,j are non negative integers such that
∑4
i=1

∑
j=0 iai,j ≤ 4.

To prove that
sup
θ∈Un

|Rn(θ, t)| = OPθ0 (1) (39)

holds, it is enough to prove that Eθ0 |
∑n
k=1Ak,nBk,n| = O(n). But for each k, pk(θ)

and its derivatives depend on Y1, . . . , Yk−1 only, so that Ak,n and Bk,n are independent
random variables, and

Eθ0

∣∣∣∣∣
n∑
k=1

Ak,nBk,n

∣∣∣∣∣ ≤
n∑
k=1

Eθ0 |Ak,n|Eθ0 |Bk,n|

≤ C max
i=1,2,3,4

Eθ0

(
sup

γ′∈Bd(γ0,ε)

‖
Di
γgγ′

gγ′
(Y1) ‖4

)
n∑
k=1

Eθ0 |Bk,n|

for some finite C > 0. Now, using (33) one gets that for all integer k ≥ 1 and for any θ,

D1
γ1
pk+1 (θ) = (1− p− q)

{
pk(θ)(1− pk(θ))gγ2(Yk)D1

γgγ1(Yk) + gγ1(Yk)gγ2(Yk)D1
γ1
pk (θ)

(pk(θ)gγ1(Yk) + (1− pk(θ))gγ2(Yk))2

}
,

D1
γ2
pk+1 (θ) = (1− p− q)

{
−pk(θ)(1− pk(θ))gγ1(Yk)D1

γgγ2(Yk) + gγ1(Yk)gγ2(Yk)D1
γ2
pk (θ)

(pk(θ)gγ1(Yk) + (1− pk(θ))gγ2(Yk))2

}
.
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Notice that for any θ, any k ≥ 2, pk(θ) ∈ (1 − p, q) so that for any θ ∈ Un, any k ≥ 2,
pk(θ) ∈ [ 1

2 − ε,
1
2 + ε]. We obtain easily that for i = 1, 2, k ≥ 2,

sup
θ∈Un

∣∣D1
γipk+1 (θ)

∣∣ ≤ ( 2ε
1− 8ε

){
sup

γ′∈Bd(γ0,ε)

‖
D1
γgγ′

gγ′
(Yk) ‖+ sup

θ∈Un

∣∣D1
γipk (θ)

∣∣} .
Using similar tricks, it is possible to get that there exists a finite constant C > 0 such
that for any i = 1, 2, 3, 4, any j = 0, . . . , i, any k ≥ 2,

sup
θ∈Un

∣∣∣Di
(γ1)j ,(γ2)i−jpk+1(θ)

∣∣∣ ≤ Cε{ sup
γ′∈Bd(γ0,ε)

‖
i∑
l=1

Dl
γlgγ′

gγ′
(Yk) ‖i+1−l +

i∑
l=1

l∑
m=0

sup
θ∈Un

∣∣∣Dl
(γ1)j ,(γ2)l−jpk(θ)

∣∣∣i+1−l
}
.

By recursion, we obtain that there exists a finite C > 0 such that any term of form (38)
has expectation uniformly bounded:

Eθ0

 sup
θ∈Un

∣∣∣∣∣∣
4∏
i=1

i∏
j=0

(
Di

(γ1)j ,(γ2)i−jpk(θt)
)ai,j ∣∣∣∣∣∣

 ≤ C max
m=1,2,3,4

max
r=1,2,3,4

Eθ0

(
sup

γ′∈Bd(γ0,ε)

‖
Dm
γ gγ′

gγ′
(Y1) ‖r

)

which concludes the proof of (39). Now, using (32), (34), (35), (36), (37) and (39), we
get

Dn ≥ e
−OPθ0

(1)Π2 (Un)

so that (20) holds with Sn satisfying (29).

4.4. Proof of Theorem 4

The proof follows the same lines as in Ghosal and van der Vaart (2007). We write

PΠ

[
‖fl,θ − fl,θ0‖1

ρθ − 1
2Rθ + ρθ − 1

≥ εn|Y1:n

]
=

∫
An×X e

`n(θ,x)−`n(θ0,x0)ΠΘ(dθ)πX (dx)∫
Θ×X e

`n(θ,x)−`n(θ0,x0)ΠΘ(dθ)πX (dx)

:=
Nn
Dn

,

where An = {θ : ‖fl,θ − fl,θ0‖1
ρθ−1

2Rθ+ρθ−1 ≥ εn}. A lower bound on Dn is obtained in the
following usual way. Set Ωn = {(θ, x); `n(θ, x) − `n(θ0, x0) ≥ −nε̃2n}, which is a random
subset of Θ×X (depending on Y1:n),

Dn ≥
∫
Sn

1lΩne
`n(θ,x)−`n(θ0,x0)ΠΘ(dθ)πX (dx)

≥ e−nε̃
2
nΠ(Sn ∩ Ωn),
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therefore

Pθ0
[
Dn < e−nε̃

2
nΠ(Sn)/2

]
≤ Pθ0 [Π(Sn ∩ Ωcn) ≥ Π(Sn)/2]

≤ 2

∫
Sn

Pθ0
[
`n(θ, x)− `n(θ0, x0) ≤ −nε̃2n

]
ΠΘ(dθ)πX (dx)

Π(Sn)
= o(1),

and

PΠ

[
‖fl,θ − fl,θ0‖1

ρθ − 1
2Rθ + ρθ − 1

≥ εn|Y1:n

]
= oPθ0 (1) +

Nn
Dn

1l
2Dn≥e−nε̃

2
nΠ(Sn)

.

But

Nn =
∫

(An∩Fn)×X
e`n(θ,x)−`n(θ0,x0)ΠΘ(dθ)πX (dx)+

∫
(An∩Fcn)×X

e`n(θ,x)−`n(θ0,x0)ΠΘ(dθ)πX (dx)

and

Eθ0

[∫
(An∩Fcn)×X

e`n(θ,x)−`n(θ0,x0)ΠΘ(dθ)πX (dx)

]
= O [ΠΘ (An ∩ Fcn)] = o

(
e−nε̃

2
n(Cn+1)

)
by Fubini’s theorem and assumption C2 together with the fact that `n(θ0) − `n(θ0, x0)
is uniformly upper bounded. This implies using assumption C1 that

PΠ

[
‖fl,θ − fl,θ0‖1

ρθ − 1
2Rθ + ρθ − 1

≥ εn|Y1:n

]
= oPθ0 (1) +

Ñn
Dn

1l
2Dn≥e−nε̃

2
nΠ(Sn)

(40)

where Ñn =
∫

(An∩Fn)×X e
`n(θ,x)−`n(θ0,x0)ΠΘ(dθ)πX (dx). Let now (θj)j=1,...,N , N =

N(δ,Fn, dl(., .)), be the sequence of θj ’s in Fn such for all θ ∈ Fn there exists a θj
with dl(θj , θ) ≤ δ with δ = εn/12. Assume for simplicity’s sake and without loss of
generality that n is a multiple of the integer l, and define

φj = 1l∑n/l

i=1

(
1l(Yli−l+1,...,Yli)∈Aj−Pθ0 ((Y1,...,Yl)∈Aj)

)
>tj

where
Aj = {(y1, . . . , yl) ∈ Y l : fl,θ0(y1, . . . , yl) ≤ fl,θj (y1, . . . , yl)}

for some positive real number tj to be fixed later also. Note that

Pθj ((Y1, . . . , Yl) ∈ Aj)− Pθ0((Y1, . . . , Yl) ∈ Aj) =
1
2
‖fl,θj − fl,θ0‖1

Define also
ψn = max

1≤j≤N :θj∈An
φj .
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Then

Eθ0

(
Ñn
Dn

ψn

)
≤ Eθ0ψn ≤ N(δ,Fn, d(., .)) max

1≤j≤N :θj∈An
Eθ0φj (41)

and

Eθ0

(
Ñn(1− ψn)

)
=
∫
X
Eθ0,x0

(
Ñn(1− ψn)

)
µθ0 (dx0)

=
∫

(An∩Fn)×X
Eθ,x ((1− ψn)) ΠΘ (dθ)πX (dx) (42)

Now

Eθ0 [φj ] = Pθ0

n/l∑
i=1

(
1l(Yli−l+1,...,Yli)∈Aj − Pθ0((Y1, . . . , Yl) ∈ Aj)

)
> tj


and

Eθ,x (1− φj) = Pθ,x

n/l∑
i=1

(
−1l(Yli−l+1,...,Yli)∈Aj + Pθ,x((Yli−l+1, . . . , Yli) ∈ Aj)

)

> −tj +
n/l∑
i=1

(Pθ,x((Yli−l+1, . . . , Yli) ∈ Aj)− Pθ0((Y1, . . . , Yl) ∈ Aj))

 .
Consider the sequence (Zi)i≥1 with for all i ≥ 1, Zi = (Xli−l+1, . . . , Xli, Yli−l+1, . . . , Yli),
which is, under Pθ, a Markov chain with transition kernel Q̄θ given by

Q̄θ(z, dz′) = gθ(y′1|x′1) · · · gθ(y′l|x′l)Qθ(xl, dx′1)Qθ(x′1, dx
′
2) · · ·Qθ(x′l−1, dx

′
l)µ(dy′1) · · ·µ(dy′l).

This kernel satisfies the same uniform ergodic property as Qθ, with the same coefficients,
that is condition (17) holds with the coefficients Rθ and ρθ with the replacement of Qθ
by Q̄θ, and we may use Rio (2000)’s exponential inequality (corollary 1) with uniform
mixing coeficients (as defined in Rio (2000)) satisfying φ(m) ≤ Rθρ

−m
θ . Indeed, by the

Markov property,

φ(m) = sup
A∈σ(Z1),B∈σ(Zm+1)

(Pθ(B)− Pθ(B|A))

≤ sup
z
|Pθ(Zm+1 ∈ B)− Pθ(Zm+1 ∈ B|Z1 = z)|

≤ Rθρ
−m
θ .

We thus obtain that, for any positive real number u,

Pθ0

n/l∑
i=1

(
1l(Yli−l+1,...,Yli)∈Aj − Pθ0((Y1, . . . , Yl) ∈ Aj)

)
> u

 ≤ exp

{
−2lu2 (ρθ0 − 1)2

n (2Rθ0 + ρθ0 − 1)2

}
(43)
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and

Pθ,x

n/l∑
i=1

(
−1l(Yli−l+1,...,Yli)∈Aj + Pθ,x((Yli−l+1, . . . , Yli) ∈ Aj)

)
> u

 ≤ exp

{
−2lu2 (ρθ − 1)2

n (2Rθ + ρθ − 1)2

}
.

(44)
Set now

tj =
n‖fl,θj − fl,θ0‖1

4l
.

Since for any θ, ρθ−1
2Rθ+ρθ−1 ≤ 1 and since consequently for θj ∈ An, ‖fl,θj − fl,θ0‖1 ≥ εn,

we first get, using (43),

Eθ0 [φj ] ≤ exp

{
−nε2n (ρθ0 − 1)2

8l (2Rθ0 + ρθ0 − 1)2

}
. (45)

Now, for any θ ∈ An,

− tj +
n/l∑
i=1

(Pθ,x((Yli−l+1, . . . , Yli) ∈ Aj)− Pθ0((Y1, . . . , Yl) ∈ Aj))

= −
n‖fl,θj − fl,θ0‖1

4l
+
n

l

{
Pθj ((Y1, . . . , Yl) ∈ Aj)− Pθ0((Y1, . . . ;Yl) ∈ Aj)

}
+
n

l

{
Pθ((Y1, . . . , Yl) ∈ Aj)− Pθj ((Y1, . . . , Yl) ∈ Aj)

}
+

n/l∑
i=1

(Pθ,x((Yli−l+1, . . . , Yli) ∈ Aj)− Pθ((Y1, . . . , Yl) ∈ Aj))

≥
n‖fl,θj − fl,θ0‖1

4l
−
n‖fl,θj − fl,θ‖1

l
−

n/l∑
i=1

Rθρ
−i
θ

≥
n‖fl,θj − fl,θ0‖1

4l
−
n‖fl,θj − fl,θ‖1

l
− Rθρθ
ρθ − 1

≥ n

4l

(
1− 5

12
− 4l

12nεn

)
‖fl,θ − fl,θ0‖1 ≥

n

8l
‖fl,θ − fl,θ0‖1

for large enough n, using the triangular inequality and the fact that ‖fl,θj − fl,θ‖1 ≤
εn
12 ≤

‖fl,θ−fl,θ0‖1
12

ρθ−1
2Rθ+ρθ−1 since θ ∈ An and ρθ−1

2Rθ+ρθ−1 ≤ 1. Then for θ ∈ An and large
enough n,

Eθ,x (1− φj) ≤ exp
{
−nε

2
n

32l

}
. (46)
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Combining (40), with (41), (45), (42), (46) and using assumptions C1 and C3 we finally
obtain for large enough n

Pθ0
(

PΠ

[
‖fl,θj − fl,θ0‖1

ρθ − 1
2Rθ + ρθ − 1

≥ εn|Y1:n

])
≤ o (1) +O

(
enε̃

2
n(1+Cn)

)
exp

{
−nε

2
n

32l

}
+ exp

{
−nε2n (ρθ0 − 1)2

8l (2Rθ0 + ρθ0 − 1)2

}
exp

{
nε2n(ρθ0 − 1)2

16l(2Rθ0 + ρθ0 − 1)2

}
= o(1)

Assume now that Assumption C3bis holds. By writing An ∩ Fn =
⋃
m≥1An,m(εn) and

using same reasoning, one gets, for some positive constant c:

Pθ0
(

PΠ

[
‖fl,θj − fl,θ0‖1

ρθ − 1
2Rθ + ρθ − 1

≥ εn|Y1:n

])
= o (1) + enε̃

2
n

∑
m≥1

ΠΘ (An,m(εn))
Π(Sn)

exp
{
−nm

2ε2n
32l

}

+
∑
m≥1

N
(mεn

12
, An,m(εn), dl(...)

)
exp

{
− nm2ε2n(ρθ0 − 1)2

8l(2Rθ0 + ρθ0 − 1)2

}
= o (1)

and the second part of Theorem 4 is proved.
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