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ENSAE-CREST and CEREMADE, Université Paris-Dauphine, Paris, France

Abstract. In this paper, we investigate the asymptotic behaviour of the posterior distribution in hidden
Markov models (HMMs). We obtain a general asymptotic result, and give conditions on the prior under
which we obtain a rate of convergence for the posterior distribution of the marginal distributions of the
process. We then focus on the situation where the hidden Markov chain evolves on a finite state space
but where the number of hidden states might be larger than the true one. It is known that the likelihood
ratio test statistic for overfitted HMMs has a non standard behavior and is unbounded. Our conditions
on the prior may be seen as a way to penalize parameters to avoid this phenomenon. We are then
able to define a consistent Bayesian estimator of the number of hidden states. We also give a precise
description of the situation when the observations are i.i.d. and we allow 2 possible hidden states.
Some simulations are presented to illustrate our results.

1. Introduction

Hidden Markov models are stochastic processes (Xj , Yj)j≥0 where (Xj)j≥0 is a Markov chain living
in a state space X and conditionnally on (Xj)j≥0 the Yj ’s are independent with a distribution
depending only on Xj and living in Y. The observations are Y1:n = (Y1, · · · , Yn) and the associated
states X1:n = (X1, · · · , Xn) are unobserved. Hidden Markov models are useful tools to model time
series where the observed phenomenon is driven by a latent Markov chain. They may be seen
as a dynamic extension of mixture models. They have been used successfully in a variety of
applications such as economics (e.g. Albert and Chib (1993)), genomics (e.g. Churchill (1989)),
signal processing and image analysis (e.g. Andrieu and Doucet (2000)), ecology (e.g. Guttorp
(1995)), speech recognition (e.g. Rabiner (1989)) to name but a few. The books by MacDonald
and Zucchini (1997) and Cappé et al. (2004) provide several examples of applications of HMMs and
give a recent (for the latter) state of the art in the statistical analysis of HMMs. When the state
space X of the hidden Markov chain is finite, the number of hidden states induces a classification
of the regimes in which the time series evolves. They often have a practical interpretation in the
modelization of the underlying phenomenon. It is thus of importance to be able to infer both the
number of hidden states (which we call the order of the HMM) from data, when it is not known
in advance and the associated parameters.

In the frequentist literature, penalized likelihood methods have been proposed to estimate the
order of a HMM, using for instance Bayesian information criteria (BIC for short). These methods
were applied for instance in Leroux and Putterman (1992), Rydén et al. (1998), but without
theoretical consistency results. Later, it has been observed that the likelihood ratio statistics is
unbouded, in the very simple situation where one wants to test between 1 or 2 hidden states,
see Gassiat and Kéribin (2000). The question whether BIC penalized likelihood methods lead to
consistent order estimation stayed open. Using tools borrowed from information theory, it has
been possible to calibrate heavier penalties in maximum likelihood methods to obtain consistent
estimators of the order, see Gassiat and Boucheron (2003), Chambaz et al. (2009). The use of
penalized marginal pseudo likelihood was also proved to lead to weakly consistent estimators by
Gassiat (2002).

On the Bayesian side, various methods were proposed to deal with an unknown number of
hidden states, but no theoretical result exists to validate the methods. Reversible jump methods
have been built, leading to satisfactory results on simulation and real data, see Boys and Henderson
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(2004), Green and Richardson (2002), Robert et al. (2000), Spezia (2010). The ideas of variational
Bayesian methods were developed in McGrory and Titterington (2009).

Recently, one of the authors proposed a theoretical analysis of the posterior distribution for
overfitted mixtures, see Rousseau and Mengersen (2011). In this paper, it is proved that one may
choose the prior in such a way that extra components are emptied, or in such a way that extra
components merge with true ones. More precisely, if a Dirichlet prior D(α1, . . . , αk) is considered
on the k weights of the mixture components, small values of the αj ’s imply that the posterior
distribution will tend to empty the extra components of the mixture when the true distribution
has a smaller number, say k0 < k of true components.
One aim of our paper is to understand if such an analysis may be extended to dynamic mixtures,
that is to HMMs. Since HMMs are much more complicated models regarding order estimation,
with unbounded likelihood ratio statistics that are still not well understood, our results do not cover
all choices of prior distributions to empty extra components or to merge them with true ones. Only
this last possibility is fully understood. Consider a finite state space HMM, with k states and with
independent Dirichlet prior distributions D(α1, . . . , αk) on each row of the transition matrix of the
latent Markov chain. We prove that if the parameters αj ’s are large enough, extra components
merge to true ones. We are also able to propose a Bayesian consistent estimator of the number
of hidden states, without using variable dimension algorithms such as reversible jump algorithms,
which are often difficult to implement efficiently. On the other hand, if the parameters αj ’s are
small the posterior becomes harder to implement, see Section 4. Hence from a computational view-
point, choosing smaller αj ’s leads to greater difficulty and it does not seem to be counter-balanced
by a more stable asymptotic behaviour of the posterior. We are thus able to give guidelines to
choose the prior in such a way that the posterior leads to interpretable results by chosing large
enough parameters in the Dirichlet prior.

In Section 2, we give a general theorem on the asymptotic behaviour of the posterior distribu-
tion. To our knowledge, this is the first general theoretical result for HMM Bayesian estimation.
Though Ghosal and van der Vaart (2006) give rates of convergence for the posterior in possibly de-
pendent observation models, they cannot be applied to the order estimation problem, as explained
in Section 2.2. In Section 3 we consider the case of finite state space HMMs. Using the general
result of Section 2, we explain how it is possible to choose the prior in such a way that the posterior
gives consistent estimation of the marginal distributions. In this case we also obtain convergence
rates. We are then able to derive a consistent Bayesian estimator of the number of hidden states,
which does not require a prior on the number of states nor the computation of marginal likelihoods
in the different candidate models. To our knowledge, this is the first consistency result on Bayesian
order estimation in the case of hidden Markov models. In the specific situation where the over-
fitting is by only one state and the observations are i.i.d., we are able to describe more precisely
what choice of the prior leads to the merging of the two states together with convergence rates. In
Section 4 we present a simulation study to illustrate our results and to investigate what happens
for other choices of priors.

2. Posterior concentration rates for HMMs : a general result

Since we could not find in the literature any result on the asymptotic concentration of the posterior
distribution in HMM models we first present a general theorem where the posterior concentration
is described in such models. We first describe the general setting and we give some notations that
are used throughout the paper.

2.1. Setting and notations
Recall that HMMs model pairs (Xi, Yi), i = 1, . . . , n, where (Xi)i is the unobserved Markov chain
living on a state space X and the observations (Yi)

n
i=1 are conditionally independent given the

(Xi)
n
i=1 and live in Y. The spaces X ,Y can be general and we only assume that they are Polish

spaces endowed with their Borel σ-fields. The hidden Markov chain (Xi)
n
i=1 has a Markov kernel

Qθ, θ ∈ Θ where Θ is a subset of an euclidian space and the conditional distribution of Yi given Xi

has density with respect to some given measure ν on Y denoted by gθ(y|x), x ∈ X , θ ∈ Θ. With an
abuse of notations we also denote ν the product measure ν⊗l on Y l. We assume that the Markov
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kernels Qθ admit a (not necessarily unique) stationary distribution µθ, for each θ ∈ Θ. We write
Pθ for the probability distribution of the stationary HMM (Xj , Yj)j≥1 with parameter θ. That is,
for any integer n, any measurable set A in the Borel σ-field of Xn × Yn:

Pθ ((X1, . . . , Xn, Y1, . . . , Yn) ∈ A) =

∫
A

µθ(dx1)

n−1∏
i=1

Qθ (xi, dxi+1)

n∏
i=1

gθ (yi|xi) ν(dy1) . . . ν(dyn).

(1)
Thus for any integer n, under Pθ, Y1:n = (Y1, . . . , Yn) has a probability density with respect to
ν(dy1) · · · ν(dyn) equal to

fn,θ(y1, . . . , yn) =

∫
Xn

µθ(dx1)

n−1∏
i=1

Qθ (xi, dxi+1)

n∏
i=1

gθ (yi|xi) .

We denote π the prior distribution on Θ. As is often the case in Bayesian analysis of HMMs,
instead of computing the stationary distribution µθ of the hidden Markov chain X for each θ,
we consider a probability distribution πX on the unobserved initial state X0. Denote `n(θ, x) the
log-likelihood starting from x, for all x ∈ X , which is given by

`n (θ, x) = log

[∫
Xn+1

Qθ (x, dx1)

n−1∏
i=1

Qθ (xi, dxi+1)

n∏
i=1

gθ (Yi|xi)

]
.

Similarly, the log-likelihood starting from a distribution π0 on X is denoted `n (θ, π0) i.e.

`n (θ, π0) = log

[∫
X
e`n(θ,x)dπ0(x)

]
.

The posterior distribution can then be written as

Pπ (A|Y1:n) =

∫
A×X e

`n(θ,x)π (dθ)πX (dx)∫
Θ×X e

`n(θ,x)π (dθ)πX (dx)
(2)

for any Borel set A ⊂ Θ.
We shall also use the notation Pθ,x for the probability distribution of the HMM starting from x,
that is, for any integer n, any measurable set A in the Borel σ-field of Xn × Yn:

Pθ,x ((X1, . . . , Xn, Y1, . . . , Yn) ∈ A) =

∫
A

Qθ(x, dx1)

n−1∏
i=1

Qθ (xi, dxi+1)

n∏
i=1

gθ (yi|xi) ν(dy1) . . . ν(dyn),

so that for any θ ∈ Θ,

Pθ =

∫
X
Pθ,xµθ (dx) .

We denote by Eθ the expectation under Pθ and by Eθ,x the expectation under Pθ,x.

We assume throughout the paper that we are given a stationary HMM (Xj , Yj)j≥1 with distri-
bution Pθ0 for some θ0 ∈ Θ. We will be interested in the asymptotic behaviour of the posterior
distribution of finite marginals of the process. Indeed, marginals (of dimension at least 2) capture
the transition of the Markov chain together with the emission parameters as we shall explain be-
low. Thus we define for any integer l ≥ 2, and for any θ ∈ Θ, the probability density fl,θ(· · · ) of
(Y1, . . . , Yl) under Pθ. That is for any parameter θ,

fl,θ (y1, . . . , yl) =

∫
µθ (dx1)Qθ (x1, dx2) · · ·Qθ (xl−1, dxl) gθ (y1|x1) · · · gθ (yl|xl)

so that fl,θ is a mixture in Y l of product probability measures. When such mixtures are identifiable,
knowledge of fl,θ leads to the knowledge of the mixing measure, which itself gives the knowledge
of the distribution of the hidden Markov chain. Mixtures of products of gaussian distributions are
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identifiable, for instance, but many other families of mixtures are identifiable, see MacLachlan and
Peel (2000), Hall and Zhou (2003), Allman et al. (2009).

Define, for any θ ∈ Θ, real numbers ρθ ≥ 1 and Rθ > 0 such that, for any integer m, any x ∈ X

‖Qmθ (x, .)− µθ‖TV ≤ Rθρ−mθ (3)

where ‖ · ‖TV is the total variation norm. If it is possible to set ρθ > 1, the Markov chain (Xn)n≥1

is uniformly ergodic and µθ is its unique stationary distribution.

Throughout the paper ∇θh denotes the gradient vector of the function h when considered as a
function of θ, and D2

θh its Hessian matrix. We denote by Bd(γ, ε) the d dimensional ball centered
at γ with radius ε, when γ ∈ Rd. The notation an & bn means that an is larger than bn up to a
positive constant that does not depend on n.

2.2. General HMMs
We now derive posterior concentration rates in the framework of Hidden Markov models. This
setup follows the ideas of Ghosal and van der Vaart (2006). The proof of Theorem 1 is given in
Section 6.

Theorem 1. Assume

• (A0) ρθ0 > 1.

• (A1). There exists Sn ⊂ Θ×X , D > 0, A > 0 and x0 in X such that for any integer n,

`n(θ0)− `n(θ0, x0) ≤ A,

and for any sequence (Cn)n≥1 of real numbers tending to +∞

sup
(θ,x)∈Sn

Pθ0 [`n(θ, x)− `n(θ0, x0) < −Cn] = o(1), π ⊗ πX [Sn] & n−D/2.

• (A2). There exists a sequence (Fn)n≥1 of subsets of Θ such that

π(Fcn) = o(n−D/2).

• (A3). There exists δ0 > 0 and M > 0 such that for all δ0 > δ > 0,

N(δ,Fn, dl(., .)) ≤
(n
δ

)M
where N(δ,Fn, dl(., .)) is the smallest number of θj ∈ Fn such that for all θ ∈ Fn there exists
a θj with dl(θj , θ) ≤ δ. Here dl(θ, θj) = ‖fl,θ − fl,θj‖1 :=

∫
Yl |fl,θ − fl,θj |(y)dν(y).

Then there exists K large enough such that

Pπ
[
‖fl,θ − fl,θ0‖1

ρθ − 1

2Rθ + ρθ − 1
≥ K

√
log n

n
|Y1:n

]
= oPθ0 (1) .

Theorem 1 gives the posterior concentration rate of ‖fl,θ−fl,θ0‖1 up to the parameter ρθ−1
2Rθ+ρθ−1 .

This is in sharp contrast with the results in Ghosal and van der Vaart (2006), though the proof of
our theorem follows the same lines. In Ghosal and van der Vaart (2006), applications to Markov
chains or to gaussian time series of their general theorem use assumptions that lead in some sense
to lower bound the coefficient ρθ−1

2Rθ+ρθ−1 . This corresponds to choosing a prior whose support in
Θ is included in a set where ρθ−1

2Rθ+ρθ−1 is uniformly bounded from below. Even in the simple
case of finite state space HMMs, which are extensively used in practice, this type of priors would
be awkward. We investigate this case in details in Section 3. If such a prior is considered, then
Theorem 1 implies that the posterior distribution concentrates on {θ; fl,θ = fl,θ0} and also provides
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a concentration rate of the posterior distribution of order O((log n/n)1/2), in terms of the L1 norm
on fl,θ − fl,θ0 .

In the case of over-fitted HMMs with finite state space, i.e. when θ0 corresponds to a HMM
associated with k0 states while the model considers HMMs associated with k > k0 states the
parameter set has to contain all possible transition matrices and in any neighbourhood {θ : ‖fl,θ −
fl,θ0‖1 ≤ ε} there exist parameters θ such that ρ(θ) = 1. Thus, one has to allow ρθ to be arbitrarily
close to 1. We will see that a good choice of the prior, however, acting as soft thresholding, leads
to the concentration of the posterior distribution around fθ0 , in terms of ‖fl,θ − fl,θ0‖1 alone, at a
rate slower than (log n/n)1/2.

Assumption (A0) implies that at θ0 the hidden Markov chain X is uniformly ergodic. Assump-
tions (A2) − (A3) mean that we can choose a sequence of compact subsets of Θ which behave
like finite dimensional sets. These two conditions are similar in spirit to those considered in gen-
eral theorems on posterior consistency or posterior convergence rates, see for instance Ghosh and
Ramamoorthi (2003) and Ghosal and van der Vaart (2006). Condition (A1) is close to the Kullback-
Leibler condition as in Ghosal and van der Vaart (2006), adapted to a parametric context. A non
parametric formulation could also have been provided, replacing Cn with nε2n in (A1), n−D/2 by
e−nε

2
n in (A1) and (A2) and M by nε2n/ log n in (A3).
In the following section, we explain how condition (A1) can be verified under conditions that

are classical in the HMM literature.

2.3. About condition (A1)
Here we assume that X is compact, and that the transition kernels Qθ are absolutely continuous
with respect to a measure µ such that µ(X ) = 1, for all θ in a neighborhood of θ0. We denote
qθ(., .) the density of Qθ with respect to µ forθ in this neighborhood, and define

σ− (θ) = inf
x,x′∈X

qθ (x, x′) , σ+ (θ) = sup
x,x′∈X

qθ (x, x′) .

Then, by Corollary 1 of Douc et al. (2004), it is possible to set Rθ = 1 and ρθ =
(

1− σ−(θ)
σ+(θ)

)−1

.
Also, following the proof of Lemma 2 of Douc et al. (2004) we find that, if ρθ0 > 1, then

`n (θ0)− `n (θ0, x0) ≤
(

ρθ0
ρθ0 − 1

)2

.

To verify assumption (A1), assume that there exists a subset V ⊂ Θ containing θ0 such that the
densities qθ(x, x′) and gθ(y|x) are smooth as functions of θ on V (i.e. satisfy assumptions (A6)-(A8)
of Douc et al. (2004) on V ) and such that

inf
θ∈V

ρθ > 1. (4)

Then, for any θ, x, x0,

`n (θ, x)− `n (θ0, x0) = `n (θ, x)− `n (θ, x0) + `n (θ, x0)− `n (θ0, x0) (5)

and following the proof of Lemma 2 of Douc et al. (2004) gives that, if (A0) and (4) hold, Pθ0-a.s.,

sup
θ∈V

sup
x,x0∈X

|`n (θ, x)− `n (θ, x0)| ≤ 2 sup
θ∈V

(
ρθ

ρθ − 1

)2

.

Now for θ ∈ V ,

`n (θ, x0)−`n (θ0, x0) = (θ − θ0)
T ∇θ`n (θ0, x0)+

∫ 1

0

(θ − θ0)
T
D2
θ`n (θ0 + u(θ − θ0), x0) (θ − θ0) (1−u)du.

(6)
Following Theorem 2 in Douc et al. (2004), n−1/2∇θ`n(θ0, x) converges in distribution under Pθ0
to N (0, V0) for some positive definite matrix V0, and following Theorem 3 in Douc et al. (2004),
we get that supθ∈V n

−1D2
θ`n(θ, x0) converges Pθ0 a.s. to V0. Thus, we may set:

Sn =
{
θ ∈ V ; ‖θ − θ0‖ ≤ 1/

√
n
}
×X
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so that
sup

(θ,x)∈Sn
Pθ0 [`n(θ, x)− `n(θ0, x0) < −Cn] = o(1)

follows from (5) and (6). The second part of (A1) is then satisfied as soon as π(Sn) > n−D/2 which
is true for instance if V is a neighbourhood of θ0 and if the prior has a density with respect to
Lebesgue measure, which lower bounded by a positive constant on V . Note that the freedom in
the choice of V implies that (A1) can be verified in situations where the true distribution can be
approximated by Pθ such that ρθ is arbitrarily close to 1, as long as it is possible to choose paths
in Θ to approximate θ0 that avoid such pathological θ’s. This is illustrated in the case of finite
state space HMMs in the following section.

3. Finite state space

Here we assume that X = {1, ..., k}. We may take µ as the uniform probability measure on {1, ..., k}.
We first describe the setting in this case, and then we prove that, under some general assumptions,
Theorem 1 applies. Moreover, we prove how some choices of the prior give posterior concentration
rates for the finite marginals without additional mixing coefficient. The results obtained in Section
3.1 are valid both when the true distribution has k0 = k different states and when it has a smaller
number of states.

3.1. Posterior convergence rates for the finite marginals
Qθ denotes the transition matrix (qij)i,j≤k and θ = (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1; γ1, ...., γk) with
γj ∈ Γ ⊂ Rd such that gθ(y|x) = gγx(y), x ∈ X = {1, ..., k} for some family of probability densities
(gγ)γ∈Γ with respect to ν. We denote Θk the parameter space.

LetMk be the set of all possible probability distributions of (Yn)n≥1 under Pθ for all θ ∈ Θk.
We say that the HMM Pθ has order k0 if the probability distribution of (Yn)n≥1 under Pθ is in
Mk0

and not in Mk for all k < k0. Notice that a HMM of order k0 may be represented as a
HMM of order k for any k > k0. Let Q0 be a k0 × k0 transition matrix, and (γ0

1 , ...., γ
0
k0

) ∈ Γk0 be
parameters that define a HMM of order k0. Then, θ = (qij , 1 ≤ i, j ≤ k; γ0

1 , ...., γ
0
k0
, . . . , γ0

k0
) ∈ Θk

with Q = (qij , 1 ≤ i, j ≤ k) such that :

qij = q0
ij i, j < k0

qij = q0
k0j i ≥ k0, j < k0,

k∑
l=k0

qil = q0
ik0

i ≤ k0, and
k∑

l=k0

qil = q0
k0k0

, i ≥ k0

(7)

gives Pθ = Pθ0 . Indeed, let (Xn)n≥1 be a Markov chain on {1, . . . , k} with transition matrix Q.
Let Z be the function from {1, . . . , k} to {1, . . . , k0} defined by Z(x) = x if x ≤ k0 and Z(x) = k0

if x ≥ k0. Then (Z(Xn))n≥1 is a Markov chain on {1, . . . , k0} with transition matrix Q0.
In the following we parametrize the transition matrices on {1, . . . , k} as (qij)1≤i≤k,1≤j≤k−1

(implying that qik = 1−
∑k−1
j=1 qij for all i ≤ k) and we denote by ∆k the set of probability mass

functions ∆k = {(u1, . . . , uk−1) : u1 ≥ 0, . . . , uk−1 ≥ 0,
∑k−1
i=1 ui ≤ 1}. We shall also use the set

of positive probability mass functions ∆0
k = {(u1, . . . , uk−1) : u1 > 0, . . . , uk−1 > 0,

∑k−1
i=1 ui < 1}.

Thus, we may set Θk = ∆k
k × Γk.

Any Markov chain on {1, . . . , k} admits a stationary distributio, if Qθ admits more than one
stationary distribution, we choose one that we denote µθ. Besides (3) holds with Rθ = 1 and

ρθ =

1−
k∑
j=1

inf
1≤i≤k

qij

−1

,

so that and as soon as the transition matrix Qθ has positive entries, ρθ < 1. For any θ = (qij , 1 ≤
i ≤ k, 1 ≤ j ≤ k − 1; γ1, ...., γk) ∈ Θk, any y = (y1, . . . , yl) in Y l,

fl,θ(y) =
∑

1≤i1,...,il≤k

µθ (i1) qi1i2 · · · qil−1ilgγi1 (y1) · · · gγil (yl) . (8)
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Let π(u1, . . . , uk−1) be a prior density with respect to the Lebesgue measure on ∆k, and let
ω(γ) be a prior density on Γ (with respect to the Lebesgue measure on Rd). We consider prior
distributions such that the rows of the transitions matrix Q are independently distributed from π
and independent of the component parameters γi, i = 1, ..., k, which are independently distributed
from ω. Hence the prior density (with respect to the Lebesgue measure) is equal to πk = π⊗k⊗ω⊗k.
In this section we use a Dirichlet type prior, see assumption (F1) below, or an exponential type
prior, see assumption (FE1) below, on the transition parameters (qij , j ≤ k).

Theorem 2. Let θ0 = (q0
ij , 1 ≤ i ≤ k0, 1 ≤ j ≤ k0 − 1; γ0

1 , ...., γ
0
k0

) ∈ Θk0 be the parameter of a
HMM of order k0 ≤ k. Assume that

• (F0) q0
ij > 0, 1 ≤ i ≤ k0, 1 ≤ j ≤ k0

• (F1) π is continuous and positive on ∆0
k, and there exists C, α1 > 0, . . ., αk > 0 such that

(Dirichlet type priors):

∀(u1, . . . , uk−1) ∈ ∆0
k, uk = 1−

k−1∑
i=1

ui, 0 < π (u1, . . . , uk−1) ≤ Cuα1−1
1 · · ·uαk−1

k

and ω is continuous and positive on Γ.

• (F2) The function γ 7→ gγ(y) is twice continuously differentiable in Γ, and for any γ ∈ Γ,
there exists ε > 0 such that∫

sup
γ′∈Bd(γ,ε)

‖∇γ log gγ′ (y) ‖2gγ (y) ν(dy) < +∞,
∫

sup
γ′∈Bd(γ,ε)

‖D2
γ log gγ′ (y) ‖2gγ (y) ν(dy) < +∞,

‖ supγ′∈Bd(γ,ε)∇γgγ′ (y) ‖ ∈ L1(ν) and ‖ supγ′∈Bd(γ,ε)D
2
γgγ′ (y) ‖ ∈ L1(ν)

• There exist a > 0 and b > 0 such that

sup
‖γ‖≤nb

∫
‖∇γgγ (y) ‖dν(y) ≤ na.

Then, there exists K large enough such that

Pπk
[
‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
log n

n
|Y1:n

]
= oPθ0 (1)

where ρθ =
(

1−
∑k
j=1 inf1≤i≤k qij

)−1

. If moreover ᾱ :=
∑

1≤i≤k αi > k(k − 1 + d), then

Pπk
[
‖fl,θ − fl,θ0‖1 ≥ 2Kn−

ᾱ−k(k−1+d)
2ᾱ (log n)|Y1:n

]
= oPθ0 (1) .

If we replace (F1) by

• (EF1) π is continuous and positive on ∆0
k, and there exists C such that (exponential type

priors):

∀(u1, . . . , uk−1) ∈ ∆0
k, uk = 1−

k−1∑
i=1

ui,

0 < π (u1, . . . , uk−1) ≤ C exp(−C/u1) · · · exp(−C/uk)

and ω is continuous and positive on Γ,

then there exists K large enough such that

Pπk
[
‖fl,θ − fl,θ0‖1 ≥ 2Kn−1/2(log n)3/2|Y1:n

]
= oPθ0 (1) .
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The proof is presented in Appendix 6.2.

Theorem 2 provides guidelines to choose the prior. Indeed, if a Dirichlet D(α1, ..., αk) prior
is considered on each row of the transition matrix of the hidden Markov chain, then choosing
large enough values for the αj ’s ensures a consistent posterior distribution in terms of the L1

distance on the marginals. If one chooses exponential type priors, it is possible to get, up to a log n
factor, the posterior concentration rate of order 1/

√
n for the finite marginals. Interestingly, this is

quite different from what happens in the case of overspecified mixtures as described by Rousseau
and Mengersen (2011). In the case of independent mixture models, the posterior distribution
concentrates at the rate 1/

√
n around the true density of the observations (in terms of the L1

distance) under very general conditions on the prior. In Rousseau and Mengersen (2011), the
authors prove that by choosing small values of αi, the posterior distribution concentrates on the
configuration where the extra components are emptied, which is desirable since it leads to an
interpretable posterior distribution. Here the story is quite different because to favour empty
components (small weights in the stationary measure µ(θ)) corresponds also to favour slow mixing
Markov chains, i.e. Qθ’s such that ρ(θ) is close to 1. Then the asymptotic behaviour of the
likelihood is much less stable and it is not clear that the posterior will concentrate on the correct
densities fl,θ0 . Hence, to be able to interpret correctly the posterior distribution it is more desirable
to choose large values of αi. We do not claim however that the threshold k(k − 1 + d) on ᾱ :=∑

1≤i≤k αi is sharp. Our intuition is that it is probably enough to assume, at least when k0 = k−1,
that ᾱ > k(k0−1+d), which corresponds to the number of constraints involved in the construction
(7), but we have not been able to prove it, except in the case k = 2, see Section 3.4. Although a
posterior concentration in terms of the marginals is useful, when interest lies in fitting the model
or in prediction, in some applications it is also interesting to recover the parameters correctly.
In the following section we use Theorem 2 to obtain a (partial) asymptotic identification of the
parameters by the posterior distribution and to construct a consistent procedure to estimate the
true number of states k0 when k ≥ k0.

3.2. Application to the estimation of the number of hidden states

Let us now describe more precisely how to recover all the HMM dynamics, that is to recover the
number of hidden states, and, in the following section, given that the number of hidden states
is known, how to recover the parameters. For this, we need to understand what the posterior
concentration result says about the parameters.

To recover conditions on the parameters from conditions on the l-marginals fl,θ, we need an
inequality that relates the L1 distance of the l-marginals to the parameters of the HMM. Such
an inequality, stated below as inequality (9), is proved in Gassiat and van Handel (2012) for
translation mixture models, with the strength of being uniform over the number (possibly infinite)
of populations in the mixture. However for our purpose, we do not need such a general result,
and it is possible to prove that (9) holds for more general situations than families of translated
distributions, under a structural assumption implying, in particular, the weak identifiability of the
multidimensional mixtures. This condition is presented in Appendix 6.5 together with the proof of
the fact that if it is verified then (9) holds (Lemma 2). This condition is implied in particular by the
strong identifiability assumption of Rousseau and Mengersen (2011), and it holds for any parametric
family (gγ)γ∈Γ which can be represented as an exponential family, including location-scale Gaussian
mixtures, Poisson mixtures, exponential mixtures and so on. The inequality following Theorem
3.9 of Gassiat and van Handel (2012) says that there exists a constant c(θ0) > 0 such that for any
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small enough positive ε,

‖fl,θ − fl,θ0‖1
c(θ0)

≥
∑

1≤j≤l:∀i,‖γj−γ0
i ‖>ε

Pθ (X1 = j)

+
∑

1≤i1,...,il≤k0

[|Pθ (X1:l ∈ A(i1, . . . , il))− Pθ0 (X1:l = i1 · · · il)|

+

∥∥∥∥∥∥
∑

(j1,...,jl)∈A(i1,...,il)

Pθ (X1:l = j1 · · · jl)


 γj1
· · ·
γjl

−
 γ0

i1
· · ·
γ0
il


∥∥∥∥∥∥

+
1

2

∑
(j1,...,jl)∈A(i1,...,il)

Pθ (X1:l = j1 · · · jl)

∥∥∥∥∥∥
 γj1
· · ·
γjl

−
 γ0

i1
· · ·
γ0
il

∥∥∥∥∥∥
2
 (9)

where A(i1, . . . , il) = {(j1, . . . , jl) : ‖γj1 − γ0
i1
‖ ≤ ε, . . . , ‖γjl − γ0

il
‖ ≤ ε}. The above lower bound

essentially correponds to a partition of {1, . . . , k}l into kl0 + 1 groups, where the first kl0 groups
correspond to the components that are close to true distinct components in the multivariate mixture
and the last corresponds to components that are emptied. The first term on the right hand side
controls the weights of the components that are emptied (group kl0 +1), the second term control the
sum of the weights of the components belonging to the i-th group, for i = 1, . . . , kl0 (components
merging with the true i-th component), the third controls the distance between the mean value
over the group i and the true value of the i-th component in the true mixture while the last
term controls the distance between each parameter value in group i and the true value of the i-th
component. Notice now that for some constant C > 0,∥∥∥∥∥∥

 γj1
· · ·
γjl

−
 γ0

i1
· · ·
γ0
il

∥∥∥∥∥∥ ≥ C ∥∥γj1 − γ0
i1

∥∥ ∨ · · · ∨ ∥∥γjl − γ0
il

∥∥
so that we get that for maybe some other constant c̃(θ0) > 0:

‖fl,θ − fl,θ0‖1
c̃(θ0)

≥
∑

1≤j≤l:∀i,‖γj−γ0
i ‖>ε

Pθ (X1 = j)

∑
1≤i1,...,il≤k0

|
∑

(j1,...,jl)∈A(i1,...,il)

Pθ (X1:l = j1 · · · jl)− Pθ0 (X1:l = i1 · · · il) |

+

k0∑
i=1

‖
∑

j:‖γj−γ0
i ‖≤ε

Pθ (X1 = j) γj − γ0
i ‖+

1

2

k0∑
i=1

∑
j:‖γj−γ0

i ‖≤ε

Pθ (X1 = j) ‖γj − γ0
i ‖2.

It follows that as soon as
‖fl,θ − fl,θ0‖1 . un

for un tending to 0 as n tends to infinity (which is the case with un some negative power of n if
the prior is well chosen), we get that, for any j ∈ {1, . . . , k}, either Pθ (X1 = j) . un, or

∃i ∈ {1, . . . , k0} Pθ (X1 = j) ‖γj − γ0
i ‖2 . un.

This means that extra states are emptied or merge with true ones. Let cn be a sequence increasing
slowly to infinity and let J be the set (depending on θ) such that

J = {j : Pθ (X1 = j) ≥ uncn} .

For any j ∈ J , let Aj =
{
i ∈ J : Pθ (X1 = j) ‖γj − γi‖2 ≤ un

√
cn
}
, we say that the elements j1

and j2 of J are merging if Aj1 ∩ Aj2 6= ∅, what we note j1 ∼ j2, then we say that two elements
i and j are equivalent if there is a sequence i1, . . . , ir of elements such that i1 = i ∼ i2, i2 ∼
i3, . . . , ir−1 ∼ ir = j, and we define L as the number of equivalent classes with respect to this
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equivalence relationship. Then, under the assumptions of Theorem 2, it is possible to choose un
such that

Pπk [L 6= k0|Y1:n] = oPθ0 (1) . (10)

Under the Dirichlet type prior assumption (F1), one may take un = (n/ log n)−(ᾱ−k(k−1+d))/2ᾱ),
while under the exponential type prior assumption (FE1), one may take un = (n/ log n)−1/2. An
alternative choice for un could be the posterior L1 risk between l-marginals, say between marginals
of order 2 :

un = Eπ
[
‖f2,θ − f2,θ̂‖1|Y1:n

]
,

where θ̂ is the posterior expectation of θ. This has the advantage of being automatically calibrated.
There are various possible choices for cn, we suggest cn =

√
log n, since in our simulation study,

this lead to a satisfactory behaviour. Indeed, in the case n = 500 for instance, if the posterior risk
above is of order 0.1 (as in some of our simulations) un log n > 0.6 which is not a reasonable choice
since it will erase all components whose weights are smaller than 0.6, whereas un

√
log n = 0.25.

Obviously, in practice, the choice of cn should then depend on k. A heuristically good choice for
cn is

√
log n/k, since if k is large, most weights should be small. An estimator of the order can

then be for instance the posterior mode of L, however the whole posterior distribution of L is also
of interest.

3.3. Consistent estimation of the parameters when the order is known
When the model is correctly specified, that is when the true number of states k0 is equal to k,
we are able to refine the concentration result in two ways : (i) obtain a better concentration rate
(the usual 1/

√
n rate up to log n) and (ii) obtain a posterior concentration rate in the parameter

scale. We still consider the case where (9) holds. If now k = k0, following from Theorem 2, if
ᾱ =

∑k
i=1 αi > k(k− 1 + d) with a Dirichlet type prior, or with an exponential type prior, it holds

that
‖fl,θ − fl,θ0‖1 . un

where un = O(n−τ ) for some τ > 0. Since now (9) implies that

‖fl,θ − fl,θ0‖1 ≥ c̃(θ0)

 ∑
1≤i1,...,il≤k0

|Pθ (X1:l = i1 · · · il)− Pθ0 (X1:l = i1 · · · il) |

+

k0∑
i=1

Pθ (X1 = j) ‖γj − γ0
i ‖+

1

2

k0∑
i=1

Pθ (X1 = j) ‖γj − γ0
i ‖2
}
,

we obtain that, for all i1 · · · il,

|Pθ (X1:l = i1 · · · il)− Pθ0 (X1:l = i1 · · · il) | . un,

which means in particular that for all i, j,

|Pθ (X1 = i)− Pθ0 (X1 = i) | . un, and |qi,j − q0
i,j | . un.

Since q0
i,j > 0 for all i, j ≤ k, then there exists a > 0 such that Pπ [∃i, j, qi,j ≤ a|Y1:n] = oPθ0 (1)

and if qi,j ≥ a for all i, j, ρ(θ)− 1 ≥
∑k
j=1 mini qi,j ≥ ka > 0, hence

{(ρ(θ)− 1)||fl,θ0 − fl,θ||1 ≤ K
√

log n/n} ∩ {ρ(θ)− 1 ≥ ka} ⊂ {||fl,θ0 − fl,θ||1 ≤ K
′√

log n/n}

for some K
′
> 0. We thus have that

Pπ
[
||fl,θ0 − fl,θ||1 ≤ K

′√
log n/n|Y1:n

]
= 1 + oPθ0 (1)

and in the above inequalities we can replace un by
√

log n/n. We finally obtain the following result
on the posterior concentration :
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Corollary 1. When k = k0, when (9) holds, under the assumptions of Theorem 2, if the
prior is of Dirichlet type with ᾱ =

∑k
i=1 αi > k(k − 1 + d) or if the prior is of exponential type,

there exists K > 0 such that

Pπ
[
||fl,θ0 − fl,θ||1 ≤ K

√
log n

n
|Y1:n

]
= 1 + oPθ0 (1)

and

Pπk0

[
∀i, j|qi,j − q0

i,j | ≤ K
√

log n

n
; ‖γi − γ0

i ‖ ≤ K
√

log n

n
|Y1:n

]
= 1 + oPθ0 (1) .

Hence, we recover the n−1/2 rate of convergence (up to a log n term), as soon as the prior
vanishes quickly enough near qi,j = 0.

3.4. Asymptotic behaviour of the posterior distribution when k0 = 1 and k = 2
In this section we restrict our attention to the simpler case where k0 = 1 and k = 2. We will see
that despite its apparent simplicity, the asymptotic analysis of the posterior distribution leads to a
guideline on the choice of the prior parameters αi’s which is (almost) opposite to that proposed in
Rousseau and Mengersen (2011), in the case of mixture models. We still consider situations where
(9) holds, and choose independent Dirichlet type priors for the rows of the transition matrix. We
prove that the extra component is not emptied but merges with the true one, under large enough
αi’s for the Dirichlet prior.
When k = 2, we can parameterize θ as θ = (p, q, γ1, γ2), with 0 ≤ p ≤ 1, 0 ≤ q ≤ 1, so that

Qθ =

(
1− p p
q 1− q

)
, µθ =

(
q

p+ q
,

p

p+ q

)
when p 6= 0 or q 6= 0. If p = 0 and q = 0, set µθ =

(
1
2 ,

1
2

)
for instance. Also,

ρθ − 1 ≥ (p+ q) ∧ (2− (p+ q)) .

When k0 = 1, observations are i.i.d. with distribution gγ0dν, so that one may take θ0 = (p, 1 −
p, γ0, γ0) for any 0 < p < 1, or θ0 = (0, q, γ0, γ) for any 0 < q ≤ 1 and any γ, or θ0 = (p, 0, γ, γ0)
for any 0 < p ≤ 1 and any γ. Also, for any x ∈ X , Pθ0,x = Pθ0 and

`n(θ, x)− `n(θ0, x0) = `n(θ, x)− `n(θ0, x).

We take independent Beta priors on (p, q) :

π(p, q) = Cα,βp
α−1(1− p)β−1qα−1(1− q)β−1,

thus satisfying (F1).

Let un = K
√

logn
n withK large enough so that, thanks to Theorem 2, Pπ (Bn|Y1:n) = 1+oP (1),

as soon as assumption (F2) holds, and where Bn is the set

Bn =
{

(p+ q) ∧ (2− (p+ q)) ‖f2,θ − f2,θ0‖1 ≤ un
}
.

Then, for any sequence of sets (An)n≥1, for any D > 0, and for any sequence (cn)n≥1 of real
numbers

Eθ0 [Pπ (An|Y1:n)] = Eθ0 [Pπ (An ∩Bn|Y1:n)] + o (1)

= Eθ0

[∫
An∩Bn×X e

`n(θ,x)−`n(θ0,x0)π(dθ)πX (dx)∫
Bn×X e

`n(θ,x)−`n(θ0,x0)π(dθ)πX (dx)

]
+ o (1)

:= Eθ0

[
Nn
Dn

]
+ o (1)

≤ Pθ0
(
Dn ≤ cnn−D/2

)
+
nD/2

cn
π2(An ∩Bn) + o (1) .
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Thus, if
Pθ0

(
Dn ≤ cnn−D/2

)
= o (1) , (11)

one gets

Eθ0 [Pπ (An|Y1:n)] ≤ nD/2

cn
π2(An ∩Bn) + o (1) (12)

Let εn decrease slowly to 0 and such that un
εn

tends to 0. Consider the set

An =

{
p

p+ q
≤ εn or

q

p+ q
≤ εn

}
.

Then the following holds:

Corollary 2. Under the assumptions of Theorem 2, in the situation where (9) holds, and if
moreover for all x, γ 7→ gγ(x) is four times continuously differentiable on Γ, and if for any γ ∈ Γ
there exists ε > 0 such that for any i = 1, 2, 3, 4, if Di

γgγ′ denotes the i-th differential operator
(with respect to γ) of g at point γ′,∫

sup
γ′∈Bd(γ,ε)

‖
Di
γgγ′

gγ′
(y) ‖4gγ (y) ν(dy) < +∞, (13)

the extra component cannot be emptied at rate εn = 1
(logn)3 , that is

Pπ (An|Y1:n) = oP (1)

as soon as α > 3d/4.

To prove Corollary 2, we prove that

π2(An ∩Bn) . u2α
n + uα+d

n + ud+d/2
n εα−d/2n , (14)

and that (11) holds with D = d+ d/2 as soon as Cn tends to infinity as n tends to infinity. Thus,
taking Cn = log log log n and using (12), Corollary 2 follows. The detailed proof is given in the
appendix.

With extra work, it might be possible to obtain that Corollary 2 holds for any εn decreasing to
0 and such that un

εn
tends to 0. For this, one needs to obtain the posterior concentration rate

√
1
n

instead of
√

logn
n in Theorem 2. This requires the use of local packing numbers instead of global

packing numbers to cover the sets with respect to the distance ‖fl,θ− fl,θ0‖1. It should be possible
to do it by using the entropy results in Gassiat and van Handel (2012).

4. Simulations

To illustrate the results obtained in Section 3, we run a simulation study under the following setups:
in all cases the model corresponds to a finite state space HMM, with k = 2 states and Gaussian
emissions with unknown means µ1 and µ2 and known variance:

Yi|Xi = x ∼ N (µx, 1), x ∈ {1, 2}, Q =

(
1− p p
q 1− q

)
.

We consider independent Beta(α, α) priors on (p, q) and independent normal priors on (µ1, µ2)
with variance 1 and mean 0.

There are various ways proposed in the literature to implement such posterior distributions. The
most well known is the Gibbs sampler which simulates the hidden states (possibly after integrating
out the parameters given the states), see for instance Frühwirth-Schnatter (2006). Unfortunately,
we have found that such algorithms do not allow to visit well the parameter space when there are
well separated multiple modes, even after combining such algorithms with parallel tempering, see
Geyer (1991) or Baragatti (2011) for a review on these methods. We have therefore considered an
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Figure 1. output of the posterior distribution on µ1 (black) and µ (red) for α = 3 (Left) and α = 0.1 (Right)

Hasting-Metropolis algorithm where only the parameters are simulated and at each iteration the
likelihood is computed; we have combined this algorithm with parallel tempering, as follows : For
each temperature T varying in the set 1 = T1 < T2 < · · · < TL, we propose at iteration t

µ′(T ) = µt(T ) + σµ(T )εtµ, w′(T ) = |wt(T ) + σw(T )εw(T )|, θ′ = (µ′, w′)

where µ denotes the means and w the unnormalized weights. Then after the acceptance step for
each T , we propose a swap between a random pair (Ti, Tj), which is accepted according to the
ratio of posteriors.

Interestingly, the performance of the algorithm is strongly influenced by the prior, even for
a large number of observations. Figure 1 displays the output of three Hasting-Metropolis runs,
associated with the same data which are composed of n = 1000 independent N (0, 1), the top graph
corresponds to α = 3, the middle graph to α = 0.1 based in the same tuning parameters as the
top graph and the bottom graph to α = 0.1 with tuning parameters chosen to have an acceptance
rate greater than 0.12. The performance is strongly deteriorated when α = 0.1, despite a rather
large number of observations. We can see that, even decreasing significantly the variance in the
proposal distributions does not prevent from being trapped in local modes, which are much more
pronounced than in the case α = 3. This might be a sign of an unstable behaviour of the likelihood
in regions where p or q are small but we have no proof for this. Another aspect of the computational
difficulty induced by small values of α is the label switching issue. This issue exists whatever the
value of α of course, however in cases of small values of α, it is rendered even more difficult.
Figure 2 shows the output of the MCMC chain of q11 and q22 before and after treatment of the
label switching issue, i.e. choosing the labels, at each iteration which minimize the distance to the
posterior mode (MAP) (obtained from maximizing the posterior likelihood over all the iterations).
The MAP corresponds to q̂11 = 0.99 and q̂22 = 0.9999, in other words to a transition matrix closed
to the identity matrix. The resulting posterior on (q11, q22) oscillates sometimes between the values
(1, 0) and (0, 1) (or close to it), which shows that the relabelling was inefficient.To make it more
efficient, we use a change of parameterization on the qij , we work with log qij instead and minimize
the distance between the MAP and the values at each iteration in this new parameterization. The
posterior mean of q11 with the relabelling based on the logarithm of the transition matrix equals
0.18, whereas it was equal to 0.48 under the other approach for the relabelling. This phenomenon
does not take place when α = 3, the same result is obtained for both parameterization, see figure
2, in particular the posterior means of q11 after both types of relabelling are equal to 0.48. Note
that in Figure 2, the MCMC chains have been tuned to get a reasonable acceptance rate.

Hence, choosing small values for α influences strongly the behaviour of MCMC samplers, even
for large values of n, at least in the above case, i.e. when the true generating process corresponds
to a smaller value of the number of states than in the model. In particular we have not observed
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Figure 2. output of the posterior distribution on q11 (black) and q22 (red) for α = 3 (right) and α = 0.1 (left),
without relabelling (top), with simple relabelling (middle) with relabelling in new parameterization (bottom)

this difficulty in cases where the data was generated from a HMM with two states as in the model
(well specified case 1 below). We now study on simulations to what extend the behaviour of the
posterior is influenced by the value of α.

The data are simulated as

• Case 1 : (Well specified) k0 = 2, µ0 = (0, 4), p0 = 0.4, q0 = 0.7.

• Case 2 : (Mis-specified) k0 = 1, µ0 = 0.

In both cases the estimation will be conducted with α = 3 > k − 1 + d = 2 (posterior concen-
tration has been proved) and α = 0.1 < k − 1 + d (there is no result on posterior concentration
both in terms of the l-marginals and in terms of the parameters).

Figure 3 shows the posterior expectations of the L1 distance between the 2- marginals f2,θ and
f2,θ0 in case 1 (left panel) and case 2 (right panel), under n = 100, 500. In each case the first
two boxplots corresponds to n = 100 with α = 3 (first) and α = 0.1 (second) and the next two
boxplots to n = 500. The last two boxplots of the right panel (case 2) correspond to n = 1000. It
appears that the impact of α in case 2 is much stronger than in case 1. In the former the posterior
distribution seems to have larger posterior (L1) risk under α = 0.1 than under α = 3, the difference
being quite significant for n = 100 and lessened for n = 500 whereas we see no real difference in
case 1, even for n = 100. In case 2, for large n, namely n = 1000, the boxplot seems to indicate
that the posterior L1 risk is at least of the same order with small α (α = 0.1) than with large α
(α = 3).

We have also computed the posterior distribution of L, for one data set, in each situation.
The choice of cn =

√
log n and un = Eπ[‖f2,θ − f2,θ̂‖1|Y1:n] leads to posterior distributions of L

concentrated on the right value for each of the situations and both for α = 3 and α = 0.1.

5. Discussion

This paper has contributed in the understanding of the Bayesian analysis of HMMs. A positive
conclusion derived from our results is that even in mis-specified cases, i.e. when the number k
of states in the model is larger than the true number of states k0, the posterior distribution will
concentrate on the true values of the parameter, provided the prior forbids strongly enough small
transition probabilities (for instance if the hyperparameters αi,j in the Dirichlet priors on the rows
of the transition matrix are large enough). However, contrarywise to static mixture models, there
are no definite conclusions when the hyperparameters αi,j are small. It thus gives guidelines for
the choice of the prior in HMM modeling with finite state space. When the number of states is
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Figure 3. boxplots of the posterior expectations of |f2,θ − f2,θ0 | for α = 3, 0.1 and n = 100, 500, in case 1
(left) and case 2 (right)

unknown, one should preferably choose Dirichlet type priors with large enough parameters. This
recommandation is supported both by theoretical and computational reasons. On the theoretical
side, we have been able to prove that using such priors leads to consistent posterior distribution
and we have been able to give convergence rates. On the computational side, small parameters lead
to unstable chains, and heavier label switching issues, as our simulation study indicates. Thus, to
have confidence in the output of our simulated posterior distribution and to obtain interpretable
results one should to choose (Dirichlet) priors on the transition matrices with large enough values
for the αi,j . We have been able to give a lower bound for what "large enough" means in the general
finite state space situation, and sharpened this lower bound in the specific situations of 2 hidden
states.

Under identifiability conditions (i.e. condition (L(l))), the posterior concentration in terms
of the l-marginals can be expressed in terms of the parameters, thus enabling us to provide a
consistent estimator of the number of hidden states (when the prior is correctly specified). Note
that the posterior concentration rate of order 1/

√
n for the parameter is only obtained if the number

of states is correctly specified, i.e. when k = k0.
The question of the asymptotic behaviour of the posterior distribution, in case of small param-

eters for the Dirichlet prior remains open, though the computation of the posterior distribution
becomes much more difficult in such cases. In our simulation study, the posterior distribution seems
to concentrate wih n even for small values of α. Wether it really shows consistency or wether it
can be extended beyong the simple case of k0 = 1 and k = 2 is not clear to us.

6. Appendix

6.1. Proof of Theorem 1
The proof follows the same lines as in Ghosal and van der Vaart (2006). Let (εn)n≥1 be a sequence
of positive real numbers. We write

Pπ
[
‖fl,θ − fl,θ0‖1

ρθ − 1

2Rθ + ρθ − 1
≥ εn|Y1:n

]
=

∫
An×X e

`n(θ,x)−`n(θ0,x0)π(dθ)πX (dx)∫
Θ×X e

`n(θ,x)−`n(θ0,x0)π(dθ)πX (dx)

:=
Nn
Dn

,

where An = {θ : ‖fl,θ − fl,θ0‖1
ρθ−1

2Rθ+ρθ−1 ≥ εn}. A lower bound on Dn is obtained in the following
usual way. Set for any real number C, Ωn(C) = {(θ, x); `n(θ, x) − `n(θ0, x0) ≥ −C}, which is a
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random subset of Θ×X (depending on Y1:n).

Dn ≥
∫
Sn

1lΩn(C)e
`n(θ,x)−`n(θ0,x0)π(dθ)πX (dx)

≥ e−Cπ ⊗ πX (Sn ∩ Ωn(C)),

therefore using (A1), for any sequence (Cn)n≥1 of real numbers tending to +∞, there exists c1 > 0
such that

Pθ0
[
Dn < c1e

−Cnn−D/2
]
≤ Pθ0

[
Dn < e−Cnπ ⊗ πX (Sn)/2

]
≤ Pθ0 [π ⊗ πX (Sn ∩ Ωn(Cn)c) ≥ π ⊗ πX (Sn)/2]

≤ 2

∫
Sn

Pθ0 [`n(θ, x)− `n(θ0, x0) ≤ −Cn]π(dθ)πX (dx)

π ⊗ πX (Sn)

= o(1),

by assumption (A1) again.
Thus, for any sequence (Cn)n≥1 of real numbers tending to +∞,

Pπ
[
‖fl,θ − fl,θ0‖1

ρθ − 1

2Rθ + ρθ − 1
≥ εn|Y1:n

]
= oPθ0 (1) +

Nn
Dn

1lDn≥c1n−D/2e−Cn .

But

Nn =

∫
(An∩Fn)×X

e`n(θ,x)−`n(θ0,x0)π(dθ)πX (dx) +

∫
(An∩Fcn)×X

e`n(θ,x)−`n(θ0,x0)π(dθ)πX (dx)

and

Eθ0

[∫
(An∩Fcn)×X

e`n(θ,x)−`n(θ0,x0)π(dθ)πX (dx)

]
= O [π (An ∩ Fcn)] = o

(
n−D/2

)
by Fubini’s theorem and the fact that, by (A1), `n(θ0)− `n(θ0, x0) is uniformly upper bounded, so
that by taking Cn tending to +∞ slowly enough,

Pπ
[
‖fl,θ − fl,θ0‖1

ρθ − 1

2Rθ + ρθ − 1
≥ εn|Y1:n

]
= oPθ0 (1) +

Ñn
Dn

1lDn≥c1n−D/2e−Cn

where Ñn =
∫

(An∩Fn)×X e
`n(θ,x)−`n(θ0,x0)π(dθ)πX (dx). Let now (θj)j=1,...,N , N = N(δ,Fn, dl(., .)),

be the sequence of θj ’s in Fn such for all θ ∈ Fn there exists a θj with dl(θj , θ) ≤ δ (for some δ to
be fixed later). Assume for simplicity’s sake and without loss of generality that n is a multiple of
the integer l, and define

φj = 1l∑n/l
i=1

(
1l(Yli−l+1,...,Yli)∈Aj−Pθ0 ((Y1,...,Yl)∈Aj)

)
>tj

where
Aj = {(y1, . . . , yl) ∈ Y × Y : fl,θ0(y1, . . . , yl) ≤ fl,θj (y1, . . . , yl)}

for some positive real number tj to be fixed later also. Note that

Pθj ((Y1, . . . , Yl) ∈ Aj)− Pθ0((Y1, . . . , Yl) ∈ Aj) =
1

2
‖fl,θj − fl,θ0‖1

Define also
ψn = max

1≤j≤N :θj∈An
φj .

Then

Eθ0

(
Ñn
Dn

ψn

)
≤ Eθ0ψn ≤ N(δ,Fn, d(., .)) max

1≤j≤N :θj∈An
Eθ0φj
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and using the usual equality

Eθ0

(
Ñn(1− ψn)

)
=

∫
X
Eθ0,x0

(
Ñn(1− ψn)

)
µθ0 (dx0) =

∫
(An∩Fn)×X

Eθ,x ((1− ψn))π (dθ)πX (dx)

so that:

Pθ0
(
Pπ
[
‖fl,θ − fl,θ0‖1

ρθ − 1

2Rθ + ρθ − 1
≥ εn|Y1:n

])
≤ o (1) +

(n
δ

)M
max

1≤j≤N :θj∈An
Eθ0φj

+O

[
nD/2eCn

∫
(An∩Fn)×X

Eθ,x ((1− ψn))π (dθ)πX (dx)

]
.

(15)

Now

Eθ0 [φj ] = Pθ0

n/l∑
i=1

(
1l(Yli−l+1,...,Yli)∈Aj − Pθ0((Y1, . . . , Yl) ∈ Aj)

)
> tj


and

Eθ,x (1− φj) = Pθ,x

n/l∑
i=1

(
−1l(Yli−l+1,...,Yli)∈Aj + Pθ,x((Yli−l+1, . . . , Yli) ∈ Aj)

)

> −tj +

n/l∑
i=1

(Pθ,x((Yli−l+1, . . . , Yli) ∈ Aj)− Pθ0((Y1, . . . , Yl) ∈ Aj))

 .
Consider the sequence (Zi)i≥1 with for all i ≥ 1, Zi = (Xli−l+1, . . . , Xli, Yli−l+1, . . . , Yli), which is,
under Pθ, a Markov chain with transition kernel Q̄θ given by

Q̄θ(z, dz
′) = gθ(y

′
1|x′1) · · · gθ(y′l|x′l)Qθ(xl, dx′1)Qθ(x

′
1, dx

′
2) · · ·Qθ(x′l−1, dx

′
l)µ(dy′1) · · ·µ(dy′l).

This kernel satisfies the same uniform ergodic property as Qθ, with the same coefficients, that is
condition (3) holds with the coefficients Rθ and ρθ with the replacment of Qθ by Q̄θ, and we may
use Rio (2000)’s exponential inequality (corollary 1) with uniform mixing coeficients (as defined in
Rio (2000)) satifying φ(k) ≤ Rθρ−kθ , to obtain that, for any positive real number u,

Pθ0

n/l∑
i=1

(
1l(Yli−l+1,...,Yli)∈Aj − Pθ0((Y1, . . . , Yl) ∈ Aj)

)
> u

 ≤ exp

{
−2lu2 (ρθ0 − 1)

2

n (2Rθ0 + ρθ0 − 1)
2

}
(16)

and

Pθ,x

n/l∑
i=1

(
−1l(Yli−l+1,...,Yli)∈Aj + Pθ,x((Yli−l+1, . . . , Yli) ∈ Aj)

)
> u

 ≤ exp

{
−2lu2 (ρθ − 1)

2

n (2Rθ + ρθ − 1)
2

}
.

(17)
Set now

tj =
n‖fl,θj − fl,θ0‖1

4l
, δ =

εn
4l
.

Since for any θ, ρθ−1
2Rθ+ρθ−1 ≤ 1 and since consequently for θj ∈ An, ‖fl,θj − fl,θ0‖1 ≥ εn, we first

get, using (16),

Eθ0 [φj ] ≤ exp

{
−nε2n (ρθ0 − 1)

2

8l (2Rθ0 + ρθ0 − 1)
2

}
. (18)
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Now, for any θ ∈ An,

− tj +

n/l∑
i=1

(Pθ,x((Yli−l+1, . . . , Yli) ∈ Aj)− Pθ0((Y1, . . . , Yl) ∈ Aj))

= −
n‖fl,θj − fl,θ0‖1

4l
+
n

l

{
Pθj ((Y1, . . . , Yl) ∈ Aj)− Pθ0((Y1, . . . ;Yl) ∈ Aj)

}
+
n

l

{
Pθ((Y1, . . . , Yl) ∈ Aj)− Pθj ((Y1, . . . , Yl) ∈ Aj)

}
+

n/l∑
i=1

(Pθ,x((Yli−l+1, . . . , Yli) ∈ Aj)− Pθ((Y1, . . . , Yl) ∈ Aj))

≥
n‖fl,θj − fl,θ0‖1

4l
−
n‖fl,θj − fl,θ‖1

l
−

n/l∑
i=1

Rθρ
−i
θ

≥ n‖fl,θ − fl,θ0‖1
4l

−
5n‖fl,θj − fl,θ‖1

4l
− Rθρθ
ρθ − 1

≥ n

4l

(
1− 5

4l

)
‖fl,θ − fl,θ0‖1 −

Rθρθ
ρθ − 1

≥
(
n

4l

(
1− 5

4l

)
− 1

2εn

)
‖fl,θ − fl,θ0‖1

using the triangular inequality and the fact that ‖fl,θj − fl,θ‖1 ≤ εn
4l ≤

‖fl,θ−fl,θ0‖1
4l since θ ∈ An

and ρθ−1
2Rθ+ρθ−1 ≤ 1. As soon as n

4l

(
1− 5

4l

)
− 1

2εn
> 0, (17) gives, for θ ∈ An,

Eθ,x (1− φj) ≤ exp

{
−2l

n

(
n

4l

(
1− 5

4l

)
− 1

2εn

)2

ε2n

}
. (19)

We finally get, using (15), (18) and (19)

Pθ0
(
Pπ
[
‖fl,θj − fl,θ0‖1

ρθ − 1

2Rθ + ρθ − 1
≥ εn|Y1:n

])
≤ o (1) + c2n

D/2eCn exp

{
−2l

n

(
n

4l

(
1− 5

4l

)
− 1

2εn

)2

ε2n

}

+
(n
δ

)M
exp

{
−nε2n (ρθ0 − 1)

2

8l (2Rθ0 + ρθ0 − 1)
2

}

for some c2 > 0. Taking εn = K
√

logn
n and Cn tending to +∞ slowly enough, it is easy to see that

Pθ0
(
Pπ
[
‖fl,θj − fl,θ0‖1

ρθ − 1

2Rθ + ρθ − 1
≥ εn|Y1:n

])
= o (1)

as soon as K is large enough, and Theorem 1 is proved.

6.2. Proof of Theorem 2
The proof consists in showing that assumptions (A0)-(A3) of Theorem 1 are satisfied. Assumption
(F0) and the construction (7) allow to define a θ̃0 ∈ Θk such that (A0) holds with D = k(k−1)+kd.
Then using (F1), (F2) and the computations of Section 2.3, (A1) holds. To prove that (A2) and
(A3) hold, recall that if θ = (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1; γ1, ...., γk) is such that (qij , 1 ≤ i ≤
k, 1 ≤ j ≤ k − 1) ∈ ∆k

0 , then µθ is uniquely defined. Let us now define

Fn = {θ = (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1; γ1, ...., γk) : qij ≥ vn, 1 ≤ i ≤ k, 1 ≤ j ≤ k,
k∑
j=1

inf
1≤i≤k

qij ≥ un, ‖γi‖ ≤ nb, 1 ≤ i ≤ k

 .

Then, using (F2) together with (8) and Lemma 1 in Appendix 6.3, we obtain that for some constant
B,

∀(θ1, θ2) ∈ F2
n, ‖fθ1 − fθ2‖1 ≤ B

(
1

v2c
n

+ na
)
‖θ1 − θ2‖
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so that for some other constant B,

N(δ,Fn, d(., .)) ≤
[
B

δ

(
1

v2c
n

+ na
)]k(k−1)+kd

and (A3) holds if vn is larger than some negative power of n. Now, (F1) gives

π(Fcn) = O(v
min1≤i≤k αi
n + u

∑
1≤i≤k αi

n ).

Let then vn = n−D/2 min1≤i≤k αi/
√

log n and un = n−D/2
∑

1≤i≤k αi/
√

log n. Then, (A2) and (A3)
hold. Thus, Theorem 1 implies that

oPθ0 (1) = Pπk
[
‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
log n

n

∣∣∣∣∣Y1:n

]

= Pπk
[
θ ∈ Fn and ‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
log n

n

∣∣∣∣∣Y1:n

]
+ oPθ0 (1)

Since ρθ − 1 ≥
∑k
j=1 min1≤i≤k qij , for all θ ∈ Fn, ρθ − 1 ≥ un,

Pπk
[
‖fl,θ − fl,θ0‖1(ρθ − 1) ≥ K

√
log n

n
|Y1:n

]
≥ Pπk

[
‖fl,θ − fl,θ0‖1 ≥ 2K

1

un

√
log n

n
|Y1:n

]
,

and the theorem follows when (F1) holds. If now (FE1) holds instead of (F1), one gets, taking
un = vn,

π(Fcn) = O(vn exp(−C/vn)).

Then, taking vn = 1/h log n with small enough h gives that (A2) and (A3) hold. The end of the
proof follows similarly as before.

6.3. Derivatives of the stationary distribution : Lemma 1
Lemma 1. The function θ 7→ µθ is continuously differentiable in (∆0

k)k×Γk and there exists an
integer c > 0 and a constant C > 0 such that for any 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1, any m = 1, . . . , k,∣∣∣∣∂µθ (m)

∂qij

∣∣∣∣ ≤ C

(infi′ 6=j′ qi′j′)2c
.

One may take c = k − 1.

Let θ = (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k−1; γ1, ...., γk) be such that (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k−1) ∈ ∆k
0 ,

Qθ = (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k) is a k×k stochastic matrix with positive entries, and µθ is uniquely
defined by the equation

µTθ Qθ = µTθ

if µθ is the vector (µθ(m))1≤m≤k. This equation is solved by linear algebra as

µθ (m) =
Pm(qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1)

R(qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1)
, m = 1, . . . , k − 1, µθ (k) = 1−

k−1∑
m=1

µθ (m) , (20)

where Pm, l = 1, . . . , k − 1 and R are polynomials where the coefficients are integers (bounded by
k) and the monomials are all of degree k − 1, each variable qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1 appearing
with power 0 or 1. Now, since the equation has a unique solution as soon as (qij , 1 ≤ i ≤ k, 1 ≤
j ≤ k−1) ∈ ∆k

0 , then R is never 0 on ∆k
0 , so it may be 0 only at the boundary. Thus, as a fraction

of polynomials with non zero denominator, θ 7→ µθ is infinitely differentiable in (∆0
k)k × Γk, and

the derivative has components all of form

P (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1)

R(qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1)2
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where again P is a polynomial where the coefficients are integers (bounded by 2k) and the mono-
mials are all of degree k − 1, each variable qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1 appearing with power 0 or
1. Thus, since all qij ’s are bounded by 1 there exists a constant C such that for all m = 1, . . . , k,
i = 1, . . . , k, j = 1, . . . , k − 1,∣∣∣∣∂µθ(m)

∂qij

∣∣∣∣ ≤ C

R(qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1)2
. (21)

We shall now prove that

R (qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1) ≥ ( inf
1≤i≤k,1≤j≤k,i 6=j

qij)
k−1, (22)

which combined with (21) and (22) implies Lemma 1. Note that we can express R as a polynomial
function of Q = qij , 1 ≤ i ≤ k, 1 ≤ j ≤ k, i 6= j. Indeed, µ := (µθ(i))1≤i≤k−1 is solution of

µT ·M = V T

where V is the (k−1)-dimensional vector (qkj)1≤j≤k−1, and M is the (k−1)× (k−1)-matrix with
components Mi,j = qkj − qij + 1li=j . Since R is the determinant of M , this leads to, for any k ≥ 2 :

R =
∑

σ∈Sk−1

ε (σ)
∏

1≤i≤k−1,σ(i)=i

qki +
∑

1≤j≤k−1,j 6=i

qij

 ∏
1≤i≤k−1,σ(i)6=i

(
qki − qσ(i)i

)
(23)

where for any integer n, Sn is the set of permutations of {1, . . . , n}, and for each permutation σ,
ε (σ) is its signature. Thus R is a polynomial in the components of Q where each monomial has
integer coefficient and has k − 1 different factors. The possible monomials are of form

β
∏
i∈A

qki
∏
i∈B

qij(i)

where (A,B) is a partition of {1, . . . , k − 1}, and for all i ∈ B, j(i) ∈ {1, . . . , k − 1} and j(i) 6= i.
In case B = ∅, the coefficient β of the monomial is

∑
σ∈Sk−1

ε (σ) = 0, so that we only consider
partitions such that B 6= ∅ . Fix such a monomial with non nul coefficient, let (A,B) be the
associated partition. Let Q be such that, for all i ∈ A, qki > 0, for all i /∈ A, qki = 0 and qkk > 0
(used to handle the case A = ∅). Fix also qij(i) = 1 for all i ∈ B. Then, if (A′, B′) is another
partition of {1, . . . , k−1} with B′ 6= ∅, the monomial

∏
i∈A′ qki

∏
i∈B′ qij(i) = 0. Thus, R(Q) equals∏

i∈A qki
∏
i∈B qij(i) times the coefficient of the monomial. But R(Q) ≥ 0, so that this coefficient

is a positive integer and (22) follows.

6.4. Proof of Corollary 2
We first prove that (14) holds. Following (9) we get that there exists c(θ0) > 0 and η > 0 such
that:

• If ‖γ1 − γ0‖ ≤ η and ‖γ2 − γ0‖ ≤ η,

‖f2,θ − f2,θ0‖1 ≥ c(θ0)
1

p+ q

[∥∥q(γ1 − γ0) + p(γ2 − γ0)
∥∥+ q

∥∥γ1 − γ0
∥∥2

+ p
∥∥γ2 − γ0

∥∥2
]
,

• If ‖γ1 − γ0‖ ≤ η and ‖γ1 − γ0‖+ ‖γ2 − γ0‖ > 2η,

‖f2,θ − f2,θ0‖1 ≥ c(θ0)

[
p

p+ q
+

q

p+ q

∥∥γ1 − γ0
∥∥] ,

• If ‖γ2 − γ0‖ ≤ η and ‖γ1 − γ0‖+ ‖γ2 − γ0‖ > 2η,

‖f2,θ − f2,θ0‖1 ≥ c(θ0)

[
q

p+ q
+

p

p+ q

∥∥γ2 − γ0
∥∥] ,
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• If ‖γ1 − γ0‖ > η and ‖γ2 − γ0‖ > η,

‖f2,θ − f2,θ0‖1 ≥ c(θ0).

Define

B1
n =

{
(p+ q) ∧ (2− (p+ q))

p+ q

[∥∥q(γ1 − γ0) + p(γ2 − γ0)
∥∥+ q

∥∥γ1 − γ0
∥∥2

+ p
∥∥γ2 − γ0

∥∥2
]
≤ un

}
,

B2
n =

{
‖ (p+ q) ∧ (2− (p+ q))

p+ q

[
p+ q

∥∥γ1 − γ0
∥∥]] ≤ un} ,

B3
n =

{
(p+ q) ∧ (2− (p+ q))

p+ q

[
q + p

∥∥γ2 − γ0
∥∥] ≤ un}

and
B4
n = {(p+ q) ∧ (2− (p+ q)) ≤ un} .

Then,
π2(An ∩Bn) ≤ π2(An ∩B1

n) + π2(An ∩B2
n) + π2(An ∩B3

n) + π2(An ∩B4
n).

Notice that on An, if p+ q ≥ 1, then p ≤ εn and q ≥ 1− εn, or q ≤ εn and p ≥ 1− εn, so that also
2− (p+ q) ≥ 1− εn.

• On An ∩ B1
n,
∥∥q(γ1 − γ0) + p(γ2 − γ0)

∥∥ . un, q
∥∥γ1 − γ0

∥∥2
. un, p

∥∥γ2 − γ0
∥∥2

. un, and
p . εn or q . εn. This gives π2(An ∩B1

n) . u
d+d/2
n ε

α−d/2
n .

• On An ∩ B2
n, p . un and q

∥∥γ1 − γ0
∥∥ . un in case p + q ≤ 1, and p . un, 1 − q . un and

q
∥∥γ1 − γ0

∥∥ . un in case p+ q ≥ 1, leading to π2(An ∩B2
n) . uα+d

n + uα+β+d
n .

• For symmetry reasons, π2(An ∩B3
n) = π2(An ∩B2

n).

• On An ∩B4
n, p . un and q . un, so that π2(An ∩B4

n) . u2α
n .

Keeping only the leading terms, we see that (14) holds.
We now prove that (11) holds with D = d + d/2 and cn tending to infinity, which will finish

the proof of corollary 2. Let us introduce the set, for small but fixed ε:

Un =

{
θ = (p, q, γ1, γ2) : ‖γ1 − γ0‖2 ≤ 1√

n
, ‖γ2 − γ0‖2 ≤ 1√

n
, ‖q(γ1 − γ0) + p(γ2 − γ0)‖ ≤ 1√

n
,

|q − 1

2
| ≤ ε, |p− 1

2
| ≤ ε

}
so that Un ⊂ Bn, and π2(Un & n−3d/4. Thus

Dn ≥
∫
Un×X

e`n(θ,x)−`n(θ0,x)π(dθ)πX (dx) .

Let us now study `n(θ, x)− `n(θ0, x). First, following the proof of Lemma 2 of Douc et al. (2004)
we find that, for any θ ∈ Un, for any x,

|`n (θ)− `n (θ, x)| ≤
(

1 + 2ε

1− 2ε

)2

.

Thus, for any θ ∈ Un and any x, and since `n(θ0, x) does not depend on x,

`n(θ, x)− `n(θ0, x) ≥ `n(θ)− `n(θ0)−
(

1 + 2ε

1− 2ε

)2

. (24)
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Let us now study `n(θ)− `n(θ0).

`n(θ)− `n(θ0) =

n∑
k=1

log

[
Pθ (Xk = 1|Y1:k−1)

gγ1

gγ0

(Yk) + Pθ (Xk = 2|Y1:k−1)
gγ2

gγ0

(Yk)

]
and we set for k = 1

Pθ (Xk = 1|Y1:k−1) = Pθ (X1 = 1) =
q

p+ q
,

Pθ (Xk = 2|Y1:k−1) = Pθ (X1 = 2) =
p

p+ q
.

Denote pk(θ) the random variable Pθ (Xk = 1|Y1:k−1), which is a function of Y1:k−1 and thus
independent of Yk. We have the recursion

pk+1 (θ) =
(1− p)pk(θ)gγ1

(Yk) + q(1− pk(θ))gγ2
(Yk)

pk(θ)gγ1
(Yk) + (1− pk(θ))gγ2

(Yk)
. (25)

Note that, for any p, q in ]0, 1[, for any k ≥ 1,

pk(p, q, γ0, γ0) =
q

p+ q
.

We shall denote by Di
(γ1)j ,(γ2)i−j the i-th partial derivative operator j times with respect to γ1 and

i− j times with respect to γ2 (0 ≤ j ≤ i, the order in which derivatives are taken does not matter).
Fix θ = (p, q, γ1, γ2) ∈ Un. When derivatives are taken at point (p, q, γ0, γ0), they are written with
0 as superscript.
Using Taylor expansion till order 4, there exists t ∈ [0, 1] such that denoting θt = tθ + (1 −
t)(p, q, γ0, γ0):

`n(θ)− `n(θ0) = (γ1 − γ0)D1
γ1
`0n + (γ2 − γ0)D1

γ2
`0n + Sn(θ) + Tn(θ) +Rn(θ, t) (26)

where Sn(θ) denotes the term of order 2, Tn(θ) denotes the term of order 3, and Rn(θ, t) the
remainder, that is

Sn(θ) = (γ1 − γ0)2D2
(γ1)2`0n + 2(γ1 − γ0)(γ2 − γ0)D2

γ1,γ2
`0n + (γ2 − γ0)2D2

(γ2)2`0n,

Tn(θ) = (γ1 − γ0)3D3
(γ1)3`0n + 3(γ1 − γ0)2(γ2 − γ0)D3

(γ1)2,γ2
`0n

+ 3(γ1 − γ0)(γ2 − γ0)2D3
γ1,(γ2)2`0n + (γ2 − γ0)3D3

(γ2)3`0n

and

Rn(θ, t) =

4∑
k=0

(
k
4

)
(γ1 − γ0)k(γ2 − γ0)4−kD4

(γ1)k,(γ2)4−k`n(θt).

Easy but tedious computations lead to the following results.

(γ1 − γ0)D1
γ1
`0n + (γ2 − γ0)D1

γ2
`0n

=

[
n∑
k=1

D1
γgγ0

gγ0

(Yk)

] [
q(γ1 − γ0) + p(γ2 − γ0)

p+ q

]

=

[
1√
n

n∑
k=1

D1
γgγ0

gγ0

(Yk)

] [√
n
q(γ1 − γ0) + p(γ2 − γ0)

p+ q

]
so that

sup
θ∈Un

∣∣(γ1 − γ0)D1
γ1
`0n + (γ2 − γ0)D1

γ2
`0n
∣∣ = OPθ0 (1) . (27)
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Also,

Sn(θ) = −

 1

n

n∑
k=1

(
D1
γgγ0

gγ0

(Yk)

)2
[√nq(γ1 − γ0) + p(γ2 − γ0)

p+ q

]2

+

[
1√
n

n∑
k=1

D2
γ2gγ0

gγ0

(Yk)

] [
q

p+ q

(
n1/4(γ1 − γ0)

)2

+
p

p+ q

(
n1/4(γ2 − γ0)

)2
]

+2
(
n1/4(γ1 − γ0)

)2
[

1√
n

n∑
k=1

(D1
γ1
p0
k)
D1
γgγ0

gγ0

(Yk)

]
−2
(
n1/4(γ2 − γ0)

)2
[

1√
n

n∑
k=1

(D1
γ2
p0
k)
D1
γgγ0

gγ0

(Yk)

]

+ 2
(
n1/4(γ1 − γ0)(γ2 − γ0)

)[ 1√
n

n∑
k=1

(D1
γ2
p0
k −D1

γ1
p0
k)
D1
γgγ0

gγ0

(Yk)

]
.

Using (25) one gets that for all integer k ≥ 2, (D1
γ1
p0

1 = 0 and D1
γ2
p0

1 = 0):

D1
γ1
p0
k =

pq

(p+ q)2

k−1∑
l=1

(1− p− q)k−l
D1
γgγ0

gγ0

(Yl)

and
D1
γ2
p0
k = −D1

γ1
p0
k

which leads to

Eθ0

( 1√
n

n∑
k=1

(D1
γ1
p0
k)
D1
γgγ0

gγ0

(Yk)

)2
 ≤

Eθ0
(
D1
γgγ0

gγ0

(Y1)

)2
2

.

and

Eθ0

( 1√
n

n∑
k=1

(D1
γ2
p0
k)
D1
γgγ0

gγ0

(Yk)

)2
 ≤

Eθ0
(
D1
γgγ0

gγ0

(Y1)

)2
2

.

Thus, we obtain
sup
θ∈Un

|Sn(θ)| = OPθ0 (1) . (28)

For the order 3 term, as soon as θ ∈ Un:

Tn(θ) = −

 n∑
k=1

(
D1
γgγ0

gγ0

(Yk)

)3
[q(γ1 − γ0) + p(γ2 − γ0)

p+ q

]3

+

[
n∑
k=1

D3
γ3gγ0

gγ0

(Yk)

] [
q

p+ q

(
γ1 − γ0

)3
+

p

p+ q

(
γ2 − γ0

)3]

−3

[
n∑
k=1

D1
γgγ0

gγ0

(Yk)
D2
γ2gγ0

gγ0

(Yk)

] [
q(γ1 − γ0) + p(γ2 − γ0)

p+ q

] [
q

(p+ q)2

(
γ1 − γ0

)2
+

p

(p+ q)2

(
γ2 − γ0

)2]

+O
(
n−3/4

)
n∑
k=1

(D1
γ1
p0
k)

(
D1
γgγ0

gγ0

(Yk)

)2

+

n∑
k=1

(D1
γ1
p0
k)
D2
γ2gγ0

gγ0

(Yk)

n∑
k=1

(D2
(γ1)2p0

k)
D1
γgγ0

gγ0

(Yk) +

n∑
k=1

(D2
(γ2)2p0

k)
D1
γgγ0

gγ0

(Yk)

+

n∑
k=1

(D2
(γ1,γ2)p

0
k)
D1
γgγ0

gγ0

(Yk)

}
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so that using assumptions (13)

sup
θ∈Un

|Tn(θ)| = OPθ0

(
n−1/4

)
+OPθ0 (1) +O

(
n−1/4

)
Zn

with

Zn =
1√
n

n∑
k=1


(D1

γgγ0

gγ0

(Yk)

)2

+
D2
γ2gγ0

gγ0

(Yk)

D1
γ1
p0
k +

D1
γgγ0

gγ0

(Yk)
[
D2

(γ1)2p0
k +D2

(γ2)2p0
k +D2

(γ1,γ2)p
0
k

] .

Now using (25) one gets that for all integer k ≥ 1,

1

1− p− q
D2

(γ1)2p0
k+1 = −2

pq2

(p+ q)3

(
D1
γgγ0

gγ0

(Yk)

)2

+2(D1
γ1
p0
k)
D1
γgγ0

gγ0

(Yk)+
pq

(p+ q)2

D2
γ2gγ0

gγ0

(Yk)+D2
(γ1)2p0

k,

1

1− p− q
D2

(γ2)2p0
k+1 = 2

p2q

(p+ q)3

(
D1
γgγ0

gγ0

(Yk)

)2

−2(D1
γ1
p0
k)
D1
γgγ0

gγ0

(Yk)− pq

(p+ q)2

D2
γ2gγ0

gγ0

(Yk)+D2
(γ2)2p0

k,

1

1− p− q
D2

(γ1,γ2)p
0
k+1 = 2

pq(q − p)
(p+ q)3

(
D1
γgγ0

gγ0

(Yk)

)2

+ 2(D1
γ1
p0
k)
D1
γgγ0

gγ0

(Yk) +D2
(γ1,γ2)p

0
k,

and using D2
(γ1)2p0

1 = 0, D2
(γ2)2p0

1 = 0, D2
(γ1,γ2)p

0
1 = 0 and easy but tedious computations one gets

that for some finite C > 0,

Eθ0
(
Z2
n

)
≤ CEθ0

(
D1
γgγ0

gγ0

(Y1)

)2
Eθ0

(
D1
γgγ0

gγ0

(Y1)

)4

+ Eθ0

(
D2
γ2gγ0

gγ0

(Y1)

)2

+

Eθ0
(
D1
γgγ0

gγ0

(Y1)

)2
2


so that we finally obtain
sup
θ∈Un

|Tn(θ)| = OPθ0 (1) . (29)

Let us finally study the fourth order remainder Rn(θ, t). We have

sup
θ∈Un

|Rn(θ, t)| ≤ 1

n

n∑
k=1

Ak,nBk,n,

where, for big enough n, Ak,n is a polynomial of degree at most 4 in supγ′∈Bd(γ0,ε) ‖
Diγgγ′

gγ′
(Yk) ‖,

and Bk,n is a sum of terms of form

sup
θ∈Un

∣∣∣∣∣∣
4∏
i=1

i∏
j=0

(
Di

(γ1)j ,(γ2)i−jpk(θt)
)ai,j ∣∣∣∣∣∣ (30)

where the ai,j are non negative integers such that
∑4
i=1

∑
j=0 iai,j ≤ 4.

To prove that
sup
θ∈Un

|Rn(θ, t)| = OPθ0 (1) (31)

holds, it is enough to prove that Eθ0 |
∑n
k=1Ak,nBk,n| = O(n). But for each k, pk(θ) and its

derivatives depend on Y1, . . . , Yk−1 only, so that Ak,n and Bk,n are independent random variables,
and

Eθ0

∣∣∣∣∣
n∑
k=1

Ak,nBk,n

∣∣∣∣∣ ≤
n∑
k=1

Eθ0 |Ak,n|Eθ0 |Bk,n|

≤ C max
i=1,2,3,4

Eθ0

(
sup

γ′∈Bd(γ0,ε)

‖
Di
γgγ′

gγ′
(Y1) ‖4

)
n∑
k=1

Eθ0 |Bk,n|
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for some finite C > 0. Now, using (25) one gets that for all integer k ≥ 1 and for any θ,

D1
γ1
pk+1 (θ) = (1− p− q)

{
pk(θ)(1− pk(θ))gγ2(Yk)D1

γgγ1(Yk) + gγ1(Yk)gγ2(Yk)D1
γ1
pk (θ)

(pk(θ)gγ1
(Yk) + (1− pk(θ))gγ2

(Yk))
2

}
,

D1
γ2
pk+1 (θ) = (1− p− q)

{
−pk(θ)(1− pk(θ))gγ1

(Yk)D1
γgγ2

(Yk) + gγ1
(Yk)gγ2

(Yk)D1
γ2
pk (θ)

(pk(θ)gγ1
(Yk) + (1− pk(θ))gγ2

(Yk))
2

}
.

Notice that for any θ, any k ≥ 2, pk(θ) ∈ (1 − p, q) so that for any θ ∈ Un, any k ≥ 2, pk(θ) ∈
[ 1
2 − ε,

1
2 + ε]. We obtain easily that for i = 1, 2, k ≥ 2,

sup
θ∈Un

∣∣D1
γipk+1 (θ)

∣∣ ≤ ( 2ε

1− 8ε

){
sup

γ′∈Bd(γ0,ε)

‖
D1
γgγ′

gγ′
(Yk) ‖+ sup

θ∈Un

∣∣D1
γipk (θ)

∣∣} .
Using similar tricks, it is possible to get that there exists a finite constant C > 0 such that for any
i = 1, 2, 3, 4, any j = 0, . . . , i, any k ≥ 2,

sup
θ∈Un

∣∣∣Di
(γ1)j ,(γ2)i−jpk+1(θ)

∣∣∣ ≤ Cε{ sup
γ′∈Bd(γ0,ε)

‖
i∑
l=1

Dl
γlgγ′

gγ′
(Yk) ‖i+1−l +

i∑
l=1

l∑
m=0

sup
θ∈Un

∣∣∣Dl
(γ1)j ,(γ2)l−jpk(θ)

∣∣∣i+1−l
}
.

By recursion, we obtain that there exists a finite C > 0 such that any term of form (30) has
expectation uniformly bounded:

Eθ0

 sup
θ∈Un

∣∣∣∣∣∣
4∏
i=1

i∏
j=0

(
Di

(γ1)j ,(γ2)i−jpk(θt)
)ai,j ∣∣∣∣∣∣

 ≤ C max
m=1,2,3,4

max
r=1,2,3,4

Eθ0

(
sup

γ′∈Bd(γ0,ε)

‖
Dm
γ gγ′

gγ′
(Y1) ‖r

)

which concludes the proof of (31).
Now, using (24), (26), (27), (28), (29) and (31), we get

Dn ≥ e
−OPθ0

(1)
π2 (Un)

so that (11) holds with D = d+ d/2 and any cn tending to infinity.

6.5. General identifiability condition for the parameters of a finite state space HMM
In this Section we prove that (9) holds under some general assumption. Let us first introduce
some notations. For all ` ≤ n, For all I = (i1, . . . , i`) ∈ {1, · · · , k}`, define γI = (γi1 , . . . , γi`),
GγI =

∏`
t=1 gγit (yt), D

1GγI the vector of first derivatives of GγI with respect to each of the
distinct elements in γI , note that it has dimension d×|I|, where |I| denotes the number of distinct
indices in I, and similarly defineD2GγI the symetric matrix in Rd|I|×d|I| made of second derivatives
of GγI with respect to the distinct elements (indices) in γI . If b is a vector, bTdenotes the transpose
vector.
Let T = {t = (t1, . . . , tk0) ∈ {1, . . . , k}k0 : ti < ti+1, i = 0, . . . , k0 − 1}. For any t = (t1, . . . , tk0) ∈
T , define for all i ∈ {1, . . . , k0} the set J(i) = {ti−1 + 1, . . . , ti}, using t0 = 0.

We then consider the following condition :

• Condition (L(`)) For any t = (t1, . . . , tk0) ∈ T , for all collections (πI)I , (γI)I , I /∈
{1, . . . , tk0}` satisfying πI ≥ 0, γI = (γi1 , . . . , γi`) such that γij = γ0

i when ij ∈ J(i) for
some i ≤ k0 and γij ∈ Γ \ {γ0

i , i = 1, . . . , k0} when ij /∈ {1, . . . , tk0
}, for all collections

(aI)I , (cI)I , (bI)I , I ∈ {1, . . . , k0}`, aI ∈ R, cI ≥ 0 and bI ∈ Rd|I|, for all collection of vectors
zI,J ∈ Rd|I| with I ∈ {1, . . . , k0}` and J ∈ J(i1) × · · · × J(i`) satisfying ‖zI,J‖ = 1, and all
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sequences (αI,J), satisfying αI,J ≥ 0 and
∑
J∈J(i1)×···×J(i`)

αI,J = 1,∑
I /∈{1,...,tk0

}`
πIGγI +

∑
I∈{1,...,k0}`

(
aIGγ0

I
+ bTI D

1Gγ0
I

)
+

∑
I∈{1,...,k0}`

cI
∑

J∈J(i1)×···×J(i`)

αI,Jz
T
I,JD

2Gγ0
I
zI,J = 0

⇔ ∑
I /∈{1,...,tk0

}`
πI +

∑
I∈{1,...,k0}`

(|aI |+ ‖bI‖+ cI) = 0

(32)

This condition is a multivariate version of the condition that would be required if only ` = 1
was considered. In this case the condition can be written as :

• Condition (L(1)) For any t = (t1, . . . , tk0
) ∈ T , consider (πi)

k−tk0
i=1 (if tk0

< k) a set of
nonnegative reals, (ai)

k0
i=1 and (bi)

k0
i=1 with ai ∈ R and bi ∈ Rd and (ci)

k0
i=1 and zi,j , αi,j , i =

1, . . . , k0, j = 1, . . . , ti− ti−1, with t0 = 0 and zi,j ∈ Rd satisfying ‖zi,j‖ = 1 and αi,j ≥ 0 and∑ti−ti−1

j=1 αi,j = 1, for any (γi)
k−tk0
i=1 which belongs to Γ \ {γ0

i , i = 1, . . . , k0},

k−tk0∑
i=1

πigγi +

k0∑
i=1

(
aigγ0

i
+ bTi D

1gγ0
i

)
+

k0∑
i=1

c2i

ti−ti−1∑
j=1

αi,jz
T
i,jD

2gγ0
i
zi,j = 0, (33)

if and only if

ai = 0, bi = 0, zi,j = 0 ∀i = 1, . . . , k0, ∀j = 1, . . . , ti − ti−1, πi = 0 ∀i = 1, . . . , k − tk0

Note that the partition represents the clustering structure of the extra components, up to a
permutation of the labels.

Condition (L(1)) is the same condition as in Rousseau and Mengersen (2011), so that it is
satisfied in particular for Poisson mixtures, location-scale Gaussian mixtures and any mixtures of
regular exponential families.

Lemma 2. Assume that the function γ 7→ gγ(y) is twice continuously differentiable in Γ and
that for all y, gγ(y) vanishes as ‖γ‖ tends to infinity. Then, if condition (L(`)) is verified, (9)
holds. Moreover, condition (L(`)) (` ≥ 1) is verified as soon as condition (L(1)) is verified.

To prove the first part of the Lemma we follow the ideas of the beginning of the proof of
Theorem 5.11 in Gassiat and van Handel (2012). If (9) does not hold, there exist a sequence of
l-marginals (fl,θn)n≥1 with parameters (θn)n≥1 such that for some positive sequence εn tending to
0, ‖f`,θn − f`,θ0‖1/Nn(θn) tends to 0 as n tends to infinity, with

Nn (θ) =
∑

1≤j≤`:∀i,‖γj−γ0
i ‖>εn

Pθ (X1 = j)

+
∑

1≤i1,...,i`≤k0

| ∑
(j1,...,j`)∈An(i1,...,i`)

Pθ (X1:l = j1 · · · j`)− Pθ0 (X1:l = i1 · · · i`) |

+

∥∥∥∥∥∥
∑

(j1,...,j`)∈An(i1,...,i`)

Pθ (X1:` = j1 . . . j`)


 γj1
· · ·
γj`

−
 γ0

i1
· · ·
γ0
i`


∥∥∥∥∥∥

+
1

2

∑
(j1,...,j`)∈An(i1,...,i`)

Pθ (X1:` = j1 · · · jl)

∥∥∥∥∥∥
 γj1
· · ·
γj`

−
 γ0

i1
· · ·
γ0
i`

∥∥∥∥∥∥
2

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with An(i1, . . . , i`) = {(j1, . . . , j`) : ‖γj1 − γ0
i1
‖ ≤ εn, . . . , ‖γj` − γ0

i`
‖ ≤ εn}.

Now, f`,θn =
∑
I∈{1,...,k}` Pθn ((X1, . . . , X` = I)GγnI where θn = (Qn, (γn1 , . . . , γ

n
k )), Qn a transi-

tion matrix on {1, . . . , k}. It is possible to extract a subsequence along which, for all i = 1, . . . , k,
either γni converges to some limit γi or ‖γni ‖ tends to infinity. Choose now the indexation such
that for i = 1, . . . , t1, γni converges to γ0

1 , for i = t1 + 1, . . . , t2, γni converges to γ0
2 , and so on, for

i = tk0−1 + 1, . . . , tk0
, γni converges to γ0

k0
, and if tk0

< k, for some k̃ ≤ k, for i = tk0
+ 1, . . . , k̃, γni

converges to some γi /∈ {γ0
1 , . . . , γ

0
k0
}, and for i = k̃+ 1, . . . , k, ‖γni ‖ tends to infinity. It is possible

that k̃ = tk0 in wich case no γni converges to some γi /∈ {γ0
1 , . . . , γ

0
k0
}. Such a t = (t1, . . . , tk0) ∈ T

exists, because if ‖f`,θn − f`,θ0‖1/Nn(θn) tends to 0 as n tends to infinity, ‖f`,θn − f`,θ0‖1, and
Nn(θn) tends to 0 as n tends to infinity (if it was not the case, using the regularity of θ 7→ f`,θ we
would have a contradiction). Now along the subsequence we may write, for large enough n:

Nn (θn) =
∑

I /∈{1,...,tk0
}`
Pθ (X1:` = I)+

∑
I∈{1,...,k0}`

| ∑
J∈J(i1)×···×J(i`)

Pθ (X1:` = J)− Pθ0 (X1:` = I) |

+‖
∑

J∈J(i1)×···×J(i`)

Pθ (X1:` = J) γJ − γ0
I‖+

1

2

∑
J∈J(i1)×···×J(i`)

Pθ (X1:` = J)
∥∥γJ − γ0

I

∥∥2

 .
We shall use Taylor expansion till order 2. To be perfectly rigourous in the following, we need
write I in terms of its distinct indices, (̃i1, · · · , ĩ|I|), and GγI =

∏|I|
t=1

∏
j:ij=ĩt

gγĩt
(yj), however we

shall not make such a distinction, so that unless otherwise stated, in such a case (γnJ − γ0
I )TD1Gγ0

I

can denote
|I|∑
t=1

(γĩt − γ
0
ĩt

)T
∂GγI
∂γĩt

,

and similarly for the second derivatives. We have

f`,θn−f`,θ0 =
∑

I /∈{1,...,tk0
}`
Pθ (X1:` = I)GγnI +

∑
I∈{1,...,k0}`


 ∑
J∈J(i1)×···×J(i`)

Pθ (X1:` = J)− Pθ0 (X1:` = I)

Gγ0
I

+
∑

J∈J(i1)×···×J(i`)

Pθ (X1:` = J)
(
γJ − γ0

I

)T
D1Gγ0

I
+

1

2

∑
J∈J(i1)×···×J(i`)

Pθ (X1:` = J)
(
γJ − γ0

I

)T
D2Gγ∗I

(
γJ − γ0

I

)
with γ∗I ∈ (γnI , γ

0
I ). Thus, using the fact that for all y, gγ(y) vanishes as ‖γ‖ tends to infinity,

f`,θn − f`,θ0/Nn(θn) converges pointwise along a subsequence to a function h of form

h =
∑

I /∈{1,...,tk0
}`
πIGγI +

∑
I∈{1,...,k0}`

(
aIGγ0

I
+ bTI D

1Gγ0
I

)
+

∑
I∈{1,...,k0}`

cI
∑

J∈J(i1)×···×J(i`)

αI,Jz
T
I,JD

2Gγ0
I
zI,J

as in condition L(`), with
∑
I /∈{1,...,tk0

}` πI +
∑
I∈{1,...,k0}` (|aI |+ ‖bI‖+ cI) = 1. But as ‖f`,θn −

f`,θ0‖1/Nn(θn) tends to 0 as n tends to infinity, we have ‖h‖1 = 0 by Fatou’s lemma, and thus
h = 0, contradicting the assumption.

Let us now prove that (L(1)) implies (L(`)). Let

k−tk0∑
i=1

πigγi +

k0∑
i=1

(
aigγ0

i
+ bTi D

1gγ0
i

)
+

k0∑
i=1

c2i

ti−ti−1∑
j=1

αi,jz
′T
i,jD

2gγ0
i
zi,j

be a function as in (32). If it equals 0, by grouping the terms depending only on y1 , we can rewrite
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the equation as

k∑
i=tk0

+1

π′i(y2, · · · , y`)gγi(y1) +

k0∑
i=1

(
a′i(y2, · · · , y`)gγ0

i
(y1) + b′Ti (y2, · · · , y`)D1gγ0

i
(y1)

)

+

k0∑
i=1

ti−ti−1∑
j=1

k0∑
i2,··· ,il=1

c′I
∑

(j2,··· ,j`)∈J(i2)×···×J(i`)

αI,JzI,J(i)TD2gγi(y1)zI,J(i) = 0

(34)

where we have written

zI,J = (zI,J(i1), · · · , zI,J(i`)), with I = (i1, · · · , i`) J = (j1, , j`), zI,J(i) ∈ Rd

and

c′I = cI

l∏
t=2

gγ0
it

(yt)

Note that if for i = 1, · · · , k0 and j = 1, · · · , ti − ti−1, there exists wi,j ∈ Rd such that

k0∑
i2,··· ,i`=1

c′I
∑

(j2,··· ,j`)∈J(i2)×···×J(i`)

αI,JzI,J(i)TD2gγi(y1)zI,J(i) = wTi,jD
2gγi(y1)wi,j

where possibly wi,j = 0. Let αi,j = ‖wi,j‖2/(
∑ti−ti−1

j=1 ‖wi,j‖2) if there exists j such that ‖wi,j‖2 >
0 and c′i =

∑
i2,i`

c′I
∑ti−ti−1

j=1 ‖wi,j‖2, then

ti−ti−1∑
j=1

k0∑
i2,··· ,i`=1

c′I
∑

(j2,··· ,j`)∈J(i2)×···×J(i`)

αI,JzI,J(i)TD2gγi(y1)zI,J(i) = c′i

ti−ti−1∑
j=1

αi,jw
T
i,jD

2gγi(y1)wi,j .

and (33) implies that

a′i = c′i = 0, b′i = 0 i = 1, · · · , k0, π′i = 0, i = tk0 + 1, · · · k

Simple calculations imply that

π′i =

k∑
i2,··· ,il=1

πI
∏̀
t=2

gγit (yt) = 0 ⇔ ∀(i2, , i`) ∈ {1, · · · , k}`−2πi,i2,··· ,i` = 0

and similarly if i is such that there exists j = 1, · · · , ti − ti−1, I = (i, i2, · · · , i`) and J =
(j, j2, · · · , j`) ∈ J(i) × · · · × J(i`) such that cI > 0, αJ > 0 and ‖zI,J(i)‖ > 0, then ci,i2,··· ,i` = 0
for all i2, · · · , i`. Else, by considering yt for some other t, we obtain that (34) implies that

πI = 0 ∀I /∈ {1, . . . , tk0}`, cI = 0 ∀I ∈ {1, . . . , tk0}`.

This leads to

b′i =

k0∑
i2,··· ,il=1

bI
∏
t≥2

gγit (yt) = 0 ∀i = 1, · · · , k0.

A simple recursive argument implies that bI = 0 for all I ∈ {1, . . . , tk0}` which in turns implies
that aI = 0 for all I ∈ {1, . . . , tk0

}` and condition (L(`)) is verified.
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