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Abstract

A local public goods game in weighted and directed networks is
analyzed. Individual efforts are imperfect substitutes, players’ prefer-
ences are heterogeneous and local externalities are non-uniform and
asymmetric. Sufficient conditions under which the game admits a
unique equilibrium are established in terms of the number of links
between agents in the original network. It appears that these latter
conditions for uniqueness are met if, and only if, the structure of rela-
tionships is productive. That is, a parallel can be established between
network games with strategic substitutes and the input-output theory
pioneered by Wassily Leontief.

Keywords: local public goods, Nash equilibrium, generalized degree,
productive matrix, Leontief model.

JEL: A14, C72, H41.

*Previously circulated under the title “On the Uniqueness of Nash Equilibria in a
Public Good Game Played on Networks”. We would like to thank participants to the
2011 LAGYV conference in Marseille as well as seminar participants at the University of
Reunion Island for helpful comments. All remaining errors are ours.

TLEMNA, University of Nantes. Email: yann.rebilleQuniv-nantes.fr

fLEMNA, University of Nantes. Address: IEMN-IAE, Chemin de la Censive du
Tertre, BP 52231, 44322 Nantes Cedex 3, France. Tel: +33 (0)2.40.14.17.86. Fax: +33
(0)2.40.14.17.00. Email: lionel.richefort@univ-nantes.fr (corresponding author)



1 Introduction

In many economic phenomena, social relationships play a critical role. These
interactions may have positive or negative effects on individual decisions,
with various degrees of intensity, and can be represented through a network
(or graph, or adjacency matrix). In this paper, we focus on network games
with strategic substitutes. These games are particularly appropriate for un-
derstanding the voluntary provision of goods that are non-excludable in a
geographic or social dimension. That is, we study the class of games in
which a player is less willing to exert a positive action when he sees that his
neighbors are doing so.

For this purpose, we extend the work of Bramoullé and Kranton (2007
henceforth BK) on local public goods by allowing networks to be directed and
weighted, and by allowing players to have different preferences. This means
that players’ investments in public goods can be imperfect substitutes, and
one player’s investment may increase the payoffs of another player, but not
vice versa. In contrast, the main focus of BK is on the case where players
have identical preferences, and on undirected and unweighted networks.

While BK briefly discuss the weighted case! and the case where play-
ers have different preferences, this present paper establishes sufficient condi-
tions in terms of the number of links between agents under which the game
has a unique Nash equilibrium (Theorems 1 and 2). It appears that these
uniqueness conditions are met if, and only if, the structure of relationships
is productive. When this condition is met, the unique equilibrium profile
can be characterized in terms of the Bonacich centrality vector (Theorem

3). Related works include Bloch and Zenginobuz (2007) who analyze the

"When efforts are imperfect substitutes, BK note that similar techniques can be used
as in Ballester et al. (2006). See Section 6, p.489. See also Bramoullé et al. (2011), p. 10.



uniqueness of noncooperative equilibria in a local public good game played
by jurisdictions in presence of spillovers, and Ballester and Calvo-Armengol
(2010) who study the uniqueness of equilibria in network games where best
response functions are continuous and partially linear.

Following Banach’s (1922) contraction mapping principle, our results gen-
eralize Bloch and Zenginobuz’s (2007) sufficient condition under which a local
public goods game admits a unique equilibrium if spillovers (or externalities)
between players are small enough. Bloch and Zenginobuz’s condition ap-
pears as a special case of Theorem 1 (Corollary 1). As another corollary,
we show that best response functions contract if the highest generalized de-
gree of the original network is sufficiently low (Corollary 2). Our results also
extend BK’s sufficient condition under which the game admits a unique equi-
librium without free riders if the degree of substitutability between efforts is
sufficiently low? (Corollary 3).

Using Gale’s (1960) productive matrix terminology, this paper provides
new interpretations, both in network and economic terms, of the condition
established by Ballester and Calvo-Armengol (2010) under which a game
with asymmetric substitutabilities admits a unique equilibrium if the spec-
tral radius of the interaction matrix is low enough.® Our results yield three
new insights. First, games with asymmetric substitutabilities admit a unique
Nash equilibrium if there is no “star” in the network. Second, when this
condition is met, the unique equilibrium profile can be characterized in terms
of the Bonacich centrality measure. Third, a bridge can be established be-

tween network games with strategic substitutes and the Leontief production

2This result is established when networks are undirected, and when players have iden-
tical preferences. That is, the degree of imperfect substitutability between efforts is ho-
mogeneous and uniform across players.

3This condition is related to the Perron-Frobenius theory. See Proposition 1, p.13. See
also Theorem 1 in Ballester et al. (2006, p. 1408) or Theorem 1 in Ilkili¢ (2011, p. 112).



model, i.e., agents’ network centrality and investment in public goods can be
interpreted in terms of physical quantities.

The remainder of the paper is organized as follows. The next section
presents the model. Section 3 establishes equilibrium uniqueness. In Section
4, we derive two equivalence results and in Section 5, we show how the model
may be understood in terms of the statical model of the Leontief system.
Section 6 concludes by discussing some extensions of the model. The main

proofs are relegated to the appendix.

2 The model

Matrices are represented as bold upper case and column vectors as bold lower
case. All vectors are column vectors unless explicitly written as transposed.
The transpose of a matrix M is denoted M?. The transpose of a vector v
is denoted v?. The coordinates of v are (vy,...,vy) € RY. Let I stands for
the identity matrix and 1 for the vector of ones.

There are N agents embodied in a social network. The basic representa-
tion of the network is given by its N x N weighted adjacency matrix A = [Ay]
in which the entry Ay > 0 if there is a link from vertex k to vertex [, other-
wise Ay = 0. Since A is directed, the neighbors of an agent are divided into
two sets: her predecessors and her successors. We may refer to A as either
the (weighted) interaction matrix, or the network.

We shall consider from now on quasi-linear preferences. The utility of an

agent [ is given by

Ul(A, e) = e + wl(el + Z )\klek),
k:k#l



where e; denotes own effort and ), , » Auey reflects predecessors’ efforts.
The boundary conditions are given by wj(0) > —uv;, > wj(c0). That is,
any agent will provide some effort and preferences are single-peaked w.r.t.
own effort. Therefore, efforts are imperfect substitutes and allow a trade-off
between own effort and predecessors’ efforts. We also assume that w; < 0.
This assumption reflects the convexity of preferences. Utility is cardinal and
admits an interpretation in terms of benefits and costs. To give concrete

examples, we provide two economic applications of this framework.

Application 1. This is BK’s model (extended). Given a network between
agents, this model studies the incentives to provide a local public good which
is non-excludable along the links. Consider, for instance, a set of agents who
can plant an attractive garden in front of their house. The agents decide on
the amount of effort to produce the good (the attractive garden) and given
the effort, a strictly concave production function determines how much good
is produced by the agent. Each agent incurs the cost from her individual
effort. Since planting an attractive garden may provide benefits to others
living in the area (even financial benefits) agents benefit both from their own
contribution and from the contributions of their direct neighbors. An agent

I’s payoff function is written as follows:

UZ(A, e) = bl(el -+ Z Aklek) — €
k:k#l
where b;(.) is an increasing twice differentiable strictly concave benefit func-
tion and ¢; are individual marginal costs. It is assumed that ¢; > 0 and the

boundary conditions are b;(0) > ¢; > bj(00).

Application 2. This is the “dual” model of BK’s model. Consider a set of

linked agents that exploit a common property resource, say for instance a



fishery. The agents decide on their fishing activity and given this quantity,
a strictly convex cost function determines how many fish is harvested by the
agent. Each agent benefits from her fishing activity. Since one agent’s fishing
activity may decrease the local stock of fish, agents incur the cost of their
own fishing activity and from the fishing activity of their direct neighbors
(those fishing from the same source). An agent [’s payoff function is written

as follows:

U(A,e) = pies — qiler+ Y Aer)
kil

where ¢(.) is an increasing twice differentiable strictly convex cost function
and p; denote individual marginal benefits. It is assumed that p; > 0 and
the boundary conditions are ¢;(0) < p; < qj(0).

We specify a game in which players simultaneously choose their effort level
by playing their best response to the effort level played by their predecessors.
Given an effort profile e, each agent [ earns payoffs U;(A,e). At this point,

we think it useful to give a reminder of the definition of a Nash equilibrium.

Definition 1. Let A be a network. A profile é € ]Rf is a Nash equilibrium

if and only if, for all agent [, for all ¢, > 0,
Ul(A,é,é1) > Ui(A, €}, é_y).

For each agent [, we note e; her effort level such that wj(e;) = —v;. We
note e* the vector of individual peaks, and G(A, e*) the game played by the
agents. The vector e* keeps track of the marginal cost and marginal benefit
of each agent. We may refer to e; as either the weight or the peak assigned
to agent I. Given a game G(A,e*), agents want to exert some effort as long
as their peak is higher than a weighted amount of effort exerted by their

predecessors.



Property 1. Let G(A,e*) be a network game. A profile & € RY is a Nash
equilibrium if and only if, for all [,

é; = max{0,e; — &7 A }.

Since we know this game always admits a (pure-strategy) Nash equilib-

rium*, we shall focus on the uniqueness of Nash cquilibria.®

3 Generalized out-degree and uniqueness

Before turning to the equilibrium uniqueness analysis of the game G(A,e*),
we introduce a centrality measure that generalizes the concept of out-degree
and in-degree. In this section, we focus on the out-degree of a node. In any
directed network where both links and nodes are weighted, the out-degree of
an agent should measure her “ability to give”. This measure may depend
both on the interaction matrix and on the vector of weights assigned to
agents.® In directed and weighted networks, the out-degree is generalized as

follows.

Definition 2. Let A be a network and y >> 0 a vector of weights assigned

“The set of individual best responses f = (f1,..., fv) defines a continuous mapping
from [T, [0, €/], a convex compact subset of a Euclidean space, into itself. By Brouwer’s
fixed point theorem, f has a fixed point, i.c., there is a point e such that f(e) = e, and
the existence of a pure-strategy Nash equilibrium is guaranteed.

5One may note that if an effort profile is a Nash equilibrium of game G(A,e*), then
the effort profile in which the free riders have been deleted is a Nash equilibrium without
free riders of the corresponding subgame. Therefore, one may notice that to any Nash
equilibrium profile é, we may associate a type, i.e., its set of free riders. Since this set is
cmpty whenever & is a Nash cquilibrium without free riders, there are 2 —1 types of Nash
equilibria. Moreover, when there are multiple Nash equilibria without free riders, their set
is always a continuum. Consequently, either the number of Nash equilibria is infinite or it
is less than 2V — 1.

SNote that there are two kinds of weights in the model, i) weight (intensity) of a link
and ii) weight (peak) of a player.



to nodes. For all ¢, the generalized out-degree of agent ¢ is given by:

SHAY) =D A=

Yi
Tl

Let us denote by A;,F the greatest generalized out-degree of the network, i.e.,
A = max 6 (Ay).

Following this definition, we say a directed network is generalized when
it has both weights assigned to links and nodes. If weights assigned to nodes
are uniform and homogeneous, the generalized out-degree of an agent simply
becomes her weighted out-degree, i.c., for all i, §; (A, y) = Zl#i Ai. If links
are unweighted, i.e., for all i # [, \; € {0,1}, the generalized out-degree of
an agent becomes ;' (A,y) =32, 2.

In a generalized network (A, y), any agent whose generalized out-degree is
less than 1 will be called a sink. Given a network A between agents, we show
that if there exists a vector of weights y >> 0 assigned to nodes so that any
agent is a sink, i.e., there is no agent who could potentially give “too much”
to her successors, the game G(A,e*) admits a unique Nash equilibrium, for

any vector of peaks assigned to players.

Theorem 1. Let A be a network. If there exists y >> 0 such that A] <1,

then Ye*, G(A,e*) admits a unique Nash equilibrium.

Given a game G(A,e*), equilibrium uniqueness is guaranteed whatever
the marginal benefit and marginal cost of effort of cach agent if there is one
network (A, y) in which the highest generalized out-degree is sufficiently low.
For any network between agents, it suffices that there exists one arbitrary

vector y, that is not necessarily the vector of peaks e*, such that all agents



have a sufficiently low generalized out-degree, to establish uniqueness in the
set of Nash equilibria of game G(A,e*). This sufficient condition concerns
the structure of the interation matrix A, i.e., the number, the intensity and
the direction of relationships. We illustrate this result through the following

example.

Example 1. Consider a game G(A,e*) with two players. Let

0o N 1
A= and e* =
A0 €5

The corresponding graph is depicted in the following figure.

}\‘l

©
\/

A

Figure 1: Directed circle with two agents

For ease of exposition, but w.l.o.g., we assume that A €]0, 1] and X" €]0, 1].

Since A; is homogeneous of degree 0, let us take y = (1,%5). Then, we
may derive the generalized out-degree of agents in network (A,y). We obtain
0 (Ay) = Ny and 65 (A, y) = @% It appears that max {d;,d5 } <1 if and
only if Ny, < 1 and y—t < 1. That is, A < 1if and only if A < .

It follows directly that if A\ < 1, the game G(A,e*) admits a unique
Nash equilibrium, whatever e; > 0.

Note that if AN =1 and e = 1, the game admits a continuum of Nash

equilibria. If AN =1 and e} # 1, however, the game admits a unique Nash



equilibrium. This point illustrates the fact that the condition provided by

Theorem 1 is only sufficient.

As a first corollary of Theorem 1, we derive an extension of Bloch and
Zenginobuz’s (2007) sufficient condition.” Given a network between agents,
the game G(A, e*) admits a unique Nash equilibrium if each agent is a sink in
the generalized network (A, 1). This condition is met if and only if the highest
weighted out-degree of network A is sufficiently low. That is, when individual
preferences are homogeneous, each agent should have few successors and/or
low weights assigned to arcs starting from her. In that case, G(A,e*) admits
a unique equilibrium, whatever the marginal cost and marginal benefit of

effort of each agent.

Corollary 1. Let A be a network. If for all 7, ZH# Aii < 1, then Ve*,

G(A,e*) admits a unique Nash equilibrium.
Proof. Aj = max; Zl:l# Ag with y = 1. O

A second corollary emerges naturally. Given a network A between agents
and a vector of individual peaks e*, the game G(A,e*) admits a unique
Nash equilibrium if the highest generalized out-degree of the network (A, e*)
is sufficiently low. This means that equilibrium uniqueness is guaranteed
for any set of individual preferences if each agent is a sink in the original

generalized network.

Corollary 2. Let G(A,e*) be a network game. If AL < 1, there exists a
unique Nash equilibrium. Moreover, any network game G(A,a) with a >> 0

and a # €* admits a unique Nash equilibrium.

Proof. Consider AJ with y = e*. O

"See Proposition 7 p.211.
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These latter results are less general than Theorem 1. Consider a game
G(A,e*) such that AL, > 1 and AT > 1. If there exists one positive vector
y, different from 1 and e*, such that A;,r < 1, then G(A, e*) admits a unique

Nash equilibrium.

4 Equivalence results

4.1 Generalized in-degree and uniqueness

We derive two results that are equivalent to Theorem 1. First, we focus on the
in-degree of a node. In generalized networks, its definition is slightly different
than those of the out-degree. The generalized in-degree of an agent should
reflect her “ability to receive”, when preferences are heterogeneous. Given a
network between agents, the generalized in-degree of an agent decreases with
her own peak and increases with her predecessors’ peaks. This centrality

measure is defined as follows.

Definition 3. Let A be a network and y >> 0 a vector of weights assigned

to nodes. For all i, the generalized in-degree of agent ¢ is given by:

5 (A y) =Y Ak

phei Ui

Let us denote by Ay the greatest generalized out-degree of the network, i.e.,

Ay = maxd; (A,y).

y

In a generalized network (A,y), any agent whose generalized in-degree
is less than 1 will be called a source. Given a network A between agents,

we show that the game G(A,e*) admits a unique Nash equilibrium for any

11



vector of peaks assigned to players if there exists a vector of weights y >> 0
assigned to nodes such that each agent is a source in the generalized network
(A,y), i.c., there exists one generalized network in which no agent could

potentially receive “too much” from her predecessors.

Theorem 2. Let A be a network. If there exists y >> 0 such that Ay <1,

then Ye*, G(A,e*) admits a unique Nash equilibrium.

When the network is undirected, the interaction matrix A is symmetric
and we have A7 = A7. When the network is directed, the highest generalized
out-degree of network (A, 1) is equal to the highest generalized in-degree of
network (AT,1), i.e., A = (AT)]. This property can be extended to any
generalized network (A,y).

Remark 1. For any y >> 0, each agent’s generalized out-degree in network

(A,y) is equal to her generalized in-degree in network (AT 1/y), i.e.,
0T (A,y) =0~ (A", 1/y),

where 1/y = ( - yLN) It follows that the highest generalized out-degree

1
;7 ..
of network (A,y) is equal to the highest gencralized in-degree of network
(AT 1/y), ie.,

A+ — ( AT)_

y 1)y
Therefore, there exists a source in network (A,y) if and only if there exists

a sink in network (AT, 1/y).

Consider a game G(A, e*) such that A_. < 1. This game admits a unique
Nash equilibrium, whatever the individual preferences. In that case, no player
may receive enough from his predecessors to exert no effort. That is, if the

highest generalized in-degree of the original network (A, e*) is sufficiently low,

12



the game G(A,e*) admits a unique Nash equilibrium which is without free
riders. The following property extends BK’s result to the case of imperfect

substitutability of efforts in directed networks.
Property 2. Al <1 <= e (I-A)>>0 = min; é; > 0.

BK’s result may also be generalized as a corollary of Theorem 2. Given
a network A between agents, suppose that the highest generalized in-degree
of a network (A, 1), i.e., the highest weighted in-degree of network A, is
sufficiently low. Then, G(A,e*) admits a unique equilibrium if individual
preferences e* are homogeneous, whatever the level of e*. That is, there
exists a unique Nash equilibrium for any (homogeneous) marginal cost and

marginal benefit of effort.

Corollary 3. Let A be a network with A < 1. If the peaks are homogeneous,
i.e., € = el with ¢ > 0, then G(A,e*) admits a unique Nash equilibrium

(which is without free riders).

Proof.

A <1 <= 1T0I-A)>>0 < e"(I-A)>>0.

4.2 Productive matrix and uniqueness

This subsection establishes equivalence between the uniqueness condition
related to individual out-degree (Theorem 1) and those related to individual
in-degree (Theorem 2). The bridge is made using the concept of productive
matriz first introduced by David Gale (1960). A linear model of production

is called productive if, for each set of prices, it produces a unique quantity

13



of output. In that case, we may say that the production matrix itself is

productive. A productive matrix is defined as follows.

Definition 4. Let A > 0 be a matrix. A is productive if there exists® y >> 0

such that y — Ay >> 0, that is
I-A)y>>0 < y' (I-A")>>0.

It appears that Jy >> 0 such that AJ < 1if and only if (I - A)1/y >>
0. Since 1/y >> 0, this latter condition coincides with the definition of
productive matrix. The following property establishes equivalence between
the sufficient condition related to out-degree and the fact that the interaction

matrix is a productive matrix.

Property 3. Let A be a network. Then, there exists y >> 0 such that

Ay < 1if and only if A is a productive matriz.

Given a game G(A,e*), if the structure of relationships is productive,
G(A,e*) admits a unique equilibrium, whatever e*. We illustrate this result

through the following extension of Example 1.

Example 2 (Example 1 continued). Let us check under which conditions
the interaction matrix of the game G(A,e*) is productive.? To achieve this,

we may calculate the inverse of the matrix (I — A), i.e.,

1 1 N
DY A1

(I-A)"

8Tt suffices that y > 0 such that y — Ay >> 0 since A > 0 and y > 0 implies that
Ay > 0; and y >> Ay > 0 implies that y >> 0.

9We remind that a nonnegative square matrix A is productive if and only if (I — A)~!
exists and is nonnegative.

14



One notes that (I — A)~! exists and is nonnegative if and only if A\ <
1. In that case, the interaction matrix A is productive, and equilibrium
uniqueness is guaranteed. Then, we obtain the same uniqueness condition

than those related to the highest generalized out-degree.

One important feature of G(A, e*) is that this game is “invertible”. Since
AY = (AT)I/y, games G(A, e*) and G(AT, e*) exhibit common properties. It
appears that 3y >> 0 such that Ay < 1if and only if (I — AT)y >> 0.
Since y >> 0, this latter condition coincides with the definition of pro-
ductive matrix. The following property establishes equivalence between the
sufficient condition related to in-degree and the fact that the transpose of

the interaction matrix is a productive matrix.

Property 4. Let A be a network. Then, there exists y >> 0 such that

_ . . T - . .
Ay <1 if and only if A" is a productive matriz.

Since a matrix is productive if and only if its transpose is productive, we

obtain the following equivalence:
Jy >>0s.t. Ay <1 <= Ais productive <= 3z>>0s.t. A, <1.

Moreover, a nonnegative square matrix is productive if, and only if, its
spectral radius is smaller than 1.1° Consequently, Theorems 1 and 2 pro-
vide equivalent results to the spectral condition established by Ballester and
Calv6-Armengol (2010). Our results add new insights. Let us call a star any
agent who is neither a sink nor a source in network A,y), for all y >> 0.
We know that Ballester and Calvé-Armengol’s condition is met if, and only

if, there is no star in the network of relationships. This appears if, and only

10See, e.g., Ivanov (2001), Theorem 2.4 (p. 13).
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if, the network of relationships is productive. That is, BK’s model may be

understood in terms of the Leontief production model.

5 Economic interpretation

5.1 The fundamental relation of BK’s model

Before turning to the economic interpretation of BK’s model, we provide a
characterization of the equilibrium effort profile in terms of the centrality of a
player in the network. We obtain it by using the weighted Bonacich centrality
measure, which has proven to be very useful in games with complementarities
(Ballester et al., 2006; Ballester and Calvé-Armengol, 2010). This measure
is a weighted version of the network centrality measure introduced by Philip

Bonacich (1987), and is defined as follows.

Definition 5. Let A be a (weighted) network and u >> 0 a vector of weights
assigned to nodes. The vector of weighted Bonacich centrality (of parameter
1) is given by:

bu(A) = (I-A)'y,

provided that A is a productive matrix.!

In the following analysis, we will assume that A is a productive matrix.
When this condition is met, we know that G(A,e*) admits a unique Nash
equilibrium. The next property characterizes the unique Nash equilibrium
profile in terms of the weighted Bonacich centrality of a network related to
the interaction matrix. We call this characterization the fundamental relation

of BK’s model.

1

HSince A is productive, the matrix (I — A)~! is well-defined and nonnegative.

16



Theorem 3. Let G(A,e*) be a network game with A a productive matrix
and & the (unique) Nash equilibrium. If & is without free riders, i.e., & >> 0,
then

é=(1—-A")b(Q)

where Q = (AT)2.

The following remark shows that this characterization is valid for any
unique Nash equilibrium, i.e., not only in the event of no free riders, provided

that A is a productive matrix.

Remark 2. Let & be a (unique) Nash equilibrium with free riders and L =
{l : & > 0} the set of active agents. Consider the subgame G(A,e*;) where
A denotes the new network obtained after deletion of all the free riders.
Then,

ép = (I —AL")be, ()

where Qp = (AL7)2.

Since we allow networks to be directed, this result generalizes the result
established by Ballester and Calvé-Armengol (2010).'2 When networks are
directed, the characterization of the unique Nash equilibrium in terms of the
Bonacich centrality measure involves the transpose of the interaction matrix.
This makes sense, since the vector AT b« () reflects what players “benefit”
from their predecessors. This point is ignored when networks are undirected.

We illustrate this result through the following example.

Example 3 (Example 1 continued). One may use the fundamental relation
of BK’s model to calculate the Nash equilibrium profile of the game G(A, e*)
presented in Example 1. In this simple game, we have A? = (A?)T = (AL

12See Proposition 2 (p.403).
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It follows that €2 = (AN)I, and therefore,

L.
be+ () = TS

Then, we obtain the unique Nash equilibrium profile given by

1 1— e

1—=2N es— N

e =

This characterization is valid when the equilibrium profile is interior, that
is, if e5 €)X, $[. Otherwise, the unique Nash equilibrium profile is corner.
If e5 < X, player 2 does not provide any effort and player 1 plays his peak
(which is his weighted Bonacich centrality in the new network obtained after
deletion of player 2). In that case, the equilibrium profile is given by {(1,0)}.
If e5 > %, player 1 does not provide any effort and player 2 plays his peak
(which is his weighted Bonacich centrality in the new network obtained after

deletion of player 1). In that case, the equilibrium profile is given by {(0, €5)}.

As in Ballester and Calvé-Armengol (2010), our characterization of the
unique Nash equilibrium profile is not in terms of the Bonacich centrality of
a player in the original network, but in terms of the Bonacich centrality in
another network. The interaction matrix of this new network is the square of
the original interaction matrix. According to Ballester and Calvé-Armengol,
this reflects the idea that games with substitutabilities may be understood as
games with hidden complementarities, since “local network substitutabilities
induce complementarities for players who are two-links-away from each other
in the network” (p.403). We now provide an economic interpretation of this
result. We begin by showing the similarity between the fundamental relation

of BK’s model and the balance equations for total output of the Leontief
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production model.

5.2 Interpretation in terms of physical quantities

In matrix form, the statical model of the Leontief system (henceforth the
Leontief model) establishes a relation between a vector of producible outputs
x, a vector of final consumption of each of the produced goods ¢ and a
vector of intermediate inputs.!®> This latter vector makes use of the special
fixed-coefficient assumption, i.e., each intermediate input is required in fixed
proportion to any output. These requirements are specified by the means of
a square technological matrix A, and the vector Ax represents the vector
of intermediate inputs. The balance equations for total output is written as
follows:

x=Ax+c.

Since x = Ax+c <= c¢ = (I- A)x, the proximity between the balance
equations for total output of the Leontief model and the fundamental relation
of BK’s model, i.e., & = (I — AT)b«(Q2), is immediate. The equilibrium level
of public good provision & in BK’s model may be assimilated to the vector of
final consumption in the Leontief model. Furthermore, the vector of Bonacich
centrality bes(£2) may be understood as the vector of producible outputs, and
the vector ATb-(€2) as the vector of intermediate inputs. The technological
matrix of the Leontief model is the transpose of the (fixed) interaction matrix
in BK’s model. It follows that the equilibrium level of public good provision
€ in BK’s model denotes the net production of effort.

Many authors have focused on the existence and uniqueness of a nonnega-

tive solution to the Leontief model. We remind a central theorem established

13See, e.g., Dorfman et al. (1958, chapters 9 and 10), for a detailed presentation of the
Leontief production model.
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by Dorfman et al. (1958) and Gale (1960).

Theorem (Dorfman et al., 1958; Gale, 1960). If A is productive then for any
nonnegative (final consumption) vector c there exists a unique nonnegative

(producible output) vector x such that

c=(I-A)x

In light of the parallel established between BK’s model and the Leontief
model, the following important insight appears. If the structure of relation-
ships A is productive, for any (unique) equilibrium profile of public good
provision & seen as a final consumption (or net production) vector there
exists a unique producible output vector which turns out to be the non-
negative weighted Bonacich centrality vector be«(§2). That is, our network
game-theoretic analysis provides a new interpretation of the solution to the
Leontief production model. Moreover, this solution is fully characterized in
terms of both the weights assigned to players and the structure (number,

intensity, direction) of relationships between players.

6 Conclusion

This paper analyzes a local public good games in which heterogeneous players
are embodied in a directed and weighted network. Our main results exhibit
sufficient conditions in terms of the number of links between agents in the
original network to guarantee a unique level of public good provision. That is,
for any individual marginal benefit and marginal cost of effort, network games
with strategic substitutes admit a unique equilibrium if there is no star in the

network. The same reasoning applies to the highest generalized in-degree.
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It appears that these latter conditions for uniqueness are both equivalent to
the fact that the structure of relationships is productive. When this condition
is met, Nash equilibria can be implemented through the Bonacich centrality
measure. We show how this result can be interpreted in economic terms
within the Leontief production model.

A useful direction for further reasearch would be to investigate more gen-
eral payoff functions, in particular the case of separable additive utility func-

tions. This will lead us to study nonlinear best response functions.

Appendix

Proof of Property 1. Without externalities, each agent [ maximizes her util-

ity with respect to her own level of effort:
Max vie; + wy(e;)
el
s.t. e > 0.

Let e; denotes the individual effort level such that wj(e;) = —v;. Thus, €]
corresponds to agent [’s peak, which is positive because w;(0) > —uv;.

With externalities, the program of agent [ is:

Max vie; + wl(el + E )\klek)
e
ey

s.t. g > 0.

The Kuhn-Tucker’s conditons are

wf(el + Z )\klek) +u+p = 0
kAl
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with e, = 0 and gy > 0, where gy is a Lagrange multiplier. Thus, the best

responses are

6; — z /\klek, if wl’( Z /\k,lek) Z —;.
él = k:k#l k:k#l

0, otherwise.

Let K_; = Ek:k# Awer. We see that if w)(K_;) < —uv, then K_; >
(w))"*(—v;) = €}. Consequently, agents’ preferences are single-peaked w.r.t.

effort. O
We introduce some useful notations for the following proofs.

o Let ec IRJI . The Ny norm is given by

N
lell = > e
=1

and the N, norm is given by
lelloe = max le.
e Lete>0andy >>0. Put,

e/y = (ex/yn)n-

e We can define the following norms. Let e € ]Rﬂ\r[ ,

lelliy = lle/y -

and
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lefloc.y = lle/¥ oo

e Let 7 = max{z, 0} denote the positive part of z. We remind that the
function (.)* = max{.,0} is 1-lipschitz. For all z,y € R,

2" —yT] <z -yl

Proof of Theorem 1. For e € [],[0, ¢/], the best response of each player [ is
given by

Since A > 0, f;(e) < ef. Hence we can introduce the best response mapping;:
fo]J0.e] — [J0.¢]: e = fle) = (file)
! 1
We shall establish that this mapping is a contraction with respect to the

specific norm, || . ||1y. Since |.||1y and |.||; are equivalent norms, [],[0, /]

remains a complete space. Let e, e’ € [],[0,¢e;]. We have:

IF(e) = f(e)lliy = lI(f(e) = f(e)/ylh
= [I((fi(e) = fi(e"))/ui)illn
= [I(((ef — " A0)* — (e — " Au)*) /il
< I(((ef — e Au) = (¢f — €T Aw)/yahilhs since () is L-lipschitz

= [[(((e = &)"As)/yills
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= le — &) Al
=315 (er — e;))\kl&
<30k lew — ) Any
=5 2 l(en — )
=Dkl en = €h) o 1 20, A e
<3 ek — €)= AS

= [l(e = eNll1yAy

y
where

+ Yk

Ay = mkaxil: )\klg.

By assumption AJ < 1. Thus, f is a contraction with respect to ||.||1y,
and therefore admits a unique fixed point, so G(A, e*) admits a unique Nash

equilibrium. O

Proof of Theorem 2. For e € [],[0, ¢/], the best response of each player [ is
given by
file) = (ef —e"A)".

Since A > 0, fi(e) < e;. Hence we can introduce the best response mapping:

f 10,61 — [100.¢f]: e = fle) = (file))
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We shall establish that this mapping is a contraction with respect to the
specific norm, || . ||sc,y. Since ||.||ooy and ||.||oc are equivalent norms, [],[0, ;]

remains a complete space. Let e, €’ € [],[0,¢e;]. We have:

If(e) = f(e)lloy = lI(f(e) = f(e))/¥ll
= [[((e" = e"A)* — (e" =" A)") [yl
=max; |(ef —eTAy)T — (ef — e’TA,l)+|i
< max; |(ef —eTAy) — (ef — e’TA_l)&, since (.)* is 1-lipschitz
= max; |(e — e’)TA,l|i
= max; | Y (ex — ef) Al
< max; 0 [(ex — ex) Ay
= max; ), [(ex — ef)[;- A
< max; [(e = €) /¥l 225 A tE

— (e — &)/ylloc max; oy A

= [l(e = ey Ay

where



By assumption Ay < 1. Thus, f is a contraction with respect to |||y,
and therefore admits a unique fixed point, so G(A, e*) admits a unique Nash

equilibrium. []

Note that if one starts with f;(e) = (ej —e” A ), the existence of a unique

solution in RY to

can be established following the last development of the proofs of Theorems
1 and 2. One may refer to Theorem 7 in Banach (1922) for more details on
general linear systems of equalities. The fact that (.)" is 1-lipschitz is useful

essentially for the uniqueness of Nash equilibria.

Proof of Property 2. Let G(A,e*) be a network game. Since A_. < 1, that
is (I — A) >> 0, there is a unique Nash equilibrium profile é. Then, for
every [,

¢ = max{0,e; —&TA;} > max{0,ef — e A} >0,
so é is a Nash equilibrium without free riders, i.e., min; ¢; > 0. O]
Proof of Property 3.

Yk I 1
A <1 < V&, A— <1 < Vk, Ay— < —
Y zl: klyz zl: klyz Yk

1
— Vk, Apl/y < 0 — 1/y—Al/y >>0.
k

Proof of Property 4.

Ay <1 < VI, zk:)\kl% <1 < VI, Zk:)\klyk<yl
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S VL y A<y = yI-A)>>0 < y—ATy>>0.
]

Proof of Theorem 3. Let G(A,e*) be a network game with A a productive
matrix. So AT is productive and there exists y >> 0 such that y >> A”y.

We show that (AT)? is a productive matrix. We have,

y—(AT?y >> ATy —(AT)%y
= Al(y—Aly)
N
as AT > 0and y — ATy >> 0. So (AT)? is a productive matrix.

We now show that (I + AT) is invertible. Indeed, the spectral radius of
AT is smaller than 1 since A is productive. Thus, (—1) does not belong to
the spectrum of A, hence 0 does not belong to the spectrum of (I + AT),
so (I + AT) is invertible.

Let & >> 0 be the unique Nash equilibrium of the game G(A,e*). We

have, for all [,

é; = max{0,ef — & A} > 0.

Thus,

and it follows:
I+ANe=e" <= &= (I+A")te*

= e=T+A") " I-ATT-A") e
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One may note that (I + AT)~! and (I — AT) commute. Indeed,

I+ATDYTTTI-AT) =T - AT+ AT

is equivalent, by multiplication on the left and on the right by (I + AT) to

I-ATT+AT) =T+ AT)T - AD),

that is
I- (AT =1—(A")2
So,
& = (I—AT)I+AT)LI- AT)—l

= I-A")((T-A")T+AT)) e

= I-A")(I-(A")*) e

= (I-A")be-(Q)
where Q = (AT)2. O
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