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Decoding finger movements from ECoG
signals using switching linear models

Rémi Flamary∗ and Alain Rakotomamonjy
LITIS EA 4108 - INSA/Université de Rouen

Avenue de l’Université

76800 Saint Etienne du Rouvray, France

Abstract

One of the most interesting challenges in ECoG-based Brain-Machine
Interface is movement prediction. Being able to perform such a prediction
paves the way to high-degree precision command for a machine such as a
robotic arm or robotic hands. As a witness of the BCI community increas-5

ing interest towards such a problem, the fourth BCI Competition provides a
dataset which aim is to predict individual finger movements from ECog sig-
nals. The difficulty of the problem relies on the fact that there is no simple
relation between ECoG signals and finger movements. We propose in this
paper, to estimate and decode these finger flexions using switching models10

controlled by an hidden state. Switching models can integrate prior knowl-
edge about the decoding problem and helps in predicting fine and precise
movements. Our model is thus based on a first block which estimates which
finger is moving and another block which, knowing which finger is moving,
predicts the movements of all other fingers. Numerical results that have been15

submitted to the Competition show that the model yields high decoding per-
formances when the hidden state is well estimated. This approach achieved
the second place in the BCI competition with a correlation measure between
real and predicted movements of 0.42.

1 Introduction20

Some people who suffer neurological diseases can become severely impaired and
have strongly reduced motor functions but still have some cognitive abilities. One
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of their possible way to communicate with their environment is by using their
brain activities. Brain-Computer interfaces (BCI) research aim at developing sys-
tems to help such disabled people communicating with other people through ma-
chines. Non-invasive BCIs have recently received a lot of interest because of their
easy protocol for sensor implantation on the scalp surface (Wolpaw & McFarland,5

2004; Blankertz et al. , 2004). Furthermore, although the electroencephalogram
signals have been recorded through the skull and are known to have poor Signal
to Noise Ratio (SNR), those BCI have shown great capabilities, and have already
been considered for daily use by Amyotrophic Lateral Sclerosis (ALS) patients
(Sellers & Donchin, 2006; Nijboer et al. , 2008; Sellers et al. , 2010).10

However, non-invasive recordings still show some drawbacks including poor
signal-to-noise ratio and poor spatial resolution. Hence, in order to overcome
these issues, invasive BCI may instead be considered. For instance, Electrocor-
ticographic recordings (ECoG) have recently received a great amount of attention
owing to their semi-invasive nature as they are recorded from the cortical sur-15

face. They offer high spatial resolution and they are far less sensitive to artifact
noise. Feasibility of invasive-based BCI have been proven by several recent works
(Leuthardt et al. , 2004; Hill et al. , 2006, 2007; Shenoy et al. , 2008). Yet, most
of these papers consider motor imagery as a BCI paradigm and thus do not take
advantage of the fine degree of control that can be gained with the ECoG signals.20

Achieving such high degree of control is an important challenge for BCI since
it would make possible the control of a cursor, a mouse pointer or a robotic arm
(Wolpaw et al. , 1991; Krusienski et al. , 2007). Towards this aim, a recent break-
through has been made by Schalk et al. (2007) proving that ECoG recordings can
lead to continuous BCI control with multiple degree of freedom. Along with the25

work of Pistohl et al. (2008), they have studied the problem of predicting real arm
movements from ECoG signals. As such, it is important to note that unlike other
BCIs, real movements are considered in these works, hence the global approaches
they propose do not suit to impaired subjects.

Following the road paved by Schalk et al. (2007) and Pistohl et al. (2008),30

we investigate in this work, the feasibility of a fine degree of resolution in BCI
control by addressing the problem of estimating finger flexions through ECoG
signals. Indeed, we propose in this paper a method for decoding finger move-
ments from ECoG data based on switching models. The underlying idea of these
switching models is based on the hypothesis that movements of each of the five35

fingers are triggered by an internal discrete state that can be estimated and that
all finger movements depend on that internal state. While such an idea of switch-
ing models have already been successfully used for arm movement prediction on
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monkeys, based on micro-electrode array measures (Darmanjian et al. , 2006),
here we develop a specific approach adapted to finger movements. The global
method has been tested and evaluated on the 4th Dataset of the BCI Competition
IV (Miller & Schalk, 2008) yielding to a second place in the competition.

The paper is organized as follows : first, we briefly present the BCI Com-5

petition IV dataset used in this paper for evaluating our method and provide an
overview of the global decoding method. Then we delve into the details of the
proposed switching models for finger movement prediction from ECoG signals.
Finally, we present numerical experiments designed for evaluating our contribu-
tion followed by a discussion about the limits of our approach and about future10

works.

2 Dataset

In this work, we focus on the fourth dataset from the BCI Competition IV (Miller
& Schalk, 2008). The task related to this dataset is to predict finger flexions and
finger extensions from signals recorded on the surface of the brain of the subjects.15

In what follows, we use the term “flexion” for both kinds of movements as in the
dataset description (Miller & Schalk, 2008). The signals composing the dataset,
have been acquired from three epileptic patients who had platinium electrode grids
placed on the surface of their brain, the number of electrodes varying between 48
and 64 depending on the subject. Note that the electrode positions on the cortex20

have not been provided by the competition organizer impeding thus the use of
spatial prior knowledge such as electrode’s neighborhood for building the finger
movement model.

Electrocorticographic (ECoG) signals of the subjects were recorded at a 1KHz
sampling using BCI2000 (Schalk et al. , 2004). A band-pass filter from 0.15 to25

200Hz was applied to the ECoG signals. The finger flexion of the subject was
recorded at 25Hz and up-sampled to 1KHz. Note that the finger flexion signals
have been normalized with zero mean an unit variance. Due to the acquisition pro-
cess, a delay appears between the finger movement and the measured ECoG sig-
nal. To correct this time-lag, we apply a 37 ms delay to the ECoG signals (Miller30

& Schalk, 2008) as suggested in the dataset description.
The full BCI Competition dataset consists in a 10 minutes recording per sub-

ject. 6 minutes 40 seconds (400,000 samples) were given to the contestants for
learning the finger movement models and the remaining 3 minutes 20 seconds
(200,000 samples) were used for evaluating the model. Since the finger flexion35
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signals have been up-sampled and thus are partly composed of artificial samples,
we have down-sampled the number of points by a factor of 4 leading to a training
set of size 100,000 and a testing set of size 50,000. The 100,000 samples provided
for learning have been split in a training (75,000) and validation set (25,000). Note
that all parameters in the proposed approach have been selected in order to mini-5

mize the error on the validation set. All results presented in the paper have been
obtained on the testing set provided by the competition.

In this competition, performances of methods proposed by competitors were
evaluated according to the correlation between measured and predicted finger flex-
ions. These correlations were averaged across fingers and across subjects to obtain10

the overall method performance. However, because its movements were highly
physically correlated with those of the other finger, the fourth finger is not in-
cluded in the evaluation (Miller & Schalk, 2008).

3 Finger flexion decoding using switching linear models

This section presents our decoding method for addressing the problem of estimat-15

ing finger movement from ECoG signals. At first, we introduce a global view of
the model and briefly discuss the decoding scheme. The second part of the sec-
tion is devoted to a detailed description of each block of the switching model : the
internal state estimation, the linear finger prediction and the final decoding stage.

3.1 Overview20

The main idea on which our switching model used for predicting finger movement
from ECoG signals is built, is the assumption that measured ECoG signals and
finger movements are intrinsically related to one or several internal states.

These internal states play a central role in our model. Indeed, it allows us to
learn from training examples a specific model associated to each single state. In25

this sense, the complexity of our model depends on the number of possible hidden
states : if only one hidden state is possible then all finger movements would be
predicted by a single model. If more hidden states are allowed, then we can build
more specific models related to specific states of the ECoG signals. According to
this, allowing too many hidden states may thus lead to a global model that overfits30

the training data.
In the learning problem addressed in here, the ECoG signals present some

specificities. Indeed, during the acquisition process, subjects have been dictated
to move only one finger at a time, thus it appeared natural to us to take profit of
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Figure 1: Diagram of the switching models decoder. We see that two models
ares estimated from the ECoG signals: (bottom flow) one which outputs a state
k predicting which finger is moving and (top flow) another one that, given the
predicted moving finger, estimates the flexion of all fingers.

this prior knowledge for building a better model. Hence, we have considered an
internal state k that can take six different values, depending on which finger is
moving : k = 1 for the thumb to k = 5 for the baby finger or k = 6 for no finger
movement. This is in accordance with the experimental set-up where mutually-
exclusive states are in play, nonetheless for another dataset where any number of5

finger can move simultaneously, we can use another model for the hidden states
e.g one binary state per finger corresponding to movement or no movement.

Figure 1 summarizes the big picture of our finger movement decoding scheme.
Basically, the idea is that based on some features extracted from the ECoG signals,
the internal hidden state triggering the switching finger models can be estimated.10

Then, this state k controls a linear switching model of parameters Hk(x̃) that will
predict the finger movements.

According to this global scheme, we need to estimate the function f(·) that
maps the ECoG features to an internal state k ∈ {1, · · · , 6} and estimate the
parameter of the linear model Hk(·) that relates the brain signals to the movements15

of all fingers. The next paragraphs introduce these functions and clarify how they
have been learned from training data.
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Figure 2: Diagram of the feature extraction procedure for the moving finger de-
coding. Here, we have outlined the processing of a single channel signal.

3.2 Moving finger estimation

The proposed switching model requires the estimation of an hidden state. In our
application, the hidden state k is a discrete state representing which finger is mov-
ing. Learning a model f(·) that estimates these internal states can be interpreted as
a sequence labeling problem. There exists several sequence labeling approaches in5

the literature such as HMM or CRF. Nevertheless, those methods require an offline
decoding, typically based on the well-known Viterbi algorithm, which precludes
their applications for online movement prediction. We propose in the sequel to
use a simple time sample classification scheme for solving this sequence labeling
problem.10

In the following, we depict the features and the methodology used for learning
the function f(·) that predicts the value of this internal state.

Feature extraction We used smoothed Auto-Regressive (AR) coefficients of
the signal as features because they capture some dynamics of the signals. The
global overview of the feature extraction procedure is given in Figure 2. For15

a single channel, the procedure is the following. The signal is divided in non-
overlapping windows of 300 samples. For each window, an auto-regressive model
is estimated. Thus, AR coefficients are obtained at every 300 samples (denoted
by the vertical dashed line and the cross in Figure 2). In order to have continuous
values of the AR coefficients, a smoothing spline-based interpolation between20

two consecutive AR coefficients is applied. Note that instead of interpolating,
we could have computed the AR coefficients at each time instant, however, this
heuristic has the double advantage of being computationally less demanding and
of providing some smoothed (and thus more robust to noise) AR coefficients. For
computational reasons, only the two first AR coefficients of a model of order 1025

are used as features. Indeed, we find out from a validation procedure that among
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all the AR coefficients, the two first ones are the most discriminative. Further
signal dynamics is taken into account by applying a similar procedure to shifted
versions of the signal at (+ts and −ts), which multiplies the number of features
by 3. Note that by using a positive lag +ts, our feature extraction approach be-
comes non-causal which in principle, would preclude its use for real-time BCI.5

Nevertheless, this lag does not exceed the the window size used for AR feature
extraction and thus it has limited impact on the delay of the decision process,
while it considerably enhances the system performances.

To summarize, for measurements involving 48 channels, the feature vector at
a time instant t is obtained by concatenating the six AR features extracted from10

each single channel, leading to a resulting vector of size 48× 3× 2 = 240.

Channel Selection Actually, some channels are not used in the function f(·),
since we decided to perform a simple channel selection to keep only the most
relevant ones. For us, the channel selection has two objectives : i) to substan-
tially reduce the number of channels and thus to minimize the computational ef-15

fort needed for estimating and evaluating the function f(·) and ii) to keep in the
model only the most relevant channels so as to increase estimation performances.
For this channel selection procedure, the feature vector xt at time t has been com-
puted as described above, except that for computational reasons, we do not have
considered the shifted signal versions and use only the first AR coefficient. Again,20

we experienced on the validation set that these features were sufficient for having
a good estimate of the relevant channels.

Then, for each finger, we estimate a linear regression of the form xtck , based
on the training set {xt, yt} , where xt ∈ Rchan is a feature vector of number of
channels dimension and yt takes values +1 or −1 whether the considered finger
is moving or not. Once the coefficient vectors ck for all finger are estimated, we
compute the relevance score of each channel as:

s =
6∑

k=1

|ck| with s ∈ Rchan

where the absolute value is applied elementwise. The M relevant channels are
those having the M largest score in the vector s, M being chosen in order to
maximize the correlation on the validation set. This approach, although unusual,25

is highly related to a channel selection method based on a mixed-norm. Indeed,
the above criterion can be understood as a `0 − `1 criterion where the `0 selec-
tion would have been performed by comparing channels `1 scores to an adaptive
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threshold dependent on M . Note that this channel selection scheme has also been
successfully used for sensor selection in other competitions (Labbé et al. , 2010)

Model estimation The procedure for learning the function f(·) is as follows.
First, since in this particular problem, the finger movements are mutually-exclusive,
we consider a winner-takes-all strategy and defines f(·) as :

f(x) = argmax
k=1,··· ,6

fk(x) (1)

where fk(·) are linear real-valued functions of the form fk(x) = xTck, that are
trained so as to predict the presence or absence of finger movement for finger
k. The features we use take into account some dynamics of the ECoG signals5

through the shifted features (+ts and −ts) and a finer feature selection has been
performed by means of a simultaneous sparse approximation method as described
in the sequel.

Let us consider the training examples {xt,yt}`t=1 where xt ∈ Rd, with d =
240 and yt,k = {1,−1}, being the k-th entry of vector yt ∈ {1,−1}6, t denoting
the time instant and k denoting the internal states of each finger. yt,k tells us
whether the finger k = 1, · · · , 5 is moving at time t while yt,6 = 1 translates the
fact that no fingers are moving at time t. Now, let us define the matrices Y, X and
C as :

[Y]t,k = yt,k [X]t,j = xt,j [C]j,k = cj,k

where xt,j and cj,k are the j-th components of respectively xt and ck. The aim
of simultaneous sparse approximation is to learn the coefficient matrix C while
yielding the same sparsity profile in the different finger models. The task boils
down to the following optimization problem:

Ĉ = argmin
C
‖Y −XC‖2F + λs

∑
i

‖Ci,·‖2 (2)

where λs is a trade-off parameter that has to be properly tuned and Ci,· is the i-th
row of C. Note that our penalty term is a mixed `1 − `2 norm similar to the one10

used for group-lasso (Yuan & Lin, 2006). Owing to the `1 penalty on the `2 row-
norm, such a penalty tends to induce row-sparse matrix C. Problem (2) has been
solved using the block-coordinate descent algorithm proposed by Rakotomamonjy
(2011).
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Figure 3: Workflow of the learning sets extraction (Xk and Yk) and estimation of
the coefficient matrix Hk.

3.3 Learning finger flexion models

We now discuss the model relating the ECoG signal and the finger movement am-
plitudes. This model is controlled by an internal state k, which means that we
build an estimation of the movement of all fingers and the choice of the appropri-
ate model then depends on the estimated internal state k̂. Hence, for each value5

of the internal state k, we learn a linear model gk,j(x̃) = x̃Th
(k)
j , with h

(k)
j ∈ Rd′

being a vector of coefficients, that predicts the movement of finger j = 1, · · · , 5
when the finger k is moving. Note that obviously the movements of the fingers
j 6= k are quite small but different from zero as the finger movements are physi-
cally correlated. Linear model has been chosen since they proved to achieve good10

performances for decoding movements from ECoG signals (Pistohl et al. , 2008;
Schalk et al. , 2007).

Feature extraction is performed following the same line as Pistohl et al. (2008),
i.e. we use filtered time-samples as features. First, all channels are filtered with a
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Savitsky-Golay (third order, 0.4 s width) low-pass filter. Then, the feature vector
at time t, x̃t ∈ Rd′ is obtained by concatenating the time samples at t, t − τ and
t+ τ for all smoothed signals and for all channels. Samples at t− τ and t+ τ are
used in order to take into account slight temporal delays between the brain activity
and finger movements. Once more, our decoding method is thus not causal, but5

as only small values for τ are considered (� 1s), the decision delay is reduced.
Let us now detail how the matrix Hk = [h

(k)
1 · · ·h

(k)
5 ] ∈ Rd′×5 containing the

finger linear model parameters for state k, is learned. For each finger k, we extract
all samples x̃t when that finger is known to be moving. For this purpose, we have
manually segmented the signals and extracted the appropriate signal segments,10

in order to build the target matrix Ỹk (finger movement amplitude when finger
k is moving), and the corresponding feature matrix X̃k. This training sample
extraction stage is illustrated on Figure 3.

Finally, the linear models for state k ∈ 1, . . . , 5 are learned by solving the
following multi-dimensional ridge regression problem:

min
Hk

‖Ỹk − X̃kHk‖2F + λk‖Hk‖2F (3)

with λk a regularization parameter that has to be tuned.
For this finger movement estimation problem, we also observed that feature15

selection helps in improving performances. Again, we use the estimated matrix
Ĥ coefficients for pruning the model, Ĥ being the minimizer of Equation 3. Sim-
ilarly to the feature selection procedure introduced in section 3.2, we keep the M ′

features having the largest entries of vector
∑5

i=1 |ĥ
(k)
i |. M ′ being chosen as to

minimize the validation error.20

3.4 Decoding finger movement

Once the linear models and the hidden state estimator are learned, we can ap-
ply the decoding scheme given in Figure 1. The decoding is a 2-step approach
requiring the two feature vectors xt and x̃t used respectively for moving finger
estimation and for estimating all finger flexion amplitudes. Estimated finger posi-
tions at time t is obtained by:

ŷt = x̃T
t Ĥk̂ with k̂ = argmax

k
xt
tck (4)

with ŷt ∈ R5 a vector containing the estimated finger movements at time t, k̂ the
estimated moving finger and Ĥk̂ the estimated linear model for state k.
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Finger Learning Validation
1 8355 3848
2 9750 2965
3 13794 3287
4 6179 2915
5 10729 5362
6 26074 6623

Table 1: Number of samples used in the validation step for subject 1.

4 Results

In this section, we discuss the performances of our switching model decoder. But
at first, we explain how the different parameters the overall model have been se-
lected. Next, we establish the soundness of linear models for finger movement
prediction by evaluating their performance just on part of the test examples re-5

lated to movements. Finally, we evaluate our approach on the complete data and
compare its performances to those of other competitors.

4.1 Parameter selection

All parameters used in the global model are selected by a validation method on
the last part of the training set (75,000 for the training, 25,000 for validation). We10

suppose that the validation set size is large enough to avoid over-fitting. Examples
of training and validation set sizes for each hidden state k are given in Table 1 for
subject 1.

Hence, for the learning function f(·), we select the number of relevant chan-
nels M , the time-lag ts used in feature extraction and the regularization term λs15

of Eq. (2) while for estimating Hk, we tune the number of selected channels M ′,
τ and λk. All these parameters are chosen so that they optimize the model perfor-
mances on the validation set.

4.2 Linear models Hk for predicting movement

Linear models are known to be accurate models for arm movement prediction20

(Schalk et al. , 2007; Pistohl et al. , 2008), here we want to confirm the hypothesis
that their use can also be extended to finger movement predictions. For each
finger k, we extract the ECoG signals and finger flexion amplitude when that

11
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Figure 4: Signal extraction for linear model estimation: (upper plot) full signal
with segmented signal, corresponding to moving finger, bracketed by the vertical
lines and (lower plot) the extracted signal corresponding to the concatenation of
the samples when finger 1 is moving.

Finger Sub. 1 Sub. 2 Sub. 3 Average
1 0.4191 0.5554 0.7128 0.5625
2 0.4321 0.4644 0.6541 0.5169
3 0.6162 0.3723 0.2492 0.4126
4 0.4091 0.5668 0.0781 0.3513
5 0.4215 0.5165 0.5116 0.4832
Avg. 0.4596 0.4951 0.4411 0.4653

Table 2: Correlation coefficient obtained by the linear models h(k)
k .

finger is actually moving (see Figure 4) and we predict the finger movement on
the test examples using the appropriate column of Hk. The correlation between
the predicted finger movement X̃kĥ

k
k and the actual movement yk is computed for

each finger k of each subject. The results are shown in Table 2 and since they have
been obtained only on samples where the actual finger is moving, they can not be5

compared to the competition results as they do not take into account part of the
signals related to other finger movements.

We observe that by using a linear regression between the feature extracted
from the ECoG signals and the finger flexions, we achieve a correlation of 0.46
(averaged across fingers and subjects). This results correspond to those obtained10

for the arm trajectory prediction ( Schalk et al. (2007) obtained 0.5 and Pistohl
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Figure 5: True and estimated finger flexion for (upper plots) a global linear re-
gression, (middle plots) switching decoder with true moving finger segmentation
and (lower plots) with the switching decoder with an estimated moving finger
segmentation.

et al. (2008) obtained 0.43). We can then conclude that the linear models provide
an interesting baseline for finger movement predictions.

4.3 Switching models for movement prediction

In order to evaluate the accuracy and the contributions of our the switching model,
we report three different results : (a) we compute the estimated finger flexion5

using a unique linear model trained on all samples (including those ones where the
considered finger is not moving), (b) we decode finger flexions with our switching
decoder while assuming that the exact sequence of hidden states is known1 and
(c) we use the proposed switching decoder with the estimated hidden states.

Correlation coefficients between real flexions and those predicted by the base-10

line model (a) are reported in Table 3a and predicted flexions can also be seen
on the upper plots of Figure 5. We note that the correlations obtained are rather
low (an average of 0.30). We conjecture that this is due to the fact that the model
parameters are learned on the complete signal (which includes no movement).
Indeed, the long temporal segments with small magnitudes have a tendency to15

shrink the global output towards zero. This is an issue that can be addressed by
using our switching linear models.

1This is possible since the finger movements on the test set are now available
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Finger Sub. 1 Sub. 2 Sub. 3 Average
1 0.1821 0.2604 0.3994 0.2807
2 0.1844 0.2562 0.4247 0.2884
3 0.1828 0.2190 0.4607 0.2875
4 0.2710 0.4225 0.5479 0.4138
5 0.1505 0.2364 0.3765 0.2545
Avg. 0.1942 0.2789 0.4419 0.3050

(a) Linear regression

Finger Sub. 1 Sub. 2 Sub. 3 Average
1 0.8049 0.5021 0.8030 0.7033
2 0.7387 0.4638 0.7655 0.6560
3 0.7281 0.4811 0.7039 0.6377
4 0.7312 0.5366 0.6241 0.6307
5 0.2296 0.4631 0.6126 0.4351
Avg. 0.6465 0.4893 0.7018 0.6126

(b) Switching models (exact sequence)

Finger Sub. 1 Sub. 2 Sub. 3 Average
1 0.7016 0.3533 0.6457 0.5669
2 0.6129 0.3045 0.5097 0.4757
3 0.2774 0.0043 0.4025 0.2280
4 0.4576 0.2782 0.5920 0.4426
5 0.3597 0.2507 0.6553 0.4219
Avg. 0.4818 0.2382 0.5611 0.4270

(c) Switching models (est. sequence)

Table 3: Correlation between measured and estimated movement for a global lin-
ear regression (a), switching decoder with exact sequence (b) and switching de-
coder with an estimated sequence (c)

The switching model decoder is a two-part process as it requires the linear
models Hk and the sequence of hidden states (see Figure 1). In order to evaluate
the optimal performances of the switching model, we apply the decoder using
the exact sequence k obtained from the actual finger flexion. We know that this
cannot be done in practice as it would imply a perfect sequence labeling, but in5

our opinion, it gives an interesting idea of the potential of the switching models
approach for given linear models Hk. Examples of estimation can be seen in
the middle plots of Figure 5 and while correlation coefficients are in Table 3b. We
obtain a high accuracy across all subjects with an average correlation of 0.61 when
using an exact sequence. This proves that the switching model can be efficiently10

used for decoding ECoG signals.
Finally, we evaluate the switching models approach when using the finger

moving estimator. In other words, we use the switching models Hk to decode
the signals with Equation (4) and the estimated sequence k̂. The finger movement
estimation can be seen on the lower plot of Figure 5b and the correlation measures15
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are in Table 3c. As expected, the accuracy is lower than those obtained with the
true segmentation. However, we obtained an average correlation of 0.42 which is
far better than the correlation obtained from a unique linear model. These predic-
tions of the finger flexions were presented in the BCI Competition and achieved
the second place. Note that the last 3 fingers have the lowest performances. In-5

deed, those fingers are highly physically correlated and much more difficult to
discriminate than the two first ones in the sequence labeling. The first finger is by
far the best estimated one as we obtained a correlation averaged across subject of
0.56 .

4.4 Discussion and future works10

The results presented in the previous section have been submitted to the BCI Com-
petition IV. We achieved the second place with an average correlation of 0.42
while the best performance have been obtained obtained by Liang & Bougrain
(2009) (a correlation of about 0.46). Their method considers an amplitude modu-
lation along time to cope with the abrupt change in the finger flexions magnitude15

along time. Such an approach is somewhat similar to ours since they try to distin-
guish between situations where fingers were moving or fingers were still.

We believe that our approach can be improved in several ways. Indeed, we
chose to use linear models that are triggered by an internal state, while Pistohl
et al. (2008) proposed to use a Kalman filter for the movement decoding. Hence,20

it would be interesting to investigate whether Kalman filter or a non-linear model
can help us in getting a better model.

Furthermore, our sequence labeling approach for estimating the sequence of
hidden states can be also improved. Liang & Bougrain (2009) proposed to use
Power Spectral Densities of the ECoG channel as features and we believe that the25

sequence labeling might benefit from the use of this kind of features. Finally, we
have used a simple sequence labeling approach by doing a temporal sample clas-
sification of low-pass filtered features. Since other sequence labeling methods like
Hidden Markov Models (Darmanjian et al. , 2006) or Conditional Random Fields
(Luo & Min, 2007) have been successfully proposed for BCI application, we be-30

lieve that a more robust sequence labeling approach can increase the quality of
the estimated segmentation and thus the final performances. For instance, the se-
quence SVM proposed by Bordes et al. (2008) can efficiently decode a sequence
in real time and has shown good predictive performances.

Finally, the question of how to predict statically held finger position is still35

open. Our approach has shown good finger movement estimations but when still,

15



fingers were always at the same resting position, which is a favorable case. To
address this problem of held finger, we can simply extend our global model by
making the internal state estimator predict a static finger position.

5 Conclusions

In this paper, we present a method for finger flexions prediction from ECoG sig-5

nals. The decoder, based on switching linear models, has been evaluated in the
BCI Competition IV Dataset 4 and achieved the second place in the competi-
tion. We show empirically the advantages of the switching models scheme over a
unique model. Finally the results suggest that the model performances are highly
dependent on the hidden state estimation accuracy. Hence, improving this estima-10

tion would naturally imply an overall performance improvement.
In future works, we plan to improve the results of the switching models de-

coder by two different approaches. On the one hand, we want to investigate the
usefulness of more general models than linear ones for the movement prediction
(switching kalman filters, non-linear regression). On the other hand, we can im-15

prove the moving finger decoding step using other sequence labeling approaches
or by considering other features extracted from the ECoG signals.
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