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ACTION OF THE SYMMETRIC GROUPS ON THE HOMOLOGY

OF THE HYPERTREE POSETS

BÉRÉNICE OGER

Abstract. The set of hypertrees on n vertices can be endowed with a poset
structure. J. McCammond and J. Meier computed the dimension of the unique
non zero homology group of the hypertree poset. We give another proof of their
result and use the theory of species to determine the action of the symmetric
group on this homology group, which is linked with the anti-cyclic structure
of the Prelie operad. We also compute the action on the Whitney homology
of the poset.

Résumé. L’ensemble des hyperarbres à n sommets peut être muni d’un ordre
partiel. J. McCammond et J. Meier ont calculé la dimension de l’unique groupe
d’homologie non trivial du poset des hyperarbres. Après avoir donné une autre
preuve de ce résultat, nous utilisons la théorie des espèces pour déterminer
l’action du groupe symétrique sur ce groupe, que nous relions à la structure
anti-cyclique de l’opérade Prelie. Nous calculons aussi l’action du groupe sy-
métrique sur l’homologie de Whitney du poset.
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Introduction

The notion of hypertree has been introduced by C. Berge [Ber89] during the
1980’s, as a generalization of trees whose edges can contain more than two vertices.
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Several studies on hypertrees have been led such as the computation of the number
of hypertrees on n vertices by L. Kalikow in [Kal99] and by Smith and D. Warme in
[War98]. For a finite set I, we can endow the set of hypertrees on the vertex set I
with a structure of poset: given two hypertrees H and K, H � K if each edge in K
is a subset of some edge in H . These hypertree posets have been used for the study
of automorphisms of free groups and free products in papers of D. McCullough-
A. Miller [MM96], N. Brady-J. McCammond-J. Meier-A. Miller [BMMM01], J.
McCammond-J. Meier [MM04] and C. Jensen-J. McCammond-J. Meier [JMM07]
and [JMM06]. In the article [BMMM01], the Cohen-Macaulayness of the poset is
proven: the poset has only one non trivial homology group. The reduced Euler
characteristic of the poset have then been computed in [MM04]: the unique non
trivial homology group has its dimension equals to (n − 1)n−2. Taking the set
{1, . . . , n} for I, the action of the symmetric group Sn on I induces an action
on the poset of hypertrees on I compatible with the differential: this provides an
action of the symmetric group on the unique non trivial homology group of the
poset. In the article [Cha07], F. Chapoton computed the characteristic polynomial
of the poset and gave a conjecture for the representation of the symmetric group
Sn on the homology and on the Whitney homology of the poset.

This article solves the conjecture of F. Chapoton in theorems 4.2 and 5.11. The
dimension computed by J. McCammond and J. Meier turns out to be also the
number of labelled rooted trees on n − 1 vertices, which is the dimension of the
vector space PreLie(n − 1), the component of arity n-1 of the PreLie operad. As
the operad PreLie is an anti-cyclic operad, as proven in [Cha05], the action of the
symmetric group Sn−1 on PreLie(n− 1) induces an action of Sn on PreLie(n− 1).
In theorem 4.2, we prove that the representation of Sn on PreLie(n − 1) and the
representation of Sn on the poset homology are isomorphic up to tensor product
by the sign representation. The theorem 5.11 is a refinement of this theorem in
which appears a type of hypertrees decorated by ΣLie: the action of the symmetric
group on the unique non trivial homology group of the poset is the same as the
action of the symmetric group on these decorated hypertrees.

We recommend to read appendix A and the first two chapters of the book
[BLL98] for an introduction to species theory which will be used in the article.
In the first part of the article, we recall the construction of the homology group of
a poset. In the second part, we determine relations between hypertree and pointed
hypertree species and then, give a new proof for J. McCammond and J. Meier’s
result on the dimension of the poset homology group in the third part. In the fourth
part, we use the relations between species, established in the first part, to compute
the action of the symmetric group on this homology group. In the last part, we
compute the action of the symmetric group on Whitney homology.

1. Construction of the homology of the hypertree poset

1.1. Definition of the poset. The hypertrees and the associated poset are de-
scribed by F. Chapoton in the article [Cha07]. We briefly recall their definitions.

1.1.1. Hypergraphs and hypertrees.

Definition 1.1. An hypergraph (on a set V ) is an ordered pair (V,E) where V
is a finite set and E is a collection of elements of cardinality at least two, belonging
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to the power set P(V ). The elements of V are called vertices and these of E are
called edges.

Example 1.2. An example of hypergraph on {1, 2, 3, 4, 5, 6, 7}:

A

B

C
D

4

7 6

5

1

2

3

.

Definition 1.3. Let H = (V,E) be a hypergraph.
A walk from a vertex or an edge d to a vertex or an edge f in H

is an alternating sequence of vertices and edges beginning by d and ending by f
(d, . . . , ei, vi, ei+1, . . . , f) where for all i, vi ∈ V , ei ∈ E and {vi, vi+1} ⊆ ei. The
length of a walk is the number of edges and vertices in the walk.

Example 1.4. In the previous example, there are several walks from 4 to 2:
(4, A, 7, B, 6, C, 2) and (4, A, 7, B, 6, C, 1, D, 3, D, 2). A walk fromC to 3 is (C, 1, D, 3)

Definition 1.5. An hypertree is a non empty hypergraph H such that, given any
vertices v and w in H ,

– there exists a walk from v to w in H with distinct edges ei, i.e. H is connected,
– and this walk is unique, i.e. H has no cycles.
The pair H = (V,E) is called hypertree on V . If V is the set {1, . . . , n}, then H

is called an hypertree on n vertices.

Denote the hypertree species by H.

Example 1.6. An example of hypertree on {1, 2, 3, 4}:

4

1 2

3 .

We have the following proposition:

Proposition 1.7. Given a hypertree H , a vertex or an edge d of H and a vertex
f of H , there is a unique minimal walk from d to f and this walk have distinct
edges.

Proof. If d is a vertex, there exists a unique walk to f with distinct edges as H
is a hypertree. Let us consider another walk (d = v0, e1, v1, . . . , ek, vk = f) with
ei = ej for some i < j. Then (d = v0, . . . , ei, vj , . . . , vk = f), obtained by deleting
(vi, . . . , ej) in the walk, is a shorter walk. Then, a minimal walk have distinct edges
and is thus unique.

If d is an edge, we consider (v, v′) a pair of vertex in d. If d is not on the unique
minimal walk (v = v0, e1, v1, . . . , vn = f) from v to f , then (v′, d, v0, e1, . . . , vn = f)
is a walk from v′ to f with distinct edges so it is the unique minimal walk from v′

to f . Otherwise, let us exchange v and v′ so that the edge d is the first edge on
the unique minimal walk from v′ to f . This walk give a walk w from d to f by
deleting the vertex v′. Suppose that there is another walk different from w from d
to f of length less or equal to the length of w. By adding v′ at the beginning of
the walk, this give a walk from v′ to f of length less or equal to the length of the
unique minimal walk from v′ to f , and different from it: this is not possible. Thus,
there is a unique minimal walk from d to f and this walk have distinct edges. �
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1.1.2. The hypertree poset on n vertices. Let I be a finite set of cardinality n, S
and T be two hypertrees on I. We say that S � T if each edge of S is the union of
edges of T , and that S ≺ T if S � T but S 6= T .

Example 1.8. Example in the hypertree poset on four vertices on I = (♦,♥,♣,♠):

♠

♦ ♥

♣

�

♠

♦ ♥

♣ ♠

♦ ♥

♣ ♠

♦ ♥

♣ .

The set (H(I),�) is a partially ordered set (or poset), written HT(I). We denote

by ĤT(I) the poset obtained by adding to HT(I) a formal element 1̂ above all the
other elements of the poset. We moreover write HTn for the poset HT({1, . . . , n}).

Definition 1.9. Given a relation �, the cover relation ⊳ is defined by x ⊳ y (y
covers x or x is covered by y) if and only if x ≺ y and there is no z such that
x ≺ z ≺ y .

In HT(I), we define the rank r(h) of a hypertree h with A edges by:

r(h) = A− 1.

Each cover relation increases the rank by one, so the poset HT(I) is graded by
the number of edges in hypertrees.

1.2. Chain complex and homology associated to a poset. We now define
the homology associated to a poset P with a minimum and a maximum. The
reader may read Wachs’ article [Wac07] for a deeper treatment of this subject and
Munkres’ book [Mun84] for more details on simplicial homology. We introduce the
following terminology:

Definition 1.10. A strict m-chain is anm-tuple (a1, . . . , am) where ai are elements
of P , neither maximum nor minimum in P , and ai ≺ ai+1, for all i ≥ 1. We write
Cm(P) for the set of strict m+ 1-chains and Cm(P) for the vector space generated
by all strict m+ 1-chains.

The set ∪m≥0Cm(P) is then a simplicial complex.
Define the linear map dm : Cm+1(P) → Cm(P) which maps a m + 1-simplex

to its boundary. These maps satisfy dm−1 ◦ dm = 0. The pairs (Cm(P), dm)m>0

obtained form a chain complex. Thus, we can define the homology of the poset.

Definition 1.11. The homology group of dimension m of the poset P is:

Hm(P) = kerdm/ Imdm+1.

We consider in this article the reduced homology, written H̃i. Having C−1(P) =
C.e, and d : C0 → C−1, the trivial linear map which maps every singleton to the
element e, we obtain:

dim(H̃0(P)) = dim(H0(P)− 1).
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Dimensions of the homology spaces satisfy the following well-known property:

Lemma 1.12. The Euler characteristic of the homology satisfies:

(1.1) χ =
∑

m≥0

(−1)m dim H̃m(P) =
∑

m≥−1

(−1)m dimCm(P).

1.3. Homology of the ĤTn poset. Let us apply the previous subsection to the

poset ĤTn. The vector spaces Cm(P) and H̃m(P) are denoted by Cn
m and H̃n

m.The
reader may consult Sundaram’s article [Sun94] for general points on the notion of
Cohen-Macaulay poset. The following notion is needed:

Definition 1.13. Let P be a poset and σ be a closed simplex of the geometric
realization |P| of P . The link of σ is the subcomplex:

Lk(σ) = {λ ∈ |P| : λ ∪ σ ∈ |P|, λ ∩ σ = ∅}.

Definition 1.14. [MM04, definition 2.8] A poset P is Cohen-Macaulay if its geo-
metric realization |P| is Cohen-Macaulay. That is, for every closed simplex σ in
|P|, we have:

H̃i(Lk(σ)) =

{
0, for i 6= dim(|P|)− dim(σ)− 1
torsion free, for i = dim(|P|)− dim(σ)− 1,

where the dimension of the empty simplex is −1 by convention.

Theorem 1.15. [MM04, theorem 2.9] For each n ≥ 1, the poset ĤTn is Cohen-

Macaulay.

Corollary 1.16. The homology of ĤTn is concentrated in maximal degree:

H̃i(Lk(∅)) =

{
0, for i 6= dim(|ĤTn|)

torsion free, for i = dim(|ĤTn|).

The equation (1.1) can thus be rewritten as:

(1.2) dim H̃n
n =

∑

m≥−1

(−1)m dimCn
m.

Moreover, as the differential is compatible with the symmetric group action, the
action of the symmetric group on (Cm)m≥−1 induces an action on H̃n

n . Hence the
following relation holds, with χs

i+1 the character of the action of the symmetric
group on the vector space Cn

i and χH̃n
n

the character of the action of the symmetric

group on the vector space H̃n
n :

(1.3) χH̃n
n
=
∑

m≥−1

(−1)mχs
i+1.

1.4. From large to strict chains. According to equation (1.3), it is sufficient to
compute the alternating sum of characters on Cn

m to determine the character on
the only non trivial homology group.

Let k be a natural number and I be a finite set. The set of large k-chains of
hypertrees on I is the set HLI

k of k-tuples (a1, . . . , ak) where ai are elements of

HT(I) and ai � ai+1. The set of strict k-chains of hypertrees on I is the set HSIk of
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k-tuples (a1, . . . , ak) where ai are non minimum elements of HT(I) and ai ≺ ai+1.

The set HS
{1,...,n}
k is then a basis of the vector space Cn

k+1.
We define the following species:

Definition 1.17. The species Hk of large k-chains of hypertrees is defined by:

I 7→ HLI
k .

The species HSk of strict k-chains of hypertrees is the species defined by:

I 7→ HSIk .

Definition 1.18. Let Mk,s be the set of words on {0, 1} of length k, containing s
letters "1". The species Mk,s is defined by:

{
∅ 7→ Mk,s,

V 6= ∅ 7→ ∅.

Let us describe the link between these species:

Proposition 1.19. The species Hk and HSi are related by:

Hk
∼=
∑

i≥0

HSi ×Mk,i.

Proof. Let (a1, . . . , ak) be a large k-chain. It can be factorized into an ordered
pair formed by a strict s-chain (ai1 , . . . , ais), obtained by deleting repetitions and

minimum 0̂, if it is possible, and an element u1 . . . uk of Mk,s such that:

– u1 = 0 if a1 = 0̂, 1 otherwise;
– uj = 0 if aj 6= aj−1, 1 otherwise.
From a strict i-chain and a word u1 . . . uk of Mk,i, a large k-chain can be recon-

structed.
This establishes the desired species isomorphism. �

Corollary 1.20. Consider the action by permutation of Sn on {1, . . . , n}. The
characters χk and χs

i of the induced action on the vector spaces Hk({1, . . . , n}) and
HSi({1, . . . , n}) satisfy:

(1.4) χk =

n−2∑

i=0

(
k

i

)
χs
i .

Proof. The isomorphism of proposition 1.19 is a species isomorphism, so it preserves
the symmetric group action.

This gives:

Hk({1, . . . , n}) ∼=
∑

i

HSi({1, . . . , n})×Mk,i(∅).

Moreover, the action of Sn on Mk,i(∅) is trivial, so that we obtain:

χk =
∑

i≥0

χs
i ×#Mk,i.

The cardinality of Mk,i is
(
k
i

)
. As the maximal length of a strict chain in HTn

is n− 2, the sum is finite.
�



ACTION OF THE SYMMETRIC GROUPS ON THE HOMOLOGY OF THE HYPERTREE POSETS7

As the expression of
∑n−2

i=0

(
k
i

)
χs
i is polynomial in k, of degree bounded by n, it

enables us to extend χk to integers. Equation (1.3) shows that the character χk

evaluated at k = −1 is the opposite of the character given by the action of Sn

induced on poset homology.

Proposition 1.21. Let us write Pn(X) for the polynomial whose value in k gives

the number of large k-chains in the poset ĤTn. The opposite of the character given

by the action of Sn induced on the homology of poset ĤTn is given by Pn(−1).

2. Relations between species and auxiliary species

In this section, we define new species and establish connections between them.
The reader may consult the appendix A for definitions of some usual species used
in this part.

2.1. Pointed hypertrees. Let k be a natural number.
We define the following pointed hypertrees:

Definition 2.1. A rooted hypertree is a hypertree H together with a vertex s
of H . The hypertree H is said to be rooted at s and s is called the root of H .

Example 2.2. A hypertree on nine vertices, rooted at 1.

9

8 2

1

3

4

6

5

7

Let us recall that the minimum of a chain is the hypertree with the smallest
number of edges on the chain.

The species associated with rooted hypertrees is denoted by Hp. The one as-
sociated with large k-chains of hypertrees, whose minimum is a rooted hypertree,
is denoted by Hp

k. This vertex is then distinguished in the other hypertrees of the
chain, so that all hypertrees in the chain can be considered as rooted at this vertex.
In the following, the species Hp

k will be called "species of large rooted k-chains".

Definition 2.3. An edge-pointed hypertree is a hypertree H together with an
edge a of H . The hypertree H is said to be pointed at a.

Example 2.4. A hypertree on seven vertices, pointed at the edge {1, 2, 3, 4}.

6

5 1

3

2

4

7

The species associated with edge-pointed hypertrees is denoted by Ha. The one
associated with large k-chains of hypertrees whose minimum is an edge-pointed
hypertree is denoted by Ha

k.

Definition 2.5. An edge-pointed rooted hypertree is a hypertree H on at
least two vertices, together with an edge a of H and a vertex v of a. The hypertree
H is said to be pointed at a and rooted at s.
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Example 2.6. A hypertree on seven vertices, pointed at edge {1, 2, 3, 4} and rooted
at 3

6

5 1

3

2

4

7

.

The species associated with edge-pointed rooted hypertrees is denoted by Hpa.
The one associated with large k-chains of hypertrees whose minimum is an edge-
pointed rooted hypertree is denoted by Hpa

k .

2.2. Dissymmetry principle. The reader may consult book [BLL98, Chapitre
2.3] for a deeper explanation on the dissymmetry principle. In a general way, a
dissymmetry principle is the use of a natural center to obtain the expression of a
non pointed species in terms of pointed species. An example of this principle is the
use of the center of a tree to express unrooted trees in terms of rooted trees. The
expression of the hypertree species in term of pointed and rooted hypertrees species
is the following:

Proposition 2.7. The species of hypertrees and of rooted hypertrees are related
by:

(2.1) H +Hpa = Hp +Ha.

Proof. For the proof, we need the following notions which use the proposition 1.7:

Definition 2.8. The eccentricity of a vertex or an edge is the maximal number
of vertices and edges on the minimal walk from it to another vertex. The center

of a hypertree (edge-pointed or not, rooted or not) is the vertex or the edge with
minimal eccentricity.

Proposition 2.9. The center is unique.

Proof. We prove this proposition ad absurdum.
Let us consider a hypertree H such that there are two different vertices or edges

a and b of same eccentricity e which are centers of H . The number of vertices or
edges on a walk from an edge to a vertex is even. The number of vertices or edges
on a walk from a vertex to a vertex is odd. Therefore, either a and b are vertices,
or they are edges, according to the parity of e. As they are different, there is a non
trivial minimal walk of odd length from a to b with at least one element c on it
different from a and b.

We consider a walk (b, . . . , en, vn = f) from b to a vertex f such that c is not
in the walk. If c is not in the unique minimal walk (a, . . . , e′p, v

′
p = f) from a to

f , then the concatenation (b, . . . , en, f, e
′
p, . . . , a) is a walk from b to a and c is not

in it. The edges of type ei (respectively e′j) are all different. If this walk is not

minimal, there is a minimal i such that ei and e′j are equals for an integer j. Then
the walk (b, . . . , ei, v

′
j , . . . , a) is minimal and c is not on it. It means that there are

two different minimal walk from b to a, which is not possible.
Therefore, for every vertex f , c is either in the walk from b to f or in the

walk from a to f . The eccentricity of c is then strictly less than e, which is in
contradiction with the minimality of e.

�
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The following maps are bijections, inverse one of each other:

φ : H +Hpa → Ha +Hp,

ψ : Ha +Hp → H +Hpa.

If T belongs to H, φ(T ) is the hypertree obtained by pointing the center of T .
We thus obtain a rooted hypertree if the center is a vertex and an edge-pointed
hypertree otherwise. (case A)

Otherwise, T belongs to Hpa, φ(T ) is the hypertree obtained from T by:
– forgetting the root of T if it is its center, obtaining an edge-pointed hypertree,

(case B)
– forgetting the pointed edge of T if it is its center, obtaining a rooted hypertree,

(case C)
– forgetting the pointed edge or root which is the nearest from the center of the

hypertree.(case D)
If T belongs to Ha, ψ(T ) is the hypertree obtained from T by:
– forgetting the pointed edge of T if it is its center,(converse of case A)
– rooting the center of T if it belongs to the pointed edge of T , (converse of case

B)
– rooting the nearest vertex of the pointed edge from the center of T . (converse

of case D)
Otherwise, T belongs to Hp, ψ(T ) is the hypertree obtained from T by:
– forgetting the root of T if it is its center, (converse of case A)
– pointing the center if it is an edge containing the root of T , (converse of case

C)
– pointing the nearest edge containing the root from the center of T . (converse

of case D)
�

Let k be a natural number.
The following proposition links large k-chains of hypertrees, rooted hypertrees,

edge-pointed hypertrees and edge-pointed rooted hypertrees.

Proposition 2.10 (Dissymmetry principle for hypertrees chains). The following
relation holds:

(2.2) Hk +Hpa
k = Hp

k +Ha
k.

Proof. We apply the dissymmetry principle to the minimum of the chain. �

2.3. Relations between species.

2.3.1. Relations for Hp
k. To determine a functional equation for Hp

k, we introduce
another type of hypertree.

Definition 2.11. A hollow hypertree on n vertices (n ≥ 2) is a hypertree on the
set {#, 1, . . . , n− 1}, such that the vertex labelled by #, called the gap, belongs to
one and only one edge.

Example 2.12. Hollow hypertree on eight vertices.
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5

2

1

3

4

6

# 8

7

Definition 2.13. A hollow hypertrees k-chain is a chain of length k in the
poset of hypertrees on {#, 1, . . . , n − 1}, whose minimum is a hollow hypertree.
The species of hollow hypertrees k-chains is denoted by Hc

k. The species of hollow
hypertrees k-chains whose minimum has only one edge, is denoted by Hcm

k . Remark
that the other hypertrees of the chain are not necessarily hollow hypertrees because
the vertex labelled by # is in one and only one edge in the minimum of the chain
but can be in two or more edges then.

These species are linked by the following proposition:

Proposition 2.14. The species Hp
k, H

c
k and Hcm

k satisfy:

(2.3) Hp
k = X × Comm ◦Hc

k +X,

(2.4) Hc
k = Hcm

k ◦ Hp
k,

(2.5) Hcm
k = Comm ◦Hc

k−1.

Proof. (1) A k-chain of rooted hypertrees on one vertex is just the same as one
vertex repeated k times. Thus, it is the same object as a singleton, so the
associated species is the species X .

We now consider k-chains of rooted hypertrees on at least two vertices.
Each such chain can be separated into a singleton and a set of hollow
hypertrees k-chains. The singleton is the root of the minimum hypertree.
The set of hollow hypertrees k-chains is obtained by:

– deleting the root in every hypertree,
– putting a gap # where the root was,
– separating in the minimum the edges containing gaps, so that we ob-

tain a set of hollow hypertrees.

The third point induces a decomposition of a chain into sets of hollow
hypertrees chains. Indeed, it gives a partition of the set of edges such that
every vertex different from the root appears exactly one time, and this
partition is preserved during the chain. This gives the result (2.3).

Example 2.15. A rooted hypertrees chain decomposed into a singleton
and a set of hollow hypertrees k-chains. Here are drawn only the minima
(at the top) and the maxima (at the bottom) of the chains.
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9
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7

9
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1
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1 +

9

8

#

9

8

#

2

#

3
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5

7

2

#

3

4

5

6 7

(2) Let S be a hollow hypertrees k-chain as defined in definition 2.13.

The hollow edge, i.e. the edge containing the gap, gives at each stage l
of the chain a set of distinguished edges Dl

e. Considering only these distin-
guished edges, we obtain a hollow hypertrees k-chain D whose minimum
has only one edge.

Deleting the hollow edgeD1
e in the minimum of S gives a hypertree forest,

i.e. a list of hypertrees, (h1, . . . , hf ). Each hypertree hi has a distinguished
vertex si which was in the hollow edge. Let us say that hi is rooted at si.
The evolution of edges of the hypertree hi in S induces a chain Shi

. The
rootedness of hi induces a rootedness of Shi

.

Note that the hypertrees forest (hl1, . . . , h
l
f ) obtained at stage l of the

chain by deleting Dl
e is the same as the hypertrees forest obtained by taking

the hypertrees at stage l in chains Sh1
, . . . , Shf

.

Thus the chain S is chain D, where at stage l, on vertex i, we have
grafted hypertree hi,l. The grafting consists in replacing vertex i by the
root of hi,l in the hypertree.

The chain S can also be seen as chain D, where the rooted hypertrees
chain Shi

has been inserted in vertex i. This gives result (2.4).

Example 2.16. Hollow hypertrees chain, separated into a hollow hyper-
trees chain whose minimum has only one edge, and whose vertices are rooted
hypertrees chains.
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(3) A hollow hypertrees k-chains, whose minimum has only one edge can be
seen as a (k − 1)-chain Ck−1 with a vertex labelled by #. Separating
the edges containing the label # in the minimum of Ck−1 is the same has
separating this chain in a non-empty set of hollow hypertrees (k−1)-chains.
This gives the result (2.5).

�

As the species Hp
k can be factored by the species X , the map

Hp

k
−X

X
is a species.

We obtain the following corollary:

Corollary 2.17. The species Hp
k satisfies:

(2.6) Hp
k = X × Comm ◦

(
Hp

k−1 −X

X
◦ Hp

k

)
+X.

2.3.2. Relations for Ha
k. We have the following relation:

Proposition 2.18. The species Ha
k satisfies:

(2.7) Ha
k = (Hk−1 −X) ◦ Hp

k.

Proof. Let S be an edge-pointed hypertrees k-chain. The pointed edge in the
minimum of S gives at each stage l of the chain a set of distinguished edges Dl

e,
obtained from the fission of the pointed edge. Considering only these distinguished
edges, we obtain a hypertrees k-chain D whose minimum has only one edge. That
chain can be seen as a (k − 1)-chain of hypertrees on at least two vertices.

Deleting the pointed edge D1
e in the minimum of S gives a hypertrees forest, i.e.

a list of hypertrees, (h1, . . . , hf). Each hypertree hi has a distinguished vertex si
which was in the pointed edge. Let us say that hi is rooted at si. The evolution
of edges of hypertree hi at S induces a chain Shi

. The rootedness of hi induces a
rootedness of Shi

.
Note that the hypertrees forest (hl1, . . . , h

l
f ) obtained at stage l of the chain by

deleting Dl
e is the same as the hypertrees forest obtained by taking hypertree at

stage l in chains Sh1
, . . . , Shf

Thus the chain S is the chain D, where at stage l, on vertex i, we have grafted
hypertree hi,l. The grafting consists in replacing vertex i by the root of hi,l in the
hypertree.
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The chain S can also be seen as the chain D, where the rooted hypertrees chain
Shi

has been inserted in vertex i. This gives the result, as in the proof of proposition
2.14.

Example 2.19. Edge-pointed hypertrees chain, separated into a hypertrees chain
whose vertices are rooted hypertrees chains.
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�

2.3.3. Relations for Hpa
k . We have:

Proposition 2.20. The species Hpa
k satisfies the functional equation:

(2.8) Hpa
k = (Hp

k−1 −X) ◦ Hp
k.

Proof. Forgetting the rootedness gives the decomposition of proposition 2.18.
Rooting edge-pointed hypertrees chain is the same as pointing out a vertex in

the hypertrees k − 1-chain. This gives the result.

Example 2.21. An edge-pointed rooted hypertrees chain, seen as a rooted hyper-
trees chain, whose vertices are labelled by rooted hypertrees chains.
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2.3.4. Relations for Hk. Rootedness gives the following proposition:

Proposition 2.22. The species Hk satisfies:

(2.9) X ×H′
k = Hp

k,

where ′ is species differentiation.

2.4. Back to strict and large chains. The rootedness of a chain does not change
the polynomial nature of the character, shown in section 1.4. Consequently, gener-
ating series and cycle index of Hp are polynomial in k.

Moreover, as the substitution of formal power series with polynomial coefficients
is a formal power series with polynomial coefficients, generating series and cycle
indices associated with Ha, Hpa, Hc and Hcm are polynomial in k.

Consequently, for all considered species, we can take the value of cycle index in
−1 and this will give the character of symmetric group on the homology associated
with pointed hypertrees poset.

3. Dimension of the poset homology

Generating series associated with species Hk, Hp
k, Ha

k, Hpa
k , Hc

k and Hcm
k are

denoted by Ck, C
p
k , Ca

k , Cpa
k , Cc

k and Ccm
k . We compute them here.

3.1. Connections between generating series. The equalities between species
of part 2 give equalities in terms of generating series:

Proposition 3.1. The series Cp
k satisfies:

(3.1) Cp
k = x× exp

(
Cp
k−1 ◦ C

p
k

Cp
k

− 1

)
.

The series Ca
k satisfies:

(3.2) Ca
k = (Ck − x)(Cp

k).

The series Cpa
k satisfies:

(3.3) Cpa
k = (Cp

k−1 − x)(Cp
k).

The series Ck satisfies:

(3.4) x× C′
k = Cp

k .

Moreover, according to the dissymmetry principle of proposition 2.10, these series
also satisfy:

(3.5) Ck + Cpa
k = Cp

k + Ca
k .

3.2. Values of the series for k = 0 and k = −1.

3.2.1. Computation of C0 and Cp
0 . There is only one hypertrees 0-chain: the empty

chain. This gives:

(3.6) C0 =
∑

n≥1

xn

n!
= ex − 1.

Relation (3.4) gives:

(3.7) Cp
0 = xex.
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3.2.2. Computation of C−1. Using proposition 1.21, it is sufficient to study the
value in −1 of the polynomial whose value in k gives the number of large k-chains
to obtain the dimension on the homology group. Therefore we study the value in
−1 of the exponential generating series whose coefficients are these polynomials.
The series C−1 is given by the following theorem. This result was first proved by
McCammond and Meier in [MM04]. We give here another proof:

Theorem 3.2. [MM04, theorem 5.1] The dimension of the only non trivial homol-

ogy group of the poset of hypertrees on n vertices is (n− 1)
n−2

.

Proof. According to equations (3.2) and (3.3), applied at k = 0, the dissymmetry
principle of corollary 2.10 is:

C0 − Cp
0 = Ca

0 − Cpa
0

= (C−1 − Cp
−1) ◦ C

p
0 .

With equations (3.4), (3.6) and (3.7), this equality is equivalent to:

(3.8) (C−1 − xC′
−1) ◦ xe

x = ex − xex − 1.

We define a new series:

Definition 3.3. Let ΣW be the series given by:

ΣW (x) =
∑

n≥1

(−1)n−1nn−1x
n

n!
.

This series is the suspension of the generating series W of rooted hypertrees species,
associated with the PreLie operad. It satisfies the following equation, obtained from
the decomposition of rooted trees (see [BLL98, page 2] for instance):

ΣW (x)eΣW (x) = x.

We compute its differential:

(ΣW )′(x) =
1

x+ eΣW
.

Composing equation (3.8) by ΣW , we get:

C−1 − xC′
−1 = eΣW − x− 1.

To conclude, we need the following lemma:

Lemma 3.4. Computing the term eΣW − x− 1 gives:

eΣW − x− 1 =
∑

n≥2

(−1)n−1(n− 1)n−1x
n

n!
.

Proof of the lemma 3.4. Both parts of the equation vanish at 0.
On the one hand, differentiation gives:

(eΣW − x− 1)′ = ΣW ′eΣW − 1 =
eΣW − x− eΣW

x+ eΣW
= −xΣW ′.

On the other hand, we get:

∑

n≥2

(−1)n−1(n− 1)n−1x
n

n!




′

=
∑

n≥2

(−1)n−1(n− 1)n−1 xn−1

(n− 1)!
.

It gives:
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
∑

n≥2

(−1)n−1(n− 1)n−1x
n

n!




′

=
∑

n≥1

(−1)nnnx
n

n!
= −xΣW ′.

The derivatives of these formal series are the same and they both vanish at 0, so
they are equal. �

We conclude thanks to lemma 3.4, by considering C−1 =
∑

n≥1 an
xn

n! . Thus
coefficients an satisfy, for all integers n > 0:

an − nan = −(n− 1)an = (−1)n−1(n− 1)n−1.

�

Corollary 3.5. The derivative of series C−1 is given by:

(C−1 − x)′ = ΣW.

Proof. We differentiate the expression of C−1 obtained in the previous theorem:

(C−1 − x)′ =
∑

n≥2

(−1)n(n− 1)n−2 xn−1

(n− 1)!
.

This gives the result. �

3.2.3. Back to Ca
0 and Cpa

0 . The series Ca
0 and Cpa

0 are given by the following propo-
sition.

Proposition 3.6. (1) The series Ca
0 satisfies:

(3.9) Ca
0 =

∑

n≥2

(n− 1)2
xn

n!
.

(2) The series Cpa
0 satisfies:

(3.10) Cpa
0 =

∑

n≥2

n(n− 1)
xn

n!
.

Proof. According to equations (3.2) and (3.7), Ca
0 satisfies:

Ca
0 (x) = (C−1 − x) ◦ Cp

0 (x) = (C−1 − x) ◦ xex.

Differentiating this equality and using corollary 3.5, we get:

(Ca
0 )

′(x) = ΣW ◦ xex × (x + 1)ex = x(x+ 1)ex.

So it gives:

(Ca
0 )

′(x) =
∑

n≥1

n2x
n

n!
.

As Ca
0 (0) = 0, we obtain the first result.

According to equations (3.3) and (3.7), Cpa
0 satisfies:

Cpa
0 (x) = (Cp

−1 − x) ◦ Cp
0 (x) = (x(C′

−1 − 1)) ◦ xex.

With corollary 3.5, we get:

Cpa
0 (x) = (xΣW ) ◦ xex = x2ex.

This gives the second result.
�
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4. Action of the symmetric group on the poset homology

The reader may consult the appendix B for basic definitions on cycle index and
the appendix A for definitions of usual species used in this section and the following.

4.1. Description of the action. Let us consider a hypertree poset on n vertices,
as described previously. The symmetric group acts on the set of vertices by per-
mutation. This action preserves number of edges and poset order, so it induces

an action on the homology associated with poset ĤTn. We will determine in this
section the character of this action on poset homology.

In the following, Ck, C
p
k, C

a
k and C

pa
k will stand for cycle indices associated with

species Hk, H
p
k, H

a
k and Hpa

k .

4.2. Connection between cycle indices. Relations between species of section 2
give the following proposition:

Proposition 4.1. The series Ck, C
p
k, C

a
k and C

pa
k satisfy the following relations:

(4.1) Ck +C
pa
k = C

p
k +Ca

k,

(4.2) C
p
k = p1 + p1 ×CComm ◦

(
C

p
k−1 ◦C

p
k −C

p
k

C
p
k

)
,

(4.3) Ca
k +C

p
k = Ck−1 ◦C

p
k,

(4.4) C
pa
k +C

p
k = C

p
k−1 ◦C

p
k,

and

(4.5) p1
∂Ck

∂p1
= C

p
k.

This relations holds on Z. Indeed the coefficients of the xn are polynomial in k,
so we can extend the previous relations holding on N to Z.

4.3. Computation of the symmetric group character.

4.3.1. Computation of C−1. Using proposition 1.21, it is sufficient to study the
value in −1 of the polynomial whose value in k gives the character of the action of
symmetric group on large k-chains to obtain the character on the homology group.
Therefore we study the value in −1 of the exponential generating series whose
coefficients are these polynomials.

The PreLie operad is anti-cyclic as proven in the article of F. Chapoton [Cha05].
It means that the usual action of the symmetric group Sn on the module PreLie(n),
whose basis is the set of rooted trees, can be extended into an action of the sym-
metric group Sn+1. We write M for the cycle index associated with this anti-cyclic
structure.

The reader may consult the article [Cha07, part 5.4] for more information on
this series.
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We will prove the following theorem, which describes the action of symmetric
group on the homology of hypertree poset in terms of cycle indices associated with
the Comm and PreLie operads:

Theorem 4.2. The cycle index C−1, which gives the character of the action of

the symmetric group on the homology of the hypertree poset, is related to the cycle

index M associated with the anti-cyclic structure of PreLie operad by:

(4.6) C−1 = p1 − ΣM = CComm ◦ ΣCPreLie + p1 (ΣCPreLie + 1) .

The cycle index C
p
−1 is given by:

(4.7) C
p
−1 = p1 (ΣCPreLie + 1) .

Proof. We first compute C0 and C
p
0. There is only one 0-chain: the empty chain.

It is fixed by every permutation. A quick computation gives:

C0 = CComm.

We derive from equation (4.5):

(4.8) C
p
0 = p1

∂CComm

∂p1
= CPerm = p1(1 +CComm).

The equation (4.2) gives:

C
p
0 = p1 + p1 ×CComm ◦

(
C

p
−1 ◦C

p
0 −C

p
0

C
p
0

)
,

so

p1 + p1 ×CComm = p1 + p1 ×CComm ◦

(
C

p
−1 ◦CPerm −CPerm

CPerm

)
.

Recall that ΣCPreLie ◦CPerm = CPerm ◦ ΣCPreLie = p1, according to [Cha07] 1.
We obtain:

ΣCPreLie =
C

p
−1 − p1

p1
,

hence the result:

(4.9) C
p
−1 = p1 (ΣCPreLie + 1) .

The dissymmetry equation (4.1), combined with relations (4.3) and (4.4) in k = 0
gives:

CComm +C
p
−1 ◦CPerm −CPerm = CPerm +C−1 ◦CPerm −CPerm.

Composing by ΣCPreLie and replacing C
p
−1 by its expression in equation (4.9),

we obtain:

C−1 = CComm ◦ ΣCPreLie + p1 (ΣCPreLie + 1)− p1.

As (p1(CComm + 1)) ◦ ΣCPreLie = p1,
we thus obtain

CComm ◦ ΣCPreLie =
p1 − ΣCPreLie

ΣCPreLie
.

1. This is a consequence of Koszul duality for operads
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Therefore
C−1 = −1 +

p1
ΣCPreLie

+ p1 × ΣCPreLie.

According to [Cha05, equation 50], composing by the suspension, we get:

ΣM − 1 = −p1(−1 + ΣCPreLie +
1

ΣCPreLie
),

The result is obtained by using the following equality:

(p1 −C−1)− 1 = p1 −
p1

ΣCPreLie
− p1 × ΣCPreLie.

�

4.3.2. Back to Ca
0 and C

pa
0 . In this part, we refine the results obtained at proposi-

tion 3.6.

Theorem 4.3. Cycle indices associated with species of large 0-chains, whose min-

imum is an edge-pointed hypertree and species of large 0-chains, whose minimum

is an edge-pointed rooted hypertree, satisfy:

(4.10) Ca
0 = CComm + (p1 − 1)×CPerm,

and

(4.11) C
pa
0 = p1CPerm.

For a cycle index C, we write (C)n for the part of C corresponding to a repre-

sentation of the symmetric group Sn.

Therefore, for all n ≥ 2, writing S(n−1,1) for the irreducible representation of the

symmetric group Sn associated with the partition (n− 1, 1) of n, we obtain:

(1) (Ca
0)n is the character of the representation S(n−1,1) ⊗ S(n−1,1);

(2) (Cpa
0 )n is the character of the representation S(n−1,1) ⊗ S(n−1,1) ⊕ S(n−1,1)

.

Proof. The equalities come from relations (4.3) and (4.4), replacing C
p
0 by its ex-

pression in equation (4.8), Cp
−1 by its expression in equation (4.9) and C−1 by its

expression in theorem 4.2. We obtain:

(4.12) (Ca
0)n =

∑

λ⊢n

pλ
zλ

+
∑

λ⊢n−2

p21
pλ
zλ

−
∑

λ⊢n−1

p1
pλ
zλ

Denote now by fλ the number of fixed points in a permutation of type λ.
The coefficient in front of pλ

zλ
in (Ca

0)n is:

1− fλ + fλ(fλ − 1) = (fλ − 1)2.

In the same way, we obtain:

(4.13) (Cpa
0 )n =

∑

λ⊢n−2

p21
pλ
zλ
.

The coefficient in front of pλ

zλ
in (Cpa

0 )n is

(fλ − 1)2 + fλ − 1 = fλ(fλ − 1).

We conclude thanks to the following lemma:
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Lemma 4.4. The character of the irreducible representation S(n−1,1) on the con-
jugacy class Cσ is equal to p − 1, where p is the number of fixed points of every
element in Cσ.

Indeed, according to the previous lemma the character of the representation
S(n−1,1) ⊗ S(n−1,1) on the conjugacy class Cσ is equal to (p − 1)2, where p is the
number of fixed points of every element in Cσ. This gives the first relation.

The second one is obtained by computing the character of the representation
S(n−1,1) ⊗ S(n−1,1) ⊕ S(n−1,1), equal to fσ(fσ − 1) on a conjugacy class whose
elements have fσ fixed points.

�

of the lemma. The natural representation of Sn on Cn is the direct sum of the
trivial representation and the representation S(n−1,1).

The character of this representation on a conjugacy class Cσ is equal to the
number of fixed points of every element of Cσ.

The character of the trivial representation is equal to 1. The result is obtained
by difference.

�

5. Action of symmetric group on Whitney homology

5.1. Definition and properties of Whitney homology. The reader may con-
sult the article [Wac07] for definitions and properties of Whitney homology.

Definition 5.1. Whitney homology of a poset P with minimum 0̂ is the collection
of spaces:

(5.1) WHi(P ) = ⊕x∈P H̃i−2([0̂, x]), i ≥ 2.

Theorem 5.2. [Wac07] If a poset P is Cohen-Macaulay, its Whitney homology

satisfies:

(5.2) WHi(P ) = ⊕x∈Pi−1
H̃i−2([m,x])

where Pi−1 = {x ∈ P |r(x) = i− 1} and r(x) is the rank of x.

As ĤTn is Cohen-Macaulay, according to theorem 1.15, it satisfies the previous
theorem.

To compute the Whitney homology of ĤTn, we define a weight on large k-chains:

Definition 5.3. The weight of a hypertrees chain S, denoted by w(S), is:

w(S) = #edge(max(S))− 1

where #edge(max(S)) is the number of edges of the maximum in S.

Note that in ĤTn, the weight of a chain is equal to the rank of its maximum.

For E a species with cycle index C, we will denote by Et the associated weighted
species with cycle index Ct.

Thus, the species Hk,t is the species which associates to a set A the set of all
pairs of large hypertrees k-chain with the weight of its maximum. Therefore, we
have:

Ck,t =
∑

n≥1

∑

i≥0

χ(HLn
k,i)t

i x
n

n!
,
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where χ(HLn
k,i) is the character given by the action of symmetric group Sn on the

space of large k-chains whose maximum have rank i.
The reasoning of part 1.4 is the same with the weight: our aim is to find poly-

nomial relations in k between large k-chains, and then evaluate them at k = −1.
Therefore, we will obtain:

(5.3) C−1,t =
∑

n≥1

∑

i≥0

WHi(ĤTn)t
i x

n

n!
.

5.2. Connections between cycle indices. Relations between species of part 2
give the following relations when we take the weight into account:

Proposition 5.4. Series Ck,t, C
p
k,t, C

a
k,t and C

pa
k,t satisfy the following relations:

(5.4) Ck,t +C
pa
k,t = C

p
k,t +Ca

k,t,

(5.5) C
p
k =

p1
t
× (1 +CComm ◦

(
tCp

k−1,t − p1

p1
◦ tCp

k,t

)
,

(5.6) Ca
k,t = (Ck−1,t −

p1
t
) ◦ (tCp

k,t),

(5.7) C
pa
k,t = (Cp

k−1,t −
p1
t
) ◦ (tCp

k,t),

(5.8) p1
∂Ck,t

∂p1
= C

p
k,t.

5.3. New pointed chains. We need two new kinds of pointed chains. Therefore,
we will denote:

– by HA
k,t, the species associated with large weighted hypertrees k-chains, whose

maximum is an edge-pointed hypertree, and by CA
k,t the associated cycle index.

– by HpA
k,t , the species associated with large weighted hypertrees k-chains whose

maximum is an edge-pointed rooted hypertree and C
pA
k,t the associated cycle

index.
Note that, by definition, the species Ha

1,t coincides with the species HA
1,t and that

the species Hpa
1,t coincides with species HpA

1,t .
The previous species are related with the other pointed hypertrees species by

the following theorem:

Theorem 5.5. The species HA
k,t and HpA

k,t satisfy:

(5.9) HA
k,t = HA

k−1,t ◦ (tH
p
k,t),

(5.10) HpA
k,t = HpA

k−1,t ◦ (tH
p
k,t),

(5.11) Hk,t +HpA
k,t = Hp

k,t +HA
k,t.
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Proof. Pointing an edge in the maximum is the same as pointing an edge in the
minimum and pointing an edge in the set of distinguished edges thus obtained in
the maximum of the chain. Using the proof of proposition 2.18 and the previous
statement give the first relation.

If we distinguish a vertex (root) in the chain, we obtain the second relation.
The third relation is obtained by the same reasoning as in paragraph 2.2 on the

dissymmetry principle.
�

This implies the following relations:

Corollary 5.6. Series CA
k,t and C

pA
k,t satisfy:

(5.12) CA
k,t = CA

k−1,t ◦ (tC
p
k,t),

(5.13) C
pA
k,t = C

pA
k−1,t ◦ (tC

p
k,t).

5.4. The HAL series. We recall here the definitions of HAL series introduced in
[Cha07].

Definition 5.7. Series HAL, HALp, HALpA and HALA are the series defined by
the following functional equations:

(5.14) HALpA = p1

(
p1

1 + tp1
◦CComm ◦ (p1 + (−t)HALpA)

)
,

(5.15) HALp = p1(ΣtCLie ◦CComm ◦ (p1 + (−t)HALpA)),

(5.16) HALA = (CComm − p1) ◦ (p1 + (−t)HALpA),

(5.17) HAL = HALp +HALA −HALpA .

We introduce the series ΣW t, defined by:

(tCPerm − tp1 + p1) ◦ ΣW t = ΣW t ◦ (tCPerm − tp1 + p1) = p1.

Proposition 5.8. Series ΣW t satisfies:

(5.18) CComm ◦ ΣW t =
p1 − ΣW t

tΣW t

.

Proof. By definition, we have:

(CPerm − p1) ◦ΣW t =
p1 − ΣW t

t
.

However, CPerm satisfies: CPerm = p1(1 +CComm),
hence the result. �

The following theorem gives explicit expressions for HAL series in terms of ΣW t.

Theorem 5.9. The series HAL, HALp, HALpA and HALA satisfy:

(5.19) HALpA =
p1 − ΣW t

t
,

(5.20) HALA = (CComm − p1) ◦ ΣW t,

(5.21) HALp =
p1
t

(
ΣCLie ◦

p1 − ΣW t

ΣW t

)
.
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where ΣCLie is the series satisfying ΣCLie ◦CComm = CComm ◦ ΣCLie = p1.

Proof. (1) Applying equation (5.18), a computation gives:

p1(
CComm ◦ ΣW t

1 + tCComm ◦ ΣW t

) = p1
p1 − ΣW t

tΣW t + tp1 − tΣW t

,

hence the relation:
p1 − ΣW t

t
= p1(

p1
1 + tp1

) ◦CComm ◦ (p1 + (−t)
p1 − ΣW t

t
).

The series HALpA and p1−ΣW t

t
satisfy the same functional equation. More-

over if we know the first n terms of a solution of this equation, the equation
gives the n+1-th one: there is a unique solution of this equation, such that
the coefficient of x0 vanishes. Therefore, HALpA and p1−ΣW t

t
are equals.

: they are hence equals.

(2) The second equality results from the first one and equation (5.16) because
the series ΣW t satisfies:

p1 + (−t)HALpA = ΣW t.

(3) According to the first relation of the proposition, the series HALp satisfies:

HALp = p1(ΣtCLie ◦CComm ◦ ΣW t).

The equality ΣtCLie =
1
t
ΣCLie ◦ (tp1) implies:

HALp =
p1
t
(ΣCLie ◦ tCComm ◦ ΣW t).

Applying equation (5.18), we get the result.
�

5.5. Character computation.

5.5.1. Computation of series for k = 0. We can compute the following series:

Proposition 5.10. (1) The series C0,t can be expressed as:

(5.22) C0,t = CComm − p1 +
p1
t
.

(2) The series C
p
0,t can be expressed as:

(5.23) C
p
0,t = CPerm − p1 +

p1
t

= p1CComm +
p1
t
.

The series tCp
0,t is then the inverse of series ΣW t for substitution.

(3) The series CA
0,t can be expressed as:

(5.24) CA
0,t = CComm − p1.

(4) The series C
pA
0,t can be expressed as:

(5.25) C
pA
0,t = CPerm − p1 = p1CComm.

Proof. (1) The only hypertrees chain fixed by the action of an element σ of the
symmetric group Sn is the empty chain. Nevertheless, the weight of the
empty chain is 1, except for n = 1, where it is equal to 1

t
. Therefore the

series C0,t only differs from CComm for n = 1, hence the result.
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(2) As p1
∂CComm

∂p1
= CPerm, the result comes from relation (5.8) with k = 0.

(3) By definition, CA
1,t = Ca

1,t, with relations (5.12) and (5.6), the series CA
0,t

satisfies:
CA

0,t = C0,t −
p1
t

= CComm − p1.

(4) By definition, CpA
1,t = C

pa
1,t, with relations (5.13) and (5.7), the series C

pA
0,t

satisfies:

C
pA
0,t = C

p
0,t −

p1
t

= CPerm − p1 = p1CComm.

�

5.5.2. Computation of the series for k = −1. The following theorem refines the
computation of the characteristic polynomial in [Cha07], proves the conjecture of
[Cha07, Conjecture 5.3] and links the action of the symmetric group on Whitney
homology of the hypertree poset with the action of symmetric group on a set of
hypertrees decorated by the Lie operad.

Theorem 5.11. (1) The series C
pA
−1,t satisfies:

(5.26) C
pA
−1,t =

p1 − ΣW t

t
= HALpA .

(2) The series CA
−1,t satisfies:

(5.27) CA
−1,t = (CComm − p1) ◦ ΣW t = HALA .

(3) The series C
p
−1,t satisfies:

(5.28) C
p
−1,t =

p1
t
(1 + ΣCLie ◦

p1 − ΣW t

ΣW t

) = HALp +
p1
t
.

(4) The series C−1,t satisfies:

(5.29) C−1,t = HAL+
p1
t
.

Proof. The right part of equalities is given by theorem 5.9.

(1) Relation (5.13) with k = 0 gives, together with equations (5.23) and (5.25):

C
pA
−1,t = (p1CComm) ◦ ΣW t.

We then conclude thanks to equation (5.18).

(2) Relation (5.13) with k = 0 gives, together with equations (5.23) and (5.24):

CA
−1,t = (CComm − p1) ◦ ΣW t,

hence the result.

(3) As ΣW t is the inverse of tCp
0,t, relation (5.5) with k = 0 gives:

p1 = ΣW t(1 +CComm ◦
tCp

−1,t − p1

p1
)

as ΣCLie ◦CComm = p1 according to [Cha07], we obtain:

ΣCLie ◦
p1 − ΣW t

ΣW t

=
tCp

−1,t − p1

p1
.

We thus obtain the result.
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(4) This relation comes from previous relations associated with the dissymme-
try principle.

�

Appendix A. Reminder on species

We give in this part only a brief reminder on species. The reader will find more
on this subject in [BLL98].

Definition A.1. A species F is a functor from the category of finite sets and
bijections to the category of finite sets. To a finite set I, the species F associate a
finite set F(I) independent from the nature of I.

Example A.2. – The map which associates to a finite set I the set of total
orders on I is a species, called the linear order species and denoted by L.

– The map which associates to a finite set I the set {I} is a species, called the
set species and denoted by E.

– The map defined for all finite set I by:

I 7→

{
{I} if #I = 1,
∅ otherwise,

is a species, called singleton species and denoted by X .
– The map defined for all finite set I by:

I 7→

{
{I} if #I ≥ 1,
∅ otherwise,

is a species denoted by Comm, and called species associated with the Comm
operad.

– The map which associates to a finite set I the set I is a species, called the
pointed set species and denoted by Perm. It is associated with the Perm
operad.

– The map which associates to a finite set I the set of labelled rooted trees with
labels in I is a species denoted by PreLie, associated with the PreLie operad.

To each species F , we can associate the following generating series:

CF (x) =
∑

n≥0

#F ({1, . . . , n})
xn

n!
.

Example A.3. The generating series of species defined previously are:
– CL(x) =

1
1−x

,

– CE(x) = exp(x),
– CX(x) = x,
– CComm(x) = exp(x)− 1 .

The following operations can be defined on species:

Definition A.4. Let F and G be two species. We define the following operations
on species:

– F ′(I) = F (I ⊔ {•}), (differentiation)
– (F +G)(I) = F (I) ⊔G(I), (addition)
– (F ×G)(I) = F (I)×G(I), (product)
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– (F ◦G)(I) =
⊔

π∈P(I) F (π)×
∏

J∈π G(J), (substitution)

where P(I) runs on the set of partitions of I.

We have the following property:

Proposition A.5. Let F and G be two species. Their generating series satisfy:
– CF ′ = C′

F ,
– CF+G = CF + CG,
– CF×G = CF × CG,
– CF◦G = CF ◦ CG.

Appendix B. Reminder on cycle index

Let F be a species. We can associate a formal power series to it: its cycle index.
The reader can consult [BLL98] for a reference on this subject. This formal power
series is a symmetric function defined as follow:

Definition B.1. The cycle index of a species F is the formal power series in an
infinite number of variables p = (p1, p2, p3, . . .) defined by:

CF (p) =
∑

n≥0

1

n!

( ∑

σ∈Sn

F σpσ1

1 pσ2

2 pσ3

3 . . .

)
,

where F σ stands for the set of F -structures fixed under the action of σ and where
σi is the number of cycles of length i in the decomposition of σ into disjoint cycles.

We can define the following operations on cycle indices.

Definition B.2. The operations + and × on cycle indices are the same as on
formal series.

For f = f(p) and g = g(p), plethystic substitution f ◦ g is defined by:

f ◦ g(p) = f(g(p1, p2, p3, . . .), g(p2, p4, p6, . . .), . . . , g(pk, p2k, p3k, . . .), . . .).

It is left-linear.

This operations satisfy:

Proposition B.3. Let F and G be two species. Their cycle indices satisfy:

CF+G = CF + CG, CF×G = CF × CG,

CF◦G = CF ◦ CG, CF ′ = ∂CF

∂p1
.

Moreover, we define the following operation:

Definition B.4. The suspension Σt of a cycle index f(p1, p2, p3, . . .) is defined by:

Σtf = −
1

t
f(−tp1,−t

2p2,−t
3p3, . . .).

By convention, we will write Σ for the suspension in t = 1.



ACTION OF THE SYMMETRIC GROUPS ON THE HOMOLOGY OF THE HYPERTREE POSETS27

References

[Ber89] Claude Berge. Hypergraphs, volume 45 of North-Holland Mathematical Library.
North-Holland Publishing Co., Amsterdam, 1989. Combinatorics of finite sets, Trans-
lated from the French.

[BLL98] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial species and tree-like struc-
tures, volume 67 of Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge, 1998. Translated from the 1994 French original by Mar-
garet Readdy, With a foreword by Gian-Carlo Rota.

[BMMM01] Noel Brady, Jon McCammond, John Meier, and Andy Miller. The pure symmetric
automorphisms of a free group form a duality group. J. Algebra, 246(2):881–896,
2001.

[Cha05] F. Chapoton. On some anticyclic operads. Algebr. Geom. Topol., 5:53–69 (electronic),
2005.

[Cha07] F. Chapoton. Hyperarbres, arbres enracinés et partitions pointées. Homology, Homo-
topy Appl., 9(1):193–212, 2007.

[JMM06] Craig Jensen, Jon McCammond, and John Meier. The integral cohomology of the
group of loops. Geom. Topol., 10:759–784 (electronic), 2006.

[JMM07] Craig Jensen, Jon McCammond, and John Meier. The Euler characteristic of
the Whitehead automorphism group of a free product. Trans. Amer. Math. Soc.,
359(6):2577–2595 (electronic), 2007.

[Kal99] Louis H. Kalikow. Enumeration of parking functions, allowable permutation pairs,
and labeled trees. ProQuest LLC, Ann Arbor, MI, 1999. Thesis (Ph.D.)–Brandeis
University.

[MM96] Darryl McCullough and Andy Miller. Symmetric automorphisms of free products.
Mem. Amer. Math. Soc., 122(582):viii+97, 1996.

[MM04] Jon McCammond and John Meier. The hypertree poset and the l2-Betti numbers of
the motion group of the trivial link. Math. Ann., 328(4):633–652, 2004.

[Mun84] James R. Munkres. Elements of algebraic topology. Addison-Wesley Publishing Com-
pany, Menlo Park, CA, 1984.

[Sun94] Sheila Sundaram. The homology representations of the symmetric group on Cohen-
Macaulay subposets of the partition lattice. Adv. Math., 104(2):225–296, 1994.

[Wac07] Michelle L. Wachs. Poset topology: tools and applications. In Geometric combina-
torics, volume 13 of IAS/Park City Math. Ser., pages 497–615. Amer. Math. Soc.,
Providence, RI, 2007.

[War98] David Michael Warme. Spanning trees in hypergraphs with applications to Steiner
trees. ProQuest LLC, Ann Arbor, MI, 1998. Thesis (Ph.D.)–University of Virginia.

E-mail address: oger@math.univ-lyon1.fr


	Introduction
	1. Construction of the homology of the hypertree poset
	2. Relations between species and auxiliary species
	3. Dimension of the poset homology 
	4. Action of the symmetric group on the poset homology
	5. Action of symmetric group on Whitney homology
	Appendix A. Reminder on species
	Appendix B. Reminder on cycle index
	References

