N
N

N

HAL

open science

Symbol Spotting using Full Visibility Graph
Representation

Hervé Locteau, Sébastien Adam, Eric Trupin, Jacques Labiche, Pierre Héroux

» To cite this version:

Hervé Locteau, Sébastien Adam, Eric Trupin, Jacques Labiche, Pierre Héroux. Symbol Spotting using
Full Visibility Graph Representation. Workshop on Graphics Recognition, Jul 2007, Brazil. pp.49-50.

hal-00671265

HAL Id: hal-00671265
https://hal.science/hal-00671265
Submitted on 17 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00671265
https://hal.archives-ouvertes.fr

Symbol Spotting using Full Visibility Graph
Representation

Hervé Locteau, Sébastien Adam, Eric Trupin,
Jacques Labiche, and Pierre Héroux

LITIS, EA 4051, University of Rouen,
St Etienne du Rouvray, France
Herve.LocteauQuniv-rouen.fr

Abstract. In this paper, a method for matching symbols in line-drawings
is presented. Facing both segmentation and recognition of symbols is
a difficult challenge. Starting from the results of a vectorization proce-
dure, a visibility graph is built to enhance the main geometric constraints
which were specified during the construction of the initial document. The
cliques detection, which correspond to a perceptual grouping of primi-
tives, is used in the system to detect regions of particular interest. Both
opened and perceptually closed curves are identified from aggregation
of cliques. Finally, the recognition stage uses an attributed edit distance
technique to match approximated curves within the host attributed re-
lation graph and the ones from a collection of symbols.

Keywords: perceptual grouping, visibility graph, segmentation, symbol
spotting, symbol recognition, cyclic string edit distance.

1 Introduction

Symbol recognition deals with identification of a given object but objects have
also to be extracted in the input data. In specific cases, symbol localization can
be triggered from the localization of the main white connected component (pixel
based approaches) or the main minimal cycle within the junction graph (skeleton
based approaches) leading to a framing window that enables the identification
or rejection of the symbol. Aiming to achieve both localization and recognition
of a priori known classes of symbols in a document requires to make those
processes interacting. As an alternative to this proposal, particular patterns
from a junction within the junction graph permit to dynamically define a region
of interest from which a vectorial signature is extracted in [1]. This spotting
technique postpone the recognition step restricting significantly the regions that
have to be classified or rejected. It is both relevant for symbols built from a cycle
and the ones that have no cycle in the junction graph. No matter localization and
recognition are synchronized or not, although structural methods are generally
sensitive to noise, they represent an appealing framework capturing the spatial
and topological relationship between graphical primitives.



In this study, we investigate the use of visibility graphs for symbol represen-
tation as they look close to the perceptual grouping human vision may achieves.
The relevancy of the final representation is twofold : it is suitable for (i.) symbols
with or without any closed curve and (ii.) symbols built from disconnected com-
ponents. This type of graph is introduced in the section 2. We present in section
3 how cliques within the visibility graph can be aggregated to build (nearly)
closed curves that can then be indexed to provide regions of interest. Finally,
our matching process based on an attributed edit distance is depicted in section
4.

2 Visibility Graph

Visibility representations are of particular interest in computer science such as
graphics, VLSI layout, motion planning and computational geometry [2]. In this
work, a visibility graph is defined from a set of n vectorial primitives such that
each primitive is mapped to a node while edges represent visibilities between
couples of primitives (u,v). The visibility relation used throughout between u
and v corresponds to the existence of a point on u and a point on v defining a
line segment that does not intersect any other primitive [3]. Such a relation has
been called weak visibilty in some works and leads to a full visibility graph, FVG
for short. As an example, we report the FVG build from a set of segments in the
figure 1.

Fig. 1. Set of primitives and its Full Visibility Graph. Segments are separated from
each other for clarity.

Algorithm 1 Building the full visibility graph of a set of n segments Alg. 1.
for all i € [0,n] do
for all Pe € {Begin(i) = B;, End(i) = E;} do
computes polar coordinates of extremities Py of primitives j with respect to Pe
sort the (0(Px), p(Px)) according to 6(), then to p()
end for
computes the visibility polygon of Pe (see §2.1)
extends the visibilities of primitives j around Pe (see §2.2)
end for




The algorithm used to extract the FVG of a segments’ set is summarized in
(Alg. 1). For a given primitive j, let S; and F; stand respectively for the first
and the second, counterclockwise endpoint, thus :

— if it is hardly connected to primitive ¢ (i.e. B; = Pe or E; = Pe), the
junction point’s angle is set to the opposite one of Pe (the other endpoint
of the primitive i),

— since S; Pe F; <, i 0(F;) < 0(S;), 0(F;) = 0(F;) + 2.

The procedures corresponding to the extraction of the visibility polygon of a
point Pe and its use to extend the visibility of primitives around this point are
both based on line sweep algorithms.

2.1 Computing the visibility polygon of a point

Following the Wismath’s idea, we first computes the visibility polygon of a point.
The primitives are sorted within a stack by their distance between a reference
point and the intersection point of a ray sweeping the plane. The algorithm (Alg.
2) permits to build the visibility polygon V Poly(Pe) of a point Pe. Dealing
with (i.) colinear points and (ii.) common points are taken into account when we
update the stack (insertion and deletion) and when we evaluate whether a point
is visible or not. Obviously, a first series of visibilities involving the primitive ¢
can be directly extracted from V Poly(Pe). Nevertheless, it is also necessary to
seek for particular configurations within V Poly(Pe) in order to specify a second
series of visibilities involving primitives both referenced in V Poly(Pe).

2.2 Extending the visibility of primitives around a point

From the visibility polygon’s building procedure of a point Pe, we can note that
visibilities between a couple of primitive (7,j) are extracted from at least an
endpoint of either the primitive ¢ or the primitive j. In order to detect visibilities
involving banal points (points distinct from endpoints) both for a primitive u
and a primitive v, further works should be done.

From a series of observations, Wismath highligthed in [3] the configuration
around Pe from V Poly(Pe) which permits to fully define the set’s visibility
graph of n non-intersecting line segments.

Given three points of V Poly(Pe), saying qu, qa, ¢» such as qu/Pe\qa < m and

qu/Pe\ qy > m. If points g, and g, have a corresponding primitive v, then we can
report the primitive u, corresponding to g,, and v are visible around Pe. Indeed
a perception can be issued from ¢, from either qa/qu\Pe or Pe/qu\qb, no matter
the position of Pe (the other endpoint of the primitive 7). Such case is illustrated
by the figure 2.

However, due to the management of colinear and equal points, the procedure
should include a verification step. We have to check that no radial primitive hides

the perception issued from g,. For example, if a primitive whom extremities are



Algorithm 2 Computing the visibility polygon of Pe Alg. 2.
stack «—
VPoly(Pe) « 0
for all a € {0(Py)}reck do
sorts the {Px|0(Px) = a} such as, for a given distance,
primitives in the stack are treated in priority

for all P;|0(Px) = o do
if Py is the first point of primitive j counterclockwise then
insert j in the stack according the visibility of Pe in the orientation «
if Py is visible then
if Py in front of last point of VPoly(Pe) then
replaces last point of VPoly(Pe) by Py
else
add Py to VPoly(Pe)
end if
end if
else
if P is visible then
if 3M behind Pi such as M will be visible after P is treated then
add M to VPoly(Pe)
end if
add Py to VPoly(Pe)
end if
removes j from the stack
end if
end for
if the ray (Pe — ) intersects the primitive at the head of the stack then
add the intersection point in VPoly(Pe)
end if
end for

¢5 and Pe is added to the initial set of primitives, visibility must not be created
from the tuple (qu, ¢a, @) = (¢2, s, go) considering the notations of the figure 2.

3 Identifying perceptually closed curves

The Gestalt laws of perception (e.g. prozimity, smooth continuation, closure)
seem to depict the perceptual phenomena exploited by the human vision sys-
tem. As the Saund’s paper ([4]) reads, a visual system will take advantage of a
detection of closed or nearly closed curves. Coherent objects, such as the symbols
used in technical drawing domains, tend to be spatially compact and relatively
uniform in surface appearence with respect to the surrounding background.

In this work, we adopt the famous framework that consists in starting from
seed curve fragments and trying to extend it by tracing from one clique to another
with which it is associated by at least one shared primitive. The key problem is
to determine whether a new clique can be merged or not since primitives have
not beforehand been clustered within a single partition.



—0.=q,
Q=0 ¢

QQZQbJ

Qi3
Q12

11

Fig. 2. Visibility polygon of the point Pe — from ¢, the primitive corresponding to ¢,
and ¢, is visible due to the absence of any radial primitive such as [Pe gs] (see text).

Similar approaches are reported in the litterature ([4,5]) from a junction
graph whose nodes are the segments and edges specify the connexity (which may
be inezact in some cases). The goodness measure to be optimized is based on
a compactness measure, and possibly, on other criteria that figure the endpoint
distance or the degree to which one end of the curve extends beyond the other.
Regarding the compactness measure, this property is estimated from a ratio of
area of the region bounded by the curve to the area of an approximated shape
of the curve, the bounding box in [5], the convex hull in [4]. Nervertheless, the
curves defining a symbol are not strictly compact and may contain concavities.

Here, we adopt a measure of goodness issued from the visibility relations
extracted beforehand. Let s be a seed curve, ¢ a clique to be merged and L the
operator that enumerates the primitives collected in a set. If £(s) N L(c) # 0
then the measure of goodness is defined as follows :

ZiEConf(s,c) length(z)
Zié[,(s)ﬁ[,(c) length(i)

(1)

goodness(sUc) =1 —

where Conf(s,c) enumerates the primitive of £(s) N L(c) that are conflicting,
i.e. a primitive both viewing a primitive [ at the left hand side in s [respectively
in ¢] and a primitive r at the right hand side in ¢ [respectively in s].

As an example, we report in the figure 3 the measures of goodness for 3
candidate fusions. The third one is clearly discarded since the primitive shared
by the seed curve and the clique is conflictive. On the other hand, the impact of
the conflictive primitives for the two other fusions is null.

Thus, the fusion’s measure of goodness tends to 0 if primitives shared by the
seed curve and the clique are in conflicting uses; tends to 1 otherwise.



Fig. 3. (a): seed curve (fragmented) ; (b), (¢) and (d): Possible fusions and their mea-
sure of goodness. A red segment denotes a conflictive primitive contrary to blue seg-
ment.

4 Symbol detection

4.1 Region of interest

Symbol spotting consists in localizing possible symbols in complex drawings
without necessarily recognizing the symbols themselves, and especially, segment-
ing them. Such an approach aims to select regions of interest from a similarity
measure of two descriptors, and to a certain extend, restrict the possible classes
of symbols. Then, a more computational expensive process can be considered for
the recognition. Without any a priori knowledge on the orientation and size of
the objects to be found, dynamic framing windows are constructed in [1] from
vector data to get a vectorial signature.

Here, we investigate an indexing procedure of the curves issued from the
visibility graph’s analysis. In [6], a compact shape representation is presented
for retrieving line-patterns from large databases. A relational histograms is built
from edges of a neighborhood graph. The resulting descriptor includes relative
angle and length ratio attributes. Once a curve within the host VFG is found to
be similar to ones of the VFG of at least one symbol’s model, the recognition
process of such symbol(s) is triggered.

4.2 Extending partial matching

Template matching techniques are rarely used for symbol recognition when deal-
ing with unsegmented and distorted symbols. In [7,8], the efficiency of such a
technique is reported regarding identification from flexible frameworks based on
symbols’ vector representation.

Given a template as an hypothesis and an estimated affine transformation,
the template made of vectorial primitives is fitted to the data. Various measures,
e.g. distance transform in [7], can then be considered to characterize the accuracy
of the involved sumbol’s class. In [8], the template can also be distorted during
matching, adapting iterately the component’s local parameters of the template
trough the EM algorithm.

In [9], an error-tolerant subgraph isomorphism algorithm has been proposed
for symbol recognition. The underlying representation during the matching pro-
cess is an attributed cyclic string corresponding to the external polygonalized



boundaries of a region adjacency (sub)graph. A branch and bound approach is
driven by boundaries substrings’ attributes specified within the model graphs.
This growing string approach is suitable for region adjacency graph but the lat-
ter is not enough expressive as (i.) it does not permit to model multi-component
symbols and (ii.) it only relies on boundaries of loops.

Edit distance is very effective for string, tree and graph based representations
provided that the edit operation costs can be determined [10]. Edit operations
usually concern substitution, insertion and deletion but can be extended to merg-
ing or splitting to handle distortions.

Our basic idea to extend the growing string matching proposed by Lladés et
al. is to let the algorithm searching for any closed curve (a region) or nearly closed
curve which is visible to curves that belong to the partial matching. Nevertheless,
cyclic string are initially employed by Lladés et al to solve the problem of the
starting symbol of a closed boundary and to obtain a representation that is
invariant under rotation. Managing both closed and nearly closed curves, the use
of such an approach make us introduce some virtual segments to fill the gaps of
fragmented curves. We always get closed boundaries which can be represented
by cyclic strings. Moreover, the full visibility graph of curves falls into a region
adjacency graph and the growing string is fully relevant.

The string matching has been also reformulated to take into account both
line segments and circular arcs issued from the vectorization process. Indeed,
despite the full visibility graph extraction process is described for a segments’
set, we can use the arcs of circle initially found during the vectorisation step
replacing the list of connected segments by the corresponding arcs. Figure 4
illustrates the alignement of two strings, namely a segment s and an arc a. The
initial substitution cost ¢(s — a) is thus modified to introduce a repulsive part
that is proportional to the inscribed angle.

\_l_/(s+a)«’2

L/

Fig. 4. Alignement of a line segment s and a circular arc a during attributed string
edit distance (and the obtained mean primitive)




5 Conclusion

Two facts that motivate our approach should be noticed. First, we do not work
on the junction graph since the seek for nearly closed curve cannot safely be
achieved while working on it: junction can be missing, leading to a single frag-
ment instead of a junction involving three fragments for example. Moreover, we
do not use a distance based approach to define the relation between couple of
primitives since it suggests to introduce a priori some thresholds which is a
tedious task and even impractical for heterogeneous document images. Finally,
the perceptually closed curves should be relevant enough to spot symbols within
complex document. There, the indexing procedure allows to quickly find similar
curves’ couple and to trigger error-tolerant subgraph isomorphism detection.
We are not able to evaluate the performance of this system either for identifica-
tion or localization since this paper describes a work in process. Such elements
will be provided during the workshop.

References

1. Rusinol, M., Lladés, J.: Symbol spotting in technical drawings using vectorial
signatures. In: Sixth IAPR Workshop on Graphics Recognition, Hong Kong (2005)
35-45

2. O’Rourke, J.: Computational geometry column 18. SIGACT News 24 (1993) 20-25

3. Wismath, S.: Computing the full visibility graph of a set of line segments. Infor-
mation Processing Letters 42(5) (1992) 257-261

4. Saund, E.: Finding perceptually closed paths in sketches and drawings. IEEE
Transactions on Pattern Analysis and Machine Intelligence 25(4) (2003) 475-491

5. Zuwala, D., Tabbone, S.: Une méthode de localisation et de reconnaissance de
symboles sans connaissance a priori. In: Colloque International Francophone sur
’Ecrit et le Document, Fribourg, Suisse (2006) 127-131

6. Huet, B., Hancock, E.R.: Line pattern retrieval using relational histograms. IEEE
Transactions on Pattern Analysis on Machine Intelligence 21(12) (1999) 1363-1370

7. Parker, J.R., Pivovarov, J., Royko, D.: Vector templates for symbol recognition.
In: International Conference on Pattern Recognition. Volume 2. (2000) 2602-2605

8. Valveny, E., Marti, E.: Hand-drawn symbol recognition in graphic documents
using deformable template matching and a bayesian framework. In: International
Conference on Pattern Recognition. Volume 2. (2000) 2239-2242

9. Lladés, J., Marti, E., Villanueva, J.J.: Symbol recognition by error-tolerant sub-
graph matching between region adjacency graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence 23(10) (2001) 1137-1143

10. Neuhaus, M., Bunke, H.: Self-organizing maps for learning the edit costs in graph
matching. IEEE Transaction on System, Man, Cybernetic. B (2005)



