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Introduction

Let X be a Lévy process with expectation zero and let W = sup 0≤t<∞ (X(t)βt), where 0 < β < ∞. The random variable W appears in many areas of applied probability, such as queueing theory, risk theory (see e.g. S. Asmussen [START_REF] Asmussen | Applied Probability and Queues[END_REF] or P. Embrechts et al. [START_REF] Embrechts | Modeling Extremal Events for Insurance and Finance[END_REF]). The Laplace-Stielties transform (LST) of W was considered by many authors (see among others G. Baxter and M.D. Donsker [START_REF] Baxter | On the distribution and the supremum functional for processes wih stationary independent increments[END_REF] and N.H. Bingham [START_REF] Bingham | Fluctuation theory in continuous time[END_REF]). In the case when X is a centered Poisson process that distribution was given by R. Pyke [START_REF] Pyke | The supremum and infimum of the Poisson process[END_REF]. In a more general case, i.e. for a spectrally positive Lévy process the LST of W was given for the first time by V.M. Zolotarev [START_REF] Zolotarev | The first passage time to a level and the behaviour at infinity of processes with independent increments[END_REF] and afterwards several different proofs of his theorem were formulated (see e.g. L. Takács, [START_REF] Takács | On the distribution of the supremum of stochastic processes with exchangeable increments[END_REF], N.H. Bingham [START_REF] Bingham | Fluctuation theory in continuous time[END_REF], J.M. Harrison [START_REF] Harrison | The supremum distribution of the Lévy process with no negative jumps[END_REF], O. Kella and W. Whitt [START_REF] Kella | Queues with server vacations and Lévy processes with secondary jump input[END_REF] and others).

In the queueing theory the random variable W appears as a limit of appropriately normalized stationary waiting times in heavy traffic for some queues. This fact was shown several times with use of different techniques, approaches and assumptions (see e.g. Yu. V. Prokhorov [START_REF] Prokhorov | The Transitional Phenomena in the Queueing Processes I[END_REF], W. Whitt [START_REF] Whitt | Heavy traffic limit theorems for queues: A survey Mathematical methods in queueing theory[END_REF] and [START_REF] Whitt | Stochastic-Process Limits. An Introduction to Stochastic-Process Limits and Their Application to Queues[END_REF], S. Resnick and G. Samorodnitsky [START_REF] Resnick | A Heavy Traffic Approximation for Workload Processes with Heavy Tailed Service Requirements[END_REF], W. Szczotka and W.A. Woyczyński [START_REF] Szczotka | Distributions of Suprema of Lévy Processes via Heavy Traffic Invariance Principle[END_REF] and [START_REF] Szczotka | Heavy tailed Dependent Queues in Heavy Traffic[END_REF], M. Czystołowski and W. Szczotka [START_REF] Czystołowski | Tightness of stationary waiting times in Heavy Traffic for GI/GI/1 queues with thick tails Probab[END_REF]). The form of the LST of W in the context of GI/GI/1 queues was given by O.J. Boxma and J.W. Cohen [START_REF] Boxma | Heavy-traffic analysis for GI/G/1 queue with heavy-tailed distributions[END_REF] for the cases with X being stable spectrally positive or spectrally negative Lévy processes.

A representation of stationary waiting time ω for G/G/1 queues given by ω = sup 0≤t<∞ Z(t)β(t) , where Z is a process based on sums of differences of service times and inter-arrival times with sample paths in D[0, ∞) and β(t) is a function from D[0, ∞), suggests a natural way of studying weak convergence ω n = sup 0≤t<∞ (X n (t)-

β n (t)) D → W.
Namely, the method is based on interchanging the limit operation with supremum operation. This exchange is justified if: (I) X n D → X in D[0, ∞) with Skorokhod J 1 topology and X is stochastically continuous; (II) β n (t) → βt for each t ≥ 0; and (IIIA) lim m→∞ lim sup n→∞ P (sup t≥m (X n (t)β n (t)) > ε) = 0 for each ε > 0. This idea was first used by Yu. V. Prokhorov [START_REF] Prokhorov | The Transitional Phenomena in the Queueing Processes I[END_REF] to show convergence ω n D → W for GI/GI/1 queues in heavy traffic with X being a Wiener process. It was also formulated by Asmussen [START_REF] Asmussen | Applied Probability and Queues[END_REF] as an universal method of showing convergence sup 0≤t<∞ (X n (t)-β n (t)) D → sup 0≤t<∞ (X(t)-βt) with general processes X n and X and next used by S. Resnick and G. Samorodnitsky [START_REF] Resnick | A Heavy Traffic Approximation for Workload Processes with Heavy Tailed Service Requirements[END_REF] to study convergence ω n D → W with X being a Lévy process. W. Szczotka in (1990) and next in (1999) studying convergence ω n D → W for queues with dependencies, replaced condition (IIIA) by condition (III): {ω n } is tight. Notice that condition (III) is necessary for weak convergence of ω n and in some queueing situations it may be easier to check (III) than (IIIA) (see proofs of Lemmas 2 and 3 in [START_REF] Czystołowski | Tightness of stationary waiting times in Heavy Traffic for GI/GI/1 queues with thick tails Probab[END_REF]). The method of proving ω n D → W by verifying conditions (I), (II) and (III) was called by W. Szczotka and W. A. Woyczyński [START_REF] Szczotka | Distributions of Suprema of Lévy Processes via Heavy Traffic Invariance Principle[END_REF] the Heavy Traffic Invariance Principle (HTIP) (cf. Proposition 2).

The aim of the present paper is the following. Firstly, for a given Lévy measure As a consequence of Theorem 1 we get the fact that in the set of limiting distributions of stationary waiting times in heavy traffic are not only exponential distributions and Mittag-Leffler distributions, but also some convolutions of Mittag-Leffler distributions or distributions of suprema of: Poisson processes, Compound Poisson processes or Gamma processes with negative trends (cf. Remark 1).

ν concentrated on (0, ∞) such that ∞ 1 xν(dx) < ∞ construct a suitable
The second aim of the paper is to answer the question whether condition (III) for GI/GI/1 queues is implied by conditions (I) and (II). The particular case of this question, i.e. when X is a Wiener process, was communicated to W. Szczotka by W. Whitt. The negative answer is given in Theorem 2 and Corollary 2.

All theorems are based on a stronger version of Lemma 2 from [START_REF] Czystołowski | Tightness of stationary waiting times in Heavy Traffic for GI/GI/1 queues with thick tails Probab[END_REF], which we formulate here as Proposition 3. Essentially, the proposition extends the range of applications of Lemma 2 from [START_REF] Czystołowski | Tightness of stationary waiting times in Heavy Traffic for GI/GI/1 queues with thick tails Probab[END_REF], so may be treated as a new result.

The structure of the paper is as follows: Section 2 serves as a reminder of Lévy processes theory and queueing theory; Section 3 contains only novel results of the paper; finally, Appendix contains some technical facts needed in the paper and the proof of Proposition 3.

Preliminaries

Lévy Process

The terminology dealing with Lévy processes, which is used here, comes from [START_REF] Sato | Basic Results on Lévy Processes, Lévy Processes, Theory and Applications[END_REF] and we assume below that a Lévy process has sample paths in the space D[0, ∞). Any Lévy process Y can be obtained as a limit in distribution of the following processes 

Y n (t) = [nt] j=1 ζ n,j , t ≥ 0, n ≥ 1,
= {Y (t), t ≥ 0} is spectrally positive if its LST, E exp -sY (t) = exp tψ(s) , s ≥ 0, is such that (1) ψ(s) = -sb r + s 2 σ 2 /2 + ∞ 0 e -sx -1 + sx1 {x≤r} (x) ν(dx)
where b r ∈ R, σ 2 ≥ 0 and ν is a Lévy measure concentrated on (0, ∞); or equivalently, is a Lévy process with nonnegative jumps. The mentioned Prokhorov's result from [START_REF] Prokhorov | Convergence of Random Processes and Limit Theorems in Probability Theory[END_REF], p. 197, adapted to spectrally positive Lévy processes has the following form.

Proposition 1. Let Y be a spectrally positive Lévy process given by (b r , σ 2 , ν) and let processes Y n be defined above for the case

F n,k = F n . Then Y n D → Y in D[0, ∞)
equipped with Skorokhod J 1 topology if and only if {F n } satisfies conditions

P1 nF n (y) → ν(-∞, y) = 0 and n 1 -F n (x) → ν(x, ∞), as n → ∞,
for all continuity points y < 0 and x > 0 of the Lévy measure ν,

P3 b r df = lim n→∞ n |x|≤r xdF n (x) and |b r | < ∞, for some 0 < r < ∞, P4 there exists σ 2 such that 0 < σ 2 < ∞ and lim →0 lim sup n→∞ n |x|< x 2 dF n (x) = lim →0 lim inf n→∞ n |x|< x 2 dF n (x) = σ 2 .
If E|Y (t)| < ∞, then EY (1) = b r + |x|>r xν(dx), so in case EY (t) = 0, we have

P5 b r = - |x|>r xν(dx).
In original formulation of Prokhorov's Theorem there was one extra condition, which in our context is not necessary. To be consistent with paper [START_REF] Czystołowski | Tightness of stationary waiting times in Heavy Traffic for GI/GI/1 queues with thick tails Probab[END_REF], where we use notation P1-P5 as well as P2 denoting that assumption, we do not change enumeration of conditions P3-P5.

Stationary waiting times in heavy traffic

Consider a sequence of GI/GI/1 queues with FIFO discipline of service. Let the n-th queue be generated by independent sequences {v n,k , k ≥ 1}, {u n,k , k ≥ 1} of iid random variables with finite means. For generic random variables v n,1 and u n,1 , denote by vn and ūn their means, by B n and A n their distribution functions, and by F B n and F A n the distribution functions of v n,1vn and u n,1ūn , respectively. We interpret v n,k as the service time of the k-th unit in the n-th queue, and u n,k as the inter-arrival time between the k-th and (k + 1)-st units in the n-th queue.

If a n df = vn -ūn < 0, then ω n df = sup k≥0 k j=1 (v n,j -u n,j
) is finite with probability one and is called a stationary waiting time. We will assume below that a n < 0 for all n and a n ↑ 0, i.e. the systems we consider act in heavy traffic regime. Observe that ( 2)

ω n = sup 0≤t<∞ (X n (t) -|a n |[nt]),
where X n (t) =

[nt] j=1 (v n,ju n,jvn + ūn ), t ≥ 0. Now, we recall Heavy Traffic Invariance Principle from [START_REF] Szczotka | Distributions of Suprema of Lévy Processes via Heavy Traffic Invariance Principle[END_REF] for GI/GI/1 queues in a suitable form in which, for a convenience, the scaling constants c n from [START_REF] Szczotka | Distributions of Suprema of Lévy Processes via Heavy Traffic Invariance Principle[END_REF] are included in random variables v n,k and u n,k .

Proposition 2 (see [START_REF] Szczotka | Distributions of Suprema of Lévy Processes via Heavy Traffic Invariance Principle[END_REF], Theorem 1, Heavy Traffic Invariance Principle). Let the following conditions hold

(I) X n D → X in D[0, ∞) equipped with Skorokhod J 1 topology, where X is a Lévy process, (II) β n := n|a n | → β, 0 < β < ∞, (III) the sequence {ω n } is tight. Then ω n D → sup 0≤t<∞ (X(t) -βt).
The main results of the paper use Proposition 3 formulated below, which is a strengthened version of Lemma 2 from [START_REF] Czystołowski | Tightness of stationary waiting times in Heavy Traffic for GI/GI/1 queues with thick tails Probab[END_REF]. Roughly speaking, it states that for M/GI/1 queues tightness condition (III) is implied by conditions (I), (II), whenever condition P5 is true and {nv 2 n } is convergent to a finite limit. It also gives the LST of the limiting distribution of ω n . For the sake of readability the proof is postponed to the Appendix.

Proposition 3. Let the sequence {F B n } defined for {B n } in M/GI/1 queues satisfy conditions P1 with ν, P3 with b r and P4 with σ 2 . Furthermore, let

β n → β, 0 < β < ∞ and nv 2 n → c 2 , 0 ≤ c 2 < ∞. Then (3) E exp(-sω n ) → 1 + 1 sβ ψ(s) -1 ≡ Ψ(s),
where

(4) ψ(s) = -sb r + s 2 (σ 2 + c 2 )/2 + ∞ 0 e -sx -1 + sx1 {x≤r} (x) ν(dx).
Moreover, if condition P5 holds, then Ψ is the LST of some nonnegative random variable.

Remark. Specifications of the exponential distributions of inter-arrival times are expressed by the assumption β n → β and 0 < β < ∞. Of course, it does not give precisely the parameters of these distributions, but it determines their asymptotic behavior, hence also behavior of partial sums processes built upon corresponding random variables. More precisely, if for a sequence of M/GI/1 queues the following convergences hold:

X B n D → X B , nv 2 n → c 2 , 0 ≤ c 2 < ∞, β n → β, 0 < β < ∞, where X B n (t) = [nt] k=0 (v n,k -vn ), t ≥ 0, and X B is a Lévy process then X n D → X = X B -cW, where X n (t) = [nt] k=0 (v n,k -u n,k -vn + ūn ), t ≥ 0,
and W is a Wiener process.

Remark. Under the assumptions of Proposition 3, we have ω

n D → sup t≥0 X(t)-βt ,
where X is a Lévy process characterized by parameters given in conditions P1, P3 and P4 (see e.g. [START_REF] Czystołowski | Tightness of stationary waiting times in Heavy Traffic for GI/GI/1 queues with thick tails Probab[END_REF]). One of the main drawbacks of Lemma 2 from [START_REF] Czystołowski | Tightness of stationary waiting times in Heavy Traffic for GI/GI/1 queues with thick tails Probab[END_REF] is that the most common process, i.e. Wiener process, is excluded. Now, we assume only that a limiting spectrally positive Lévy process has finite mean.

From Proposition 3 we get the following corollary.

Corollary 1. Let the sequence {F B

n } defined for {B n } in M/GI/1 queues satisfy conditions P1 and P3-P5. Furthermore, let

β n := n|a n | → β, 0 < β < ∞, and nv 2 n → c 2 , 0 ≤ c 2 < ∞.
Then the sequence {ω n } is tight.

3 Main results

Relation between Lévy processes and M/G/1 queues.

Let X be a fixed spectrally positive Lévy process with mean zero, a Gaussian component σ 2 and a Lévy measure ν. Hence, by Remark 2 (cf. Appendix), the measure ν

satisfies ∞ 1 ν(x, ∞)dx < ∞.
Moreover, let us fix β > 0. Below, we define a sequence of M/GI/1 queues in heavy traffic, such that ω n D → sup 0≤t<∞ (X(t)βt) = W. To do this we define distribution functions B n and A n . First, we specify B n and then upon this specification we assume that A n are exponential distribution functions with means ūn = vn + β/n, respectively. The distribution functions B n , n ≥ 1, are defined separately in pure Poissonian case (i.e. σ 2 = 0), pure Gaussian case (i.e. ν = 0) and in a general case (i.e. when both parameters are arbitrary).

In the first case (pure Poissonian case) let B n , n ≥ 1, be equal to

(5) B n (x) = ⎧ ⎪ ⎨ ⎪ ⎩ 0, for x < x n , 1 -1 n ν(x, ∞), for x ≥ x n ,
where {x n } is a sequence of nonnegative numbers chosen for an infinite Lévy measure ν in such a way that (6)

x n ↓ 0, nx n → ∞ and 1 n ν(x n , ∞) < 1;
while for a finite measure ν x n is chosen as

0 for n ≥ ν(0, ∞).
Generally, a choice of {x n } is not unique. For finite ν the sequence {x n } could be chosen in the same way as for the infinite one. However, as we will see at the end of this section, the option x n = 0 simplifies computation leading to the distribution of W. Notice also that, simplicity of considerations is govern by a suitable definition of {x n }, because the definition of B n depends mainly on the sequence.

Observe that

vn = ∞ 0 1 -B n (x) dx = x n + 1 n ∞ xn ν(x, ∞)dx. Lemma 1. If B n , n ≥ 1
, are defined by ( 5), then vn are finite and nv 2 n → 0, as n → ∞.

Proof. In the case of finite ν we have

vn ≤ 1 n ν(0, ∞) + 1 n ∞ 1 ν(x, ∞)dx < ∞.
If ν(0, ∞) = ∞, then (6) implies x n > 0, for sufficiently large n, but without loss of generality we assume that it holds for all n. Hence we have

vn ≤ x n + 1 nx n 1 xn xν(x, ∞)dx + 1 n ∞ 1 ν(x, ∞)dx < ∞.
By assertion (ii) of Remark 2 in Appendix we have lim sup n

1 xn xν(x, ∞)dx < ∞, which implies vn → 0.
Below, for simplicity, denote v n = v n,1 and 1 A = 1(A), where A is an event.

Notice that for every > 0 we have

0 ≤ E(v 2 n -2v n v n + v 2 n )1(v n ≤ ) ≤ E(v 2 n )1(v n ≤ ) -v 2 n + 2v n Ev n 1(v n > ).
Therefore

nv 2 n ≤ nE(v 2 n )1(v n ≤ ) + 2nv n Ev n 1(v n > ).
But

nE(v 2 n )1(v n ≤ ) =n 0 x 2 dB n (x) = n xn x 2 dB n (x) = -2 ν( , ∞) + x 2 n ν(x n , ∞) + 2 xn xν(x, ∞)dx. Now applying Remark 2 from Appendix we get lim →0 lim n→0 -2 ν( , ∞) + x 2 n ν(x n , ∞) + 2 xn xν(x, ∞)dx = 0, which gives lim ε→0 lim sup n→∞ nE(v 2 n )1(v n ≤ ) = 0.
Furthermore, for sufficiently large n the following holds

nEv n 1(v n > ) = ∞ xν(dx), so 2nv n Ev n 1(v n > ) → 0 as n → ∞.
This, in view of the above, completes the proof of the Lemma.

In the pure Gaussian case B n , n ≥ 1, are defined as the exponential distribution functions with means vn = σ/ √ 2n, respectively, i.e.

(7)

B n (x) = 1 -exp(-x √ 2n/σ), x ≥ 0, n ≥ 1.
Finally, for arbitrary processes B n are defined as

(8) B n = B n,1 * B n,2 , n ≥ 1,
where B 1,n are defined by ( 5) and B 2,n by [START_REF] Czystołowski | Tightness of stationary waiting times in Heavy Traffic for GI/GI/1 queues with thick tails Probab[END_REF].

Theorem 1. The following implications hold.

(i) (Pure Poissonian case). If B n are defined by [START_REF] Bingham | Fluctuation theory in continuous time[END_REF], then {F B n } satisfies conditions P1-P5 with Lévy measure ν and σ 2 = 0;

(ii) (Pure Gaussian case). If B n are defined by [START_REF] Czystołowski | Tightness of stationary waiting times in Heavy Traffic for GI/GI/1 queues with thick tails Probab[END_REF], then {F B n } satisfies conditions P1-P5, with Lévy measure ν ≡ 0 and Gaussian component σ 2 /2;

(iii) (General case). If B n are defined by [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], then {F B n } satisfies conditions P1-P5, with Lévy measure ν and Gaussian component σ 2 /2;

(iv) If ω n , n ≥ 1, are defined for M/GI/1 queues with B n defined as in either (i) or (ii) or (iii) and A n are exponential distribution functions with means ūn = vn +β/n, respectively, then

(9) ω n D → sup 0≤t<∞ (X(t) -βt) = W,
where X is a spectrally positive Lévy process with mean zero, Gaussian component σ 2 , Lévy measure ν and the LST of W is given by ( 3) and ( 4) with appropriate ν, σ 2 and b r = -|x|>r xν(dx).

Proof. (i)

To prove P1 notice that, by Lemma 1 for any x > 0 there exists n 0 such that xvn > x n for all n ≥ n 0 . Then for any x > 0 being a continuity point of the measure ν we have

n 1 -F B n (x) = n 1 -B n (x + vn ) = ν(x + vn , ∞) → ν(x, ∞).
Obviously nF B n (x) → 0, for all x < 0. To prove that {F B n } satisfies P3 notice that for sufficiently large n such that -r + vn < 0 and r + vn > x n we have Furthermore, b r in P3 equals to b r = -∞ r xν(dx), so condition P5 is satisfied. To show P4 notice that for sufficiently large n we have

n {|x|≤r} xdF B n (x) = -n {|x|>r} xdF B n (x) = -n {|x-vn|>r} (x -vn )dB n (x) = - {x>r+vn} xν(dx) + nv n 1 -B n (r + vn ) .
n ε -ε x 2 dF B n (x) = n ε -vn x 2 dB n (x + vn ) = -nε 2 1 -B n (ε + vn ) + nv 2 n + 2 ε -vn xn 1 -B n (x + vn ) dx → -ε 2 ν(ε, ∞) + 2 ε 0 xν(x, ∞)dx = ε 0 x 2 ν(dx), as n → ∞.
Hence

lim ε→0 lim sup n n ε -ε x 2 dF B n (x) = 0.
This completes the proof of part (i) of the Theorem.

(ii) By point (i) of Remark 3 in Appendix the sequence {F B n } satisfies conditions P1-P4 with ν = 0 and σ 2 /2, so also P5. In the considered case nv 2 n → σ 2 /2. This completes the proof of point (ii) of the Theorem. (iv) The sequence {F B n } satisfies conditions P1-P5 in all cases (i)-(iii), so by Proposition 1 we have convergence

[n•] j=1 (v n,j -vn ) D → X B
, where X B is a spectrally positive Lévy process with mean zero, Lévy measure ν and Gaussian component equal to zero (in point (i)) or σ 2 /2 (in points (ii) and (iii)). It can be easily verified, that {F A n } satisfies P1-P5 as well, so

[n•] j=1 (u n,j -ūn ) D → X A
, where X A is a Wiener process, degenerated in point (i) (i.e. equal to zero) and with variance σ 2 /2 in the remaining points (cf. Remark 3 in Appendix). Since X A and X B are independent and β n → β, by Proposition 3 and HTIP we get convergence [START_REF] Harrison | The supremum distribution of the Lévy process with no negative jumps[END_REF]. Now using Proposition 3 once again we get that the LST of W is given by ( 3) and ( 4). This completes the proof of the Theorem.

Application of Theorem 1. The first observation is that Proposition 3 jointly with Theorem 1 give another proof of the famous Zolotarev's theorem from [START_REF] Zolotarev | The first passage time to a level and the behaviour at infinity of processes with independent increments[END_REF]. The Instead of reversing this LST we find distribution of W using convergence ω n D → W.

Namely, using formula [START_REF] Lebedev | Special Functions and Their Applications[END_REF] and convergence ω n D → W for special M/GI/1 queues we show that ( 12)

P (W ≤ x) = P (ω n ≤ x) = (1 -ρ) [x] j=0 1 j! (j -x) j ρ j exp -ρ(j -x) .
This distribution was obtained by R. Pyke [START_REF] Pyke | The supremum and infimum of the Poisson process[END_REF] and here we give its queueing derivation. Notice that the Lévy measure corresponding to Poisson process Y and process According to formula (9.5) from Section I.9 in Feller [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], for the k-th convolution of uniform distributions on [0, 1], we have

X is ν(x, ∞) = λ for 0 ≤ x ≤ 1 and ν(x, ∞) = 0 for x ≥ 1,
1 vn x 0 1 -B n (y) dy * k = 1 k! k j=0 (-1) j k j (x -j) k +
where x + = max(0, x). This and the above give the following formula

P (ω n ≤ x) = (1 -ρ) ∞ k=0 ρ k 1 k! k j=0 (-1) j k j (x -j) k + ≡ D(x),
where the right-hand side of the above does not depend on n, so D(x) = P (W ≤ x).

Notice that

D(x) = (1 -ρ) ∞ j=0 ∞ k=j ρ k 1 k! (-1) j k j (x -j) k + = (1 -ρ) ∞ j=0 1 j! (-1) j (x -j) j + ρ j ∞ k=j ρ k-j 1 (k -j)! (x -j) k-j + = (1 -ρ) ∞ j=0 1 j! (-1) j (x -j) j + ρ j exp ρ(x -j) + = (1 -ρ) [x] j=0 1 j! (j -x) j ρ j exp -ρ(j -x) ,
which coincides with formula [START_REF] Prokhorov | Convergence of Random Processes and Limit Theorems in Probability Theory[END_REF].

The following remark shows that convolutions of some distributions of type W are also of type W. Its proof is omitted.

Remark 1. Let nonnegative numbers p j and σ 2 j , j ≥ 0, be such that ∞ j=0 p j = 1, ∞ j=0 σ 2 j p j df = σ 2 < ∞ and let ν j , j ≥ 0, be Lévy measures concentrated on (0, ∞)

such that ∞ 1 xν j (dx) < ∞, sup j≥0 ∞ 0 min(1, x 2 )ν j (dx) < ∞ and let ν df = ∞ j=0 p j ν j .
Furthermore, let Ψ j and ψ j be defined by (3) and (4), for ν j and σ 2 j respectively. Then we have the following: (i) If X is a spectrally positive Lévy process with Lévy measure ν and Gaussian component σ 2 then the LST of the random variable W is

(13) E exp(-sW ) = 1 + 1 βs ∞ j=0 p j ψ j (s) -1 . (ii) If σ 2 = 0 and s -1 ψ 1 (s)ψ 2 (s) = ψ 3 (s), s ≥ 0, then Ψ 1 (s)Ψ 2 (s) is LST of W with
X being a spectrally positive Lévy process with finite mean.

From Remark 1 it follows that if G i i = 1, 2, are the Mittag-Leffler distributions with LSTs equal to (1+λ

-κ i i s κ i ) -1 , s ≥ 0, where 0 < κ i < 1 are such that κ 1 +κ 2 < 1 and λ -κ i i = β -1 α i Γ(-α i ), with 1 < α i < 2
and the function Γ is the analytical extension to R \ {0, -1, -2, . . .} of the gamma function Γ(y) = ∞ 0 x y-1 e -x dx, y > 0, (cf. N. N. Lebedev [START_REF] Lebedev | Special Functions and Their Applications[END_REF]) then convolution

G 1 * G 2 is the distribution of W with LST of the form Ψ(s) = 1 + λ -κ 1 1 s κ 1 + λ -κ 2 2 s κ 2 + λ -κ 1 1 λ -κ 2 2 s κ 1 +κ 2 -1
, s ≥ 0.

Non sufficiency of conditions I and II in HTIP.

One can raise a question whether conditions (I) and (II) in HTIP imply condition (III), i.e. the tightness of {ω n }. A similar question was communicated privately to W.

Szczotka by W. Whitt. Namely, W. Whitt asked if the convergence in distribution to a Wiener process with a negative trend of the processes X n (t) =

[nt] j=1 (v n,ju n,j ), t ≥ 0, n ≥ 1, for GI/GI/1 queues in the heavy traffic, implies tightness of {ω n }. An answer to this question give Theorem 2 and Corollary 2 formulated below. They state that for any spectrally positive Lévy process X with the Lévy measure ν satisfying ∞ 1 xν(dx) < ∞, there exists a sequence of M/GI/1 queues for which conditions (I) and (II) hold, but (III) does not.

Let us consider a sequence of M/GI/1 queues with B n defined as [START_REF] Pyke | The supremum and infimum of the Poisson process[END_REF] B

n (x) = ⎧ ⎪ ⎨ ⎪ ⎩ 1 -q n , for 0 ≤ x < b n , 1, for x ≥ b n , where 0 < b n ↑ ∞, q n b n ↓ 0 (monotonically) and nb n q n → d, 0 < d < ∞; A n , n ≥ 1,
being exponential distribution functions with means vn + β/n, n ≥ 1, respectively.

Theorem 2. The sequence {F B n } induced by B n defined in [START_REF] Pyke | The supremum and infimum of the Poisson process[END_REF] satisfies conditions P1-P4 and

β n → β, but {ω n } is not tight. Proof. Let x > 0, then for n such that b n > x + vn we have n 1 -F B n (x) = nq n . From the assumption nb n q n → d, 0 < d < ∞ and b n ↑ ∞ we get that {F B n } satisfies P1 with ν ≡ 0, i.e. ν(x, ∞) = ν(-∞, -x) = 0 for all x > 0. Notice that lim n→∞ n |x|<r xF B n (x) = lim n→∞ -nv n (1 -q n ) = -d, so P3 is satisfied with b r = -d. Similarly lim n→∞ n |x|< x 2 F B n (x) = lim n→∞ nv 2 n (1 -q n ) = 0,
which shows that P4 holds with σ 2 = 0.

Hence by Prokhorov's result (Proposition 1) we obtain X B n D -→ -de, where e(t) = t, t ≥ 0. Moreover, P5 does not hold. Because of β n = β and nv 2 → 0, as n → ∞, and next by Proposition 3 we get

E(e -sωn ) → 1 1 + d/β , as n → ∞.
But 1/(1 + d/β) is not LST of any probability measure, so {ω n } is not tight. This completes the proof.

The most crucial point of the previous construction and assertion of the theorem is that the first moments of the approximating sequence do not converge to the corresponding moment of the limiting process. The fact that the weak limit in Theorem 2 is degenerated can be easily removed, which shows the following corollary:

Corollary 2. For any spectrally positive Lévy process X with finite mean, Lévy measure ν and Gaussian component σ 2 there exists a sequence of M/GI/1 queues, such that

X n D → X, β n → β, but {ω n } is not tight.
Proof. Let us define a sequence of M/GI/1 queues by defining B n and A n in the following way: B n = B (1) n * B (2) n , where B (1) n are defined by [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF] for the Lévy measure ν and B (2) n by ( 14) while A n , n ≥1 are exponential distribution functions with means ūn = vn + β/n, respectively. Since F B n (x) = F B (1) n * F B (2) n (x), by Proposition 3 and Theorem 2, we get

X n D → X -de, with e(t) = t. Because of nv 2 → σ 2 /2, as n → ∞,
and β n = β, and next by Proposition 3, we have

E(e -sωn ) → 1 + d/β + s 2 σ 2 /2 + ∞ 0 e -sx -1 + sx ν(dx) /(sβ) -1 ,
as n → ∞. However, the right-hand side of the above is not LST of any probability measure, so {ω n } is not tight. This completes the proof.

Appendix

Auxiliary results

Here we give auxiliary technical facts which we used in Section 3.

Remark 2. (i) If ν is a Lévy measure such that a 1 x δ ν(dx) < ∞ for some 1 ≤ a ≤ ∞ and δ ≥ 1, then for any r, 0 < r ≤ a ≤ ∞, we have

(15) a r x δ ν(dx) = r δ ν(r, a] + δ a r x δ-1 ν(x, a]dx. (ii) If ν is a Lévy measure, then (16) lim →0 2 ν( , a] < ∞ and lim →0 1 xν(x, a]dx < ∞, where 1 ≤ a ≤ ∞.
Proof. The assertion (i) in case ν(r, a] = 0 is trivial. To prove it for ν(r, a] > 0 first recall that every Lévy measure is finite on any interval (x, ∞), x > 0 and then define the distribution function F by F (x) = 0 for x ≤ r; F (x) = 1 for x > a and

F (x) = 1 - ν(x, a] ν(r, a] , for r ≤ x ≤ a,
where ν(x, ∞] = ν(x, ∞).

Notice that for 0 < r ≤ a we have a r

x δ ν(dx) = ν(r, a] a r x δ F (dx) = -ν(r, a] a r x δ d 1 -F (x) = ν(r, a] -x δ 1 -F (x) a r + δ a r x δ-1 1 -F (x) dx = ν(r, a] r δ + δ a r x δ-1 ν(x, a] ν(r, a] dx = r δ ν(r, a] + δ a r x δ-1 ν(x, a]dx.
This completes the proof of point (i).

To prove assertion (ii) we use assertion (i), i.e. [START_REF] Resnick | A Heavy Traffic Approximation for Workload Processes with Heavy Tailed Service Requirements[END_REF] with r = , a = 1 and δ = 2. Then (15) jointly with lim →0 1 x 2 ν(dx) = 1 0 x 2 ν(dx) < ∞ imply ( 16) and this completes the proof of assertion (ii) and the Remark.

The following remark gives conditions under which the distribution functions of exponentially distributed random variables centered by their expectations satisfy conditions P1-P4. 

Remark 3. Let G n (x) = 1 -exp(-λ n x), for x ≥ 0 and F G n (x) = G n (x + 1/λ n ). (i) If λ n / √ n → λ, 0 < λ < ∞, then {F G n } satisfies conditions P1-P4 with ν = 0, b r = 0, σ 2 = 1/λ 2 . (ii) If λ n / √ n → ∞, then {F G n } satisfies conditions P1-P4 with ν = 0, b r = 0, σ 2 = 0. (iii) If λ n /n → λ, 0 < λ < ∞, then {F G n } satisfies conditions P1-P4 with ν = 0, b r = 0, σ 2 = 0. Proof. Let {η k , k ≥ 1}
= (η k -1)/λ n . Let X G n (t) = [nt]
j=1 (η n,j -Eη n,j ) and Z n (t) = In case (iii) we have n λn

1 n [nt] j=1 (η j -1) D → 0.
Hence by the same argumentation as before we get assertion (iii). This completes the proof.

Proof of Proposition 3

Formula (4.82) in [START_REF] Cohen | The single server queue[END_REF], p. 252, gives the distribution function of the stationary waiting time ω for M/GI/1 queues in the case when the distribution function B of the service times is such that B(0+) = 0. Namely, it has the form ( 17)

P (ω ≤ x) = (1 -ρ) ∞ j=0 ρ j 1 v x 0 1 -B(s) ds * j , x ≥ 0,
where ρ = v/ū and H * j is the j-th fold convolution of a distribution function H.

However, this formula is also true for the case 0 < B(0+) < 1 and 0 < ρ < 1. To see it, let us take a sequence of M/GI/1 queues with distribution function B (k) of service times in the k-th queue, such that

B (k) (x) = pδ x k (x) + (1 -p)B(x), B(0+) = 0 and x k ↓ 0, where δ x k (x) = 0 for x < x k and δ x k (x) = 1 for x ≥ x k . Whereas, A (k)
's (distribution functions of the inter-arrival times) do not depend on k. Then

B (k) (0+) = 0, 0 < ρ (k) < 1.
Therefore, for any x > 0 the distribution function of the stationary waiting time ω (k) for the k-th queue has the form ( 18)

P (ω (k) ≤ x) = 1 -ρ (k) ∞ j=0 ρ (k) j 1 v(k) x 0 1 -B (k) (s) ds * j . But B (k) ⇒ B (0) = pδ 0 +(1-p)B and ω (k) D → ω (0)
, where ω (0) is the stationary waiting time for the M/GI/1 queue with B (0) being the distribution function of service times.

Since the right-hand side and the left-hand side of (18) converge, for each x > 0 we have ( 19)

P (ω (0) ≤ x) = 1 -ρ (0) ∞ j=0 ρ (0) j 1 v(0) x 0 1 -B (0) (s) ds * .
This completes the proof that ( 17) is also valid for B such that 0 < B(0+) < 1.

Later on we assume that the distribution function B in ( 17) may be such that 0 ≤ B(0+) < 1 and the sequence of distribution functions B n can be written as follows: 

B n (x) = p n + (1 -p n )D n (x), x ≥ 0, where 
(1 -p n )v D n . Furthermore, notice that B n,0 (x) df = 1 vn x 0 1 -B n (x) dx = 1 vD n x 0 1 -D n (x) dx.
From formula [START_REF] Szczotka | Distributions of Suprema of Lévy Processes via Heavy Traffic Invariance Principle[END_REF], for this general case, the LST of ω n has the following form:

E exp(-sω n ) = 1 -ρ n 1 -ρ n Bn,0 (s) = 1 + ρ n 1 -ρ n 1 -Bn,0 (s) -1 = 1 + ρ n 1 -ρ n 1 sv D n ∞ 0 (e -sx -1 + sx)dD n (x) -1 ,
where Bn,0 is the LST of the distribution function B n,0 and ρ n = vn /ū n . By the

relation ρ n 1 -ρ n 1 vD n = 1 -p n |a n | , we get E exp(-sω n ) = 1 + 1 -p n n|a n | 1 s n ∞ 0 (e -sx -1 + sx)dD n (x) -1
.

By the definition of B n we finally obtain

E exp(-sω n ) = 1 + 1 sβ n n ∞ 0 (e -sx -1 + sx)dB n (x) -1
.

Putting I n = ∞ 0 (e -sx -1 + sx)dB n (x), and

I n,1 = ∞ -vn (e -sx -1 + sx)dF B n (x), I n,2 = ∞ 0 e -sx (1 -e svn ) + sv n dB n (x) we get I n = I n,1 + I n,2 . But for > 0 we have (20) I n,1 = C n,1 ( ) + C n,2 ( ) + C n,3 + C n,4 ,
where

C n,1 ( ) = ε -vn (e -sx -1 + sx)dF B n (x), C n,2 ( ) = r ε (e -sx -1 + sx)dF B n (x), C n,3 = ∞ r (e -sx -1)dF B n (x), C n,4 = s ∞ r xdF B n (x).
By the assumption nv 2 n → c 2 , 0 ≤ c 2 < ∞, we have vn → 0. Therefore, for any ε > 0 there exists sufficiently large n such that vn ≤ ε. Hence for such n we have Hence by P4 we get and [START_REF] Whitt | Heavy traffic limit theorems for queues: A survey Mathematical methods in queueing theory[END_REF] we get the first assertion of Proposition 3.

nC n,1 ( ) = n |x|≤ε (e -sx -1 + sx)dF B n (x) = s 2 2 n |x|≤ x 2 dF B n (x) + n |x|≤ ∞ k=3 s k x k k! dF B n (x).
To prove the second assertion of the proposition we need to show that Ψ B (s) is continuous at s = 0, i.e. lim s→0 Ψ B (s) = 1, which is equivalent to ψ B (s)/s → 0 as s → 0. But the last holds because of condition P5 and equality lim s→0 ψ B (s)/s = -b B r -∞ r xν B (dx). This gives the second assertion of the proposition and completes its proof.

  sequence of M/GI/1 queueing systems in heavy traffic such that ω n D → W with Lévy process X having measure ν. The construction of that sequence is given in Theorem 1. This theorem is necessary to formulate Theorem 2 and Corollary 2. However, it is also useful to give another derivation of W when X is a centered Poisson process, what is illustrated in Section: Application of Theorem 1.

  where for each n ≥ 1, the random variables ζ n,k , k ≥ 1, are mutually independent with distribution functions F n,k , respectively, which satisfy conditions (3.35a)-(3.35d) given by Yu. V. Prokhorov in [12], p. 197. If for each n ≥ 1, F n,k = F n , then condition (3.35b) is implied by all others. Further on we consider only the last case and only spectrally positive Lévy processes. Recall that Lévy process Y

(

  iii) By point (i) of the Theorem the sequence {F B n,1 } satisfies conditions P1-P5 with Lévy measure ν and Gaussian component σ 2 = 0 and by point (ii) of the Theorem the sequence {F B n,2 } satisfies conditions P1-P5 with Lévy measure ν = 0 and Gaussian component σ 2 /2. Since B n is the convolution of B n,1 and B n,2 , the sequence {F B n } satisfies conditions P1-P5 with Lévy measure ν and Gaussian component σ 2 /2. This completes the proof of point (iii) of the Theorem.

1 -

 1 second observation is that immediately from Theorem 1 it follows that the class of limiting distributions of ω n for M/GI/1 queues in heavy traffic contains distributions of W with X being a centered Poisson process, Compound Poisson process or Gamma process. Also the limiting distributions of ω n may be the convolutions of some Mittag-Leffler distributions, what may be especially interesting from a queueing-theoretic point of view. The third observation is that Theorem 1 jointly with HTIP can help us to find distribution of W. Its usefulness is based on two points. The first one is the formula for the stationary waiting time in M/GI/1 queue, i.e. (11) P (ω n ≤ x) = (1ρ n ) B n (y) dy * k , where ρ n = vn ūn , which for the case B(0+) = 0 is given in [6], page 255 formula (4.82) and for the general case B(0+) ≥ 0 it is given in the proof of Proposition 3. The second point is a proper choice of simple queues for which ω n D → W and for which we are able to find the limiting distribution of ω n . Below we demonstrate this way of getting distribution of W for X(t) = Y (t)λt, where Y (t) is a Poisson process with intensity λ. In this case the LST of W is of the form E exp(-sW ) = (bλ)s bs + λ(e -s -1) , s ≥ 0, where b = β + λ.

1 vn x 0 1 -

 11 so it is finite. Thereforetaking x n = 0 in the definition of B n we have B n (x) = 1λ/n for 0 ≤ x <1 and B n (x) = 1 for x ≥ 1 and ρ n = λ/(λ + β) ≡ ρ. This implies that the residual distributions B n (y) dy for each n are equal to the uniform distribution on [0, 1].

D= Z n /λ n and convergence 1 √(η j - 1 )

 11 j -1). Then we have relation X G n and X G n D = Z n /λ n and next by Proposition 1 we get assertions (i) and (ii) of the Remark.

  0 ≤ p n < 1 and distribution functions D n are such that D n (0+) = 0. Then the expectations of B n and D n are denoted by vn and vD n , respectively, and vn =

≤ s 3 n |x|≤ |x| 3 e

 3 s|x| dF B n (x) ≤ s 3 ne s |x|≤ |x| 2 dF B n (x).

1 ( ) = s 2 σ 2 / 2 . 1 = 0 e 1 - 2 ∞ 0 ( 0 R= s 2 v2 n / 2 + ∞ 0 R 2 - 2 = 2 -≤ s 3 nv 3 n ∞ k=3 (

 12101200202223k=3 Now notice thatnC n,2 ( ) = -r (e -sx -1 + sx)dn 1 -F B n (x) .Therefore, by P1 and then by the continuity and boundedness of the function e -sx -1 + sx on (0, r) sx -1 + sx)ν B (dx).Now notice that by P1 and continuity and boundedness of the function e -sx -1 on (r, ∞) sx -1)ν B (dx).Finally notice that for sufficiently large n we have∞ r xdF B n (x) = -r -r xdF B n (x), which jointly with P3 imply -sb r + s 2 σ 2 /2 + ∞ -sx -1 + sxI {|x|≤r} (x) ν B (dx).Now we show that nI n,2 → s 2 c 2 /2. To do this notice thatI n,2 = ∞ 0 sx + (sx) 2 /2 -1 + s(xvn )s 2 (xvn ) 2 /2 + sv n dB n (x) k -(xvn ) k dB n (x) = s xv n -v2 n /2)dB n (x) + ∞ n (x, s)dB n (x) n (x, s)dB n (x),whereR n (x, s) df = ∞ k=3 s k (-1) k k! x k -(xvn ) k . Now notice that R n (x, s) = e -sx -1 + sx -(sx) 2 /e -s(x-vn) -1 + s(xvn )s 2 (xvn ) 2 /e svn -1sv ns 2 v2 n /(e svn -1)(e -sx -1 + sx)sx(e svn -1sv n ) = -∞ k=3 s k vk n /k! -(e svn -1)(e -sx -1 + sx) + sx ∞ k=2 s k vk n /k!.HenceI n,2 = s 2 v2 n /2 -∞ k=3 s k vk n /k! -(e svn -1) ∞ 0 (e -sx -1 + sx)dB n (x) n /k! + sv n ∞ k=2 s k vk n /k! -(e svn -1)I n .This and the relationI n = I n,1 + I n,2 give (26) e svn nI n,2 = n(1e svn )I n,1 + s 2 nv 2 n /2n ∞ k=3 s k vk n /k! + snv n ∞ k=2 s k vk n /k!.But, by the convergence nv 2 n → c 2 , 0 ≤ c < ∞, we get the following:(27) 0 ≤ n ∞ k=3 (sv n ) k /k! sv n ) k-3 /(k -3)! = s 3 nv 3 n e svn → 0, as n → ∞ (28) 0 ≤ sv n n ∞ k=2 (sv n ) k /k! ≤ s 3 nv 3 n ∞ k=2 (sv n ) k-2/(k -2)! = s 3 nv 3 n e svn → 0, as n → ∞, which, in view of (26), gives the convergence nI n,2 → s 2 c 2 /2. Hence and from (25)

  be a sequence of iid nonnegative random variables, exponentially distributed with parameter 1 and for each n ≥ 1 let {η n,k , k ≥ 1} a sequence of iid nonnegative random variables with distribution function G n , being exponential with parameter λ n . Then η n,k -Eη n,k D
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