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Abstract 

 

Retinitis pigmentosa (RP) is a degenerative retinal disease involving progressive loss of 

rod and cone-photoreceptor function.  It represents the most common form of registered 

blindness among the working-aged populations of developed countries. Given the 

immense genetic heterogeneity associated with this disease, parameters influencing 

cone photoreceptor survival (preservation of daytime vision) that are independent of 

primary mutations are exceedingly important to identify from a therapeutic standpoint.  

Here we identify C1q, the primary component of the classical complement pathway, as 

a cone photoreceptor neuronal survival factor.   
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Introduction  

     Hereditary retinopathies, prominent among which is retinitis pigmentosa (RP), 

conditions involving progressive death of photoreceptors are amongst the most 

genetically heterogeneous of any group of mendelian conditions.  Including Leber 

congenital amaurosis (LCA), a congenital retinopathy with pathological features 

bearing similarities to retinitis pigmentosa (RP), 60 genes have now been implicated in 

disease aetiology. If syndromic forms of disease and other hereditary retinopathies are 

included, 202 genetic loci have been identified and a total of 161 genes so far 

characterized1.  RP segregates largely in an autosomal dominant, recessive, or X-linked 

recessive manner2 while all of the sixteen genetic forms of LCA that have been 

identified to date are autosomal recessive, hence gene therapies require strategies based 

either on gene replacement, or on the selective suppression of dominantly mutated 

genes, or their transcripts. Progress is being made to the extent that clinical trials 

involving AAV-mediated gene replacement have now been established for one form of 

LCA caused by mutations within the RPE65 gene.3-5 In addition, therapeutic modalities 

have been demonstrated for other genetic subtypes of RP and LCA in a growing number 

of animal models, both of recessive and dominant forms of disease.6-23 Notwithstanding 

such progress, the genetic complexity of this group of diseases represents a formidable 

logistic and economic hurdle in developing viable methods of prevention. Given this 

caveat, parameters effecting photoreceptor survival that are independent of the primary 

genetic lesion are critically important to identify. It has emerged over the last five or so 

years that major pathological features involving sub-retinal drusen deposition and 

choroidal neovascularisation that are associated with one form of multifactorial 

retinopathy, namely age-related macular degeneration (AMD), where the central cone-
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rich part of the retina, or macula, degenerates, can now be explained, at least in part, by 

excessive complement activity on ocular surfaces (reviewed in 24, 25-30). However, the 

influence of complement on cone photoreceptor survival is less clear in hereditary (as 

opposed to multi-factorial) forms of retinal disease.  Here we show that levels of C1q, 

the primary component of the classical complement pathway, rise substantially over the 

course of retinal degeneration in mice induced by a targeted disruption of the rhodopsin 

gene, a model of autosomal recessive RP and that in the absence of C1q (Rho-/-C1qa-/-) 

cone photoreceptor function and viability are significantly compromised.  We suggest 

that the protective effect observed here may relate to the role of C1q in clearance of 

apoptotic cells from the retina. These observations may assist in the development of 

strategies for optimal cone cell survival in such conditions.   

 

Materials and Methods 

Mice 

     All experiments involving the use of mice were assessed and approved by an internal 

ethics committee at Trinity College Dublin.  All studies carried out adhered to the 

ARVO statement for the use of animals in ophthalmic and vision research. 

Genotyping Analysis 

     Rho-/-, C1qa-/- and C3-/- mice, on C57BL/6 backgrounds, were genotyped as 

follows.  Rhodopsin:  Oligo a (5’-TTCAAGCCCAAGCTTTCGCG-3’) is a reverse 

primer for pol2:neo.  Oligoes b and c are forward and reverse primers for exon II of the 

rhodopsin gene (b, 5’-TCTCTCATGAGCCTAAAGC-3’; c, 5’-

ATGCCTGGAACCAATCCGAG-3’).  C1qa: Oligo d (5’-
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GGGGATCGGCAATAAAAAGAC-3’) is a primer in the 3’ end of the neomycin gene 

and oligoes e and f are forward and reverse primers for the C1qa gene (e, 5’-

GGGGCCTGTGATCCAGACAG-3’; f, 5’-TAACCATTGCCTCCAGGATGG-3’). C3: 

Oligo g (5’-AAGGGACTGGCTGCTATTGG-3’) is a primer in the neomycin gene and 

oligos h and i are forward and reverse primers for the C3 gene (h, 5’-

CTTCATAGACTGCTGCAACCA-3’; I, 5’-ACCAGCTCTGTGGGAAGTG-3’). 

Amplification reaction: 100ng DNA, 50pmol of each oligonucleotide primer, 200μM 

each of dGTP, dATP, dCTP and dTTP, 1.5mM MgCl2 and 1.25µl of GoTaq DNA 

Polymerase (Medical Supply Co. Ltd., Ireland) in a total reaction volume of 50μl.  PCR 

conditions; 95oC 2 min; [95oC 1 min; 60oC 1 min; 72oC 1 min] for 35 cycles, and a final 

extension of 72oC for 5 mins.   PCR products were resolved on a 1.5% agarose gel, 

fragments of 461 and 300 bp, 360 and 160bp and 920 and 1100 bp being diagnostic of 

the wild-type and mutant alleles of the Rhodopsin, C1qa and C3 genes respectively.  

Electroretinographic (ERG) analysis 

     Three month old animals of genotypes C1qa-/-Rho-/-, C3-/-Rho-/- and Rho-/- were 

dark-adapted overnight and prepared for ERG under dim red light. Pupillary dilation 

was carried out by instillation of 1% cyclopentalate and 2.5 % phenylephrine. Animals 

were anesthetized by intraperitoneal injection of ketamine (2.08 mg per 15g body 

weight) and xylazine (0.21 mg per 15g body weight). The ERG commenced ten minutes 

after administration of anesthetic. Standardised flashes of light were presented to the 

mouse in a Ganzfeld bowl to ensure uniform retinal illumination. The ERG responses 

were recorded simultaneously from both eyes by means of gold wire electrodes (Roland 

Consulting Gmbh, Germany) using Vidisic (Dr Mann Pharma, Germany) as a 

conducting agent and to maintain corneal hydration. The eye was maintained in a 
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proptosed position throughout the examination by means of a small plastic band placed 

behind the globe. Reference and ground electrodes were positioned subcutaneously, 

approximately 1 mm from the temporal canthus and anterior to the tail respectively. 

Body temperature was maintained at 37°C using a heating device controlled by a rectal 

temperature probe. Responses were analysed using a RetiScan RetiPort 

electrophysiology unit (Roland Consulting Gmbh, Germany). The protocol was based 

on that approved by the International Clinical Standards Committee for human 

electroretinography. Cone-isolated responses were recorded using a white flash of 

intensity 3 candelas/m-2/s presented against a rod-suppressing background light of 30 

candelas/m-2 to which the previously dark-adapted animal had been exposed for 10 

minutes prior to stimulation. The responses to 48 individual flashes, presented at a 

frequency of 0.5Hz, were computer averaged. a-waves were measured from the baseline 

to a-wave trough and b-waves from the a-wave trough to the b-wave peak.31  

Immunohistochemical analysis of retinal cryosections 

     Following euthanasia by means of CO2 eyes from mice were fixed in 4 % 

paraformaldehyde (PFA), pH 7.4, for 4 hours followed by 3 washes in PBS.  Eyes were 

cryoprotected using a sucrose gradient and subsequently embedded in optimum cutting 

temperature (O.C.T) embedding compound (Lennox Ltd. Ireland), and cryostat sections 

(12 µm) were cut onto amino-propyltriethoxysilane-coated glass slides.  For cone 

staining sections were blocked for 1 hour with normal goat serum (NGS) and 

subsequently incubated with peanut agglutinin-Alexa-568 (1:500, Invitrogen, Carlsbad, 

CA, USA) overnight at 4oC.   Sections were washed 3 times with PBS, counter-stained 

with DAPI.  For blue cone opsin staining, sections were air dried, and blocked for 1 

hour in 5 % donkey serum at room temperature.  Sections were subsequently incubated 
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with a polyclonal goat anti-blue sensitive opsin antibody (Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) overnight at 4 oC (1:100 dilution in PBS containing 1 % donkey 

serum).  Following 3 X 15 minute washes with PBS, sections were incubated with a 

secondary antibody (goat anti-sheep IgG-Cy3 (Red), Jackson-Immuno-research, 

Europe) for 1 hour at 37 oC.  Nuclei were counterstained with DAPI (Blue) and 

mounted using Aqua-Polymount® mounting medium.  Analysis of stained sections was 

performed at room temperature with an Olympus FluoView TM FV1000 Confocal 

microscope with integrated software (Mason Technology, Dublin, Ireland).  

 

Total RNA isolation from retinal tissues for quantitative real-time PCR analysis 

     Collected retinal tissues were frozen in liquid nitrogen and stored at -80oC. Total 

RNA was extracted from retinas of 3 mice per experimental group using an RNeasy 

Mini Kit (Qiagen, Hilden, Germany) according to manufacturer’s protocol. The level of 

C1qa transcript was quantified using Applied Biosystems 7300 Real-Time PCR System 

(Life Technologies Corporation, Carlsbad, CA, USA) with Quantitect SYBR Green Kit 

according to manufacturer’s protocol (Qiagen, Hilden, Germany). The following 

amplification conditions were used: 50oC for 20 minutes; 95oC for 15 minutes; 37 

cycles of 95oC for 15 seconds; 60oC for 1 minute.  Dissociation steps included 95oC for 

15 seconds; 60oC for 1 minute; 95oC for 15 seconds and 60oC for 15 seconds. C1qa 

mRNA levels were normalized to the corresponding β-actin level for each sample. 

HPLC-purified primers (Sigma-Genosys, Ireland) used for amplification were as 

follow: C1qa forward 5’ATGGAGACCTCTCAGGGATG 3’; C1qa reverse 5’ 

CCCGTTGTCACACTTATAGC 3’; β-actin forward 5’ 

TCACCCACACTGTGCCCATCTACGA 3’;  β-actin reverse 5’ 
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CAGCGGAACCGCTCATTGCCAATGG3’.  Experiments were repeated 3 times in 

triplicate and for each time point data are expressed as mean ± SEM and analyzed using 

a two-tailed Student’s t test, with p < 0.05 considered significant.  

 

Results  

     We crossed Rho-/-32, and C1qa-/- mice 33, (both animals had been bred onto 

congenic C57BL/6 backgrounds).  Rho-/- mice never develop normal rod outer 

segments and lose their rods within 3 months.  At that point, cones are still present, and 

approximately three rows of nuclei, including non-functional rods and remaining cones, 

are observable in the outer nuclear layer of the retina.34 Moreover, cone function is still 

readily detectable by ERG.35  Figure 1a shows typical cone ERGs from C57BL/6 and 

C1qa-/- mice, indicating essentially no differences between these animals. The timing of 

the photopic b-wave in each tracing is essentially identical at c. 52 msec when animals 

are compared.  The morphologies of the waveforms differ somewhat, mainly in the less 

prominent oscillatory potential on the up-slope of the C1qa-/-, but this variation is well 

within the range which is observed between individual animals.  Similar variation, when 

observed in human patients, would not be of clinical significance.  Left and right panels 

of Figure 1b, show cone responses from Rho-/- and C1qa-/-Rho-/- mice respectively at 

three months. The reduction in amplitudes of cone b-wave in double knockout mice is 

strikingly apparent compared to the Rho-/- genotype and a direct reflection of a 

reduction in cone viability.  A two-sample t-test comparison of b-wave amplitudes 

between C1qa-/-Rho-/-  and  Rho-/-   mice  showed  a  highly  significant  reduction in 

amplitudes in double knockouts  (**P=0.0026) (Figure 1c).      

     We stained retinal cryosections from 3 month old mice with peanut agglutinin, a 
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lectin which is specific for cone photoreceptors.  The pattern and distribution of cone 

photoreceptors appeared decreased and more disordered in C1qa-/-Rho-/- retinas when 

compared to Rho-/- retinas at 3 months of age (Figure 2a). Six out of seven C1qa-/-Rho-

/- mice analyzed showed no immunoreactivity for blue cone opsin, whereas distinct 

staining was still observable in Rho-/- retinas at 3 months old (Figure 2b).    

     Levels of C1qa transcript were analyzed by RT-PCR and were highly elevated in 

Rho-/- retinas at 30 days, and this increase was observed up to and including 90 days 

old when compared to wild type (WT) mice (Figure 3) (n = 3 mice per group and 3 

replicate experiments).    

     We also examined cone viability and function in Rho-/- mice on a genetic 

background with a targeted disruption of the C3 gene.36 We observed no statistical 

differences in cone ERG’s between C3-/-Rho-/- and Rho-/- animals (Figure 4).   

 

Discussion 

     While significant progress is being made in the development of gene-based 

medicines for degenerative retinopathies, the very high level of heterogeneity of these 

conditions at the genetic level is a major impediment to rapid progress.  While the 

human retina is rod-dominated, preservation of cone function is of primary significance 

and in this regard, a number of cone photoreceptor survival factors have been identified. 

In an extensive analysis of global transcriptional profiles in four murine retinopathy 

models, a high number of transcripts from genes encoding proteins of the insulin/mTOR 

signaling pathway were found to be up-regulated, and these workers were able to show 

that systemic administration of insulin enhances cone photoreceptor survival.37  While 

AAV-mediated expression of ciliary neurotrophic factor has been shown to result in 
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significant cone cell loss in the Rd2 model of murine retinal degeneration38, 

encapsulated release of this compound directly into the vitreous has been shown to be 

effective in preservation of vision in human subjects and appears to be the only 

neuroprotective factor currently in clinical trial for treatment of degenerative 

retinopathies.39,40  Another cone cell survival factor showing substantial promise in 

slowing retinal degeneration is rod-derived cone viability factor (RDCVF).  This protein 

is a member of the thioredoxin family and has been shown to be protective against 

oxidative stress,41-43   Mice with a targeted disruption of the RDCVF gene (Nxnl1-/-) 

show enhanced loss of cone photoreceptor viability and function44, and it has also been 

shown that sub-retinal inoculation of the purified protein results in a therapeutic effect.45  

In regard to the neuroprotective effect exerted by C1q in the current study, this protein 

is a primary component of the classical complement pathway.  Complement activity 

within the eye has been firmly associated with AMD development, where 

anaphylatoxin-induced induction of vascular endothelial growth factor may contribute 

to choroidal neovascularisation, the major sight-threatening pathology associated with 

the exudative form of disease.46-48  C1q is not, therefore, an immediately obvious 

neuroprotective candidate.  However, this protein also binds to cells in the later phases 

of apoptosis, activating the classical complement pathway, with the resultant deposition 

onto such cells of complement components C3 and C4, facilitating phagocytosis.49-51  

      All evidence indicates that in degenerative retinopathies, photoreceptor death is 

apoptotic.52,53  We have shown here that levels of C1q progressively rise over the course 

of photoreceptor degeneration in the Rho-/- mouse model.  Rho-/- mice lose all (up to 

one million) rods over 3 months, or, averaged out over this period of time, 

approximately 10,000 photoreceptors per day by apoptosis. We suggest that appreciably 
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higher levels of C1q in Rho-/- mice as the disease progresses represents a physiological 

response to optimally maintain apoptotic cell clearance and in the absence of C1q, 

clearance is sub-optimal, favoring cell lysis and hence the induction of inflammatory 

processes which may negatively impact on disease pathology. In support of this 

hypothesis, we show that in the absence of C1q, cone photoreceptor viability and 

function are significantly compromised.  It is of interest to note that in an elegant study, 

Rohrer et al 54 have recently reported that photoreceptor degeneration in the rd1 mouse, 

with a naturally occurring null mutation within the gene encoding the ß-subunit of 

cyclic GMP phosphodiesterase, is unaffected in the absence of C1q.  However, no 

electroretinographic studies on cone cell function were reported in that study and the 

rapidity of retinal degeneration in that model (complete photoreceptor loss within 3 

weeks of birth) may have masked any more subtle effects in phenotype that may have 

been induced by the absence of C1q. In regard to strategies for cone cell preservation in 

degenerative hereditary retinopathies, data presented here suggest that optimal cone 

viability will be achieved by maintaining, or enhancing the expression of C1q. 
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     Titles and Legends to Figures. 

 

Figure 1. Cone electroretinographic responses from wild-type, C1qa-/-, Rho-/- and 

Rho-/-C1qa-/- mice. The timing of the major positive deflection (the b-wave) is 52 

msec in each tracing. 

a) Cone ERG responses from C1qa-/- and WT mice at 12 weeks of age.  b) The 

decrease in cone-isolated ERG was highly significant, with **=P ≤ 0.0026.  Cone 

ERG responses are representative of nine different animals per group.” c) Cone 

ERG responses were still evident in Rho-/- mice (left panel) with average readings 

of 33.48 µV (n = 55).  However in C1qa-/-Rho-/- mice (right panel), these readings 

were decreased to an average of 19.86 µV at 12 weeks of age (n = 34).    

 

Figure 2. Comparative retinal histology in wild-type, Rho-/- and Rho-/-C1qa-/- 

mice. 

 a) The presence and pattern of cone photoreceptors were analysed in WT, Rho-/- 

and C1qa-/-Rho-/- mice. Although there was positive peanut agglutinin staining in 

Rho-/- and C1qa-/-Rho-/- mice at 12 weeks of age, the pattern and distribution of 

staining appeared radically different in C1qa-/-Rho-/- mice when compared to Rho-

/- mice. b) Retinal cryo-sections from 12 week old mice were stained with an 

antibody specific for blue-sensitive opsin.  Strong immunoreactivity was observed 

in the WT sections, staining blue cone photoreceptors in the central and peripheral 

aspects of the retina and clearly showing the distribution of cone photoreceptors in 

the mouse retina (Red: Blue-sensitive opsin; Blue: DAPI-nuclei).  Although not as 

widespread, positive immunoreactivity for blue-sensitive opsin was also evident in 
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Rho-/- mice.  However, in C1qa-/-Rho-/- mice, strong immunoreactivity in cryo-

sections for blue-sensitive opsin was not evident.  

 

Figure 3. Quantitative analysis of levels of C1q transcript in normal and Rho-/- 

mice. 

a) Levels of C1qa transcript became significantly up-regulated in the retinas of 

Rho-/- mice at 30 days when compared to WT mice of the same age.  Up-regulation 

continued up to and including 90 days (n = 3 mice per group and results 

representative of 3 replicate experiments.  

 

Figure 4.  Statistical analysis of cone ERG responses from C3-/-Rho-/- and Rho-/- 

male and female mice at 3 months of age (P=0.319) (n= 20 per group).  The data 

showed no significant differences between both groups of animals, indicating that 

cone photoreceptor function was essentially the same in both experimental cohorts. 

 Data was analysed as mean +/- SD with significance represented by P < 0.05.  
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