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59 655 Villeneuve d’Ascq Cedex, France
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Abstract

We tackle the change-point problem with data belonging to a general set. We pro-
pose a penalty for choosing the number of change-points in the kernel algorithm of
Harchaoui and Cappé (2007). This penalty generalizes the one proposed for one dimen-
sional signals by Lebarbier (2005). We prove it satisfies a non-asymptotic oracle inequality
by showing new concentration results in Hilbert spaces. Experiments on synthetic and real
data illustrate the accuracy of our method, showing it can detect changes in the whole
distribution, even when the mean and variance are constant. Our algorithm can also deal
with data of complex nature, such as the GIST descriptors which are commonly used for
video temporal segmentation.

Keywords: model selection, kernel methods, change-point problem, concentration in-
equality

1. Introduction

A central topic in machine learning is finding the boundary between samples drawn from
different probability distributions. This goal is at the intersection of supervised learn-
ing (such as binary classification, see Vapnik, 1998; Steinwart and Christmann, 2008) and
unsupervised learning (such as clustering, see von Luxburg, 2009). In the latter case, a
major theoretical issue arises when considering real-world problems, namely the model se-
lection issue which corresponds to selecting the number of clusters (Ben-David et al., 2006;
von Luxburg, 2009). This issue is still an open problem.

In this paper, we consider a related topic, the change-point problem (Carlstein et al.,
1994). Let X1, . . . ,Xn be a sequence of independent random variables, whose distribution
abruptly changes at given unknown instants (change-points). The change-point problem
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consists in (i) estimating the change-point locations given their number, (ii) determining
the number of change-points.

Given a positive semi-definite kernel k and its associated feature map Φ, our approach is
to solve the change-point regression problem viamodel selection with Φ(X1), . . . ,Φ(Xn) ∈ H
some Hilbert space, by extending the work of Lebarbier (2005) to the Hilbertian setting.

Unlike usual model selection approaches in the one dimensional setting focusing on
changes in the mean or the variance (Lavielle, 2005; Lebarbier, 2005), our approach can
capture changes in higher-order moments of probability distributions, using the machinery
of reproducing kernel Hilbert spaces. Another strength of the kernelized least-squares algo-
rithm we propose is it can process time series with observations of any nature, as long as
some positive-definite kernel can be defined on their support, including data belonging to
some structured spaces such as the d-dimensional simplex. This is particularly appropriate
for temporal segmentation of video streams (see Section 6) for automatic summarization
of video archives. For multivariate signals in R

d, other approaches were recently proposed,
mainly dedicated to biological applications. Picard et al. (2011) focus on changes in the
mean and make a Gaussian assumption on the signal. Bleakley and Vert (2011) propose a
fused lasso based algorithm to perform segmentation of the mean as well. Our approach
is more general since it is not limited to changes in the mean and does not rely on any
distributional assumption on the intra-segment distributions.

Without assuming the number of change-points is known, our algorithm makes use of
the efficient algorithm of Harchaoui and Cappé (2007). This is a significant improvement
for practical application. Furthermore, we prove theoretical guarantees for our data-driven
choice of the number of change-points, with a non-asymptotic oracle inequality (Theorem 1).

The main contributions of the paper are the following: (i) proposing a penalty ex-
tending the one of Lebarbier (2005) to the kernel change-point problem, which allows a
data-driven choice of the number of change-points, (ii) proving it satisfies a non-asymptotic
oracle inequality (Theorem 1), by developping new concentration results in Hilbert spaces,
(iii) showing with experiments (Section 6) the resulting algorithm is promising in terms of
applications, both for detecting changes in distribution that are not changes in the mean
or the variance, and for analyzing data of complex nature such as video streams.

2. Model selection for the change-point problem: one-dimensional data

Let us start by summarizing how the change-point problem has been cast as a model
selection problem in the case of one-dimensional data (Lavielle, 2005; Lebarbier, 2005). Let
0 ≤ t1 < · · · < tn ≤ 1 be deterministic instants of observation, µ⋆ some measurable function
[0, 1] → H = R and

∀i ∈ {1, . . . , n} , Yi = µ⋆
i + εi, where µ⋆

i = µ⋆(ti)

and ε1, . . . , εn are independent and identically distributed random variables with E [εi ] = 0
and E

[
ε2i
]
= σ2 > 0. The mean µ⋆(ti) of the observations Yi is assumed piecewise constant

and the goal is to find change-points, that is the location of jumps in the mean. A classical
approach is to solve a least-squares regression problem by estimating µ⋆ with a piecewise
constant function, with the number of change-points selected through a model selection
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procedure (see Yao, 1988; Yao and Au, 1989; Lavielle and Moulines, 2000; Boysen et al.,
2009, and Section 4.3).

Since µ⋆ is only evaluated at t1, . . . , tn, it is considered as an element of Hn with its
Euclidean structure given by ‖f − g‖2 =

∑n
i=1(f(ti)− g(ti))

2 for every f, g ∈ Hn. We also
use the notation Y = (Y1, . . . , Yn)

′ ∈ Hn. For every function f : [0, 1] → H, we define
respectively its quadratic and empirical risk

R (f ) :=
1

n
‖f − µ⋆‖2 and R̂n (f ) :=

1

n
‖f − Y ‖2 . (1)

Let Mn be the set of segmentations of {1, . . . , n}, that is, the set of partitions of the form
{{1, . . . , k1}, {k1+1, . . . , k2}, . . . , {kD−1−1, . . . , n}} with D ≥ 1 and 1 ≤ k1 < · · · < kD−1 ≤
n. For every m ∈ Mn, let Dm = Card(m) and Sm be the set of functions {t1, . . . , tn } → H
that are constant over (ti)i∈λ for every segment λ ∈ m. Then, the associated empirical risk
minimizer, called regressogram, is defined by

µ̂m ∈ argminf∈Sm

{
R̂n (f )

}
, so that ∀λ ∈ m,∀i ∈ λ , µ̂m(ti) =

1

Card(λ)

∑

j∈λ

Yj .

The goal is to build a data-driven choice m̂ ∈ Mn such that the quadratic risk R ( µ̂m̂ )
is minimal. Following Birgé and Massart (2001) and Lebarbier (2005), this model selection
problem can be solved in a non-asymptotic manner by penalization:

m̂ ∈ argminm∈Mn

{
1

n
‖µ̂m − Y ‖2 + pen(m)

}
, (2)

where pen(m) = penBM(m) :=
σ2Dm

n

(
c1 log

(
n

Dm

)
+ c2

)
with c1, c2 > 0 . (3)

If the noise variables εi are Gaussian, Lebarbier (2005) proved that Eq. (2) leads to an
oracle inequality, that is, constants c1, c2,K1,K2 > 0 exist such that

E

[
1

n
‖µ̂m̂ − µ⋆‖2

]
≤ K1 inf

m∈Mn

{
1

n
‖µ̂m − µ⋆‖2 + penBM(m)

}
+

K2σ
2

n
. (4)

The log(n) term in the penalty is the unavoidable price for ignoring change-point locations
(Birgé and Massart, 2007). Furthermore, extensive simulation experiments of Lebarbier
(2005) suggested the values c1 = 2, c2 = 5 and an efficient data-driven way of estimating
σ2, called the slope heuristics.

3. Kernel change-point problem

Let us now describe how we generalize the approach of Section 2 to detecting changes in the
probability distribution of the signals that belong to any set (not necessarily vector spaces).

3.1 Problem

Let X be some set and assume we observe independent random variables X1, . . . ,Xn ∈ X
at time t1, . . . , tn with a piecewise-constant probability distribution. The goal is to find
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abrupt changes in the distribution of the time series X1, . . . ,Xn, whereas classical change-
point estimation seeks for changes in the first moments of the distribution such as the
mean or the variance (Korostelev and Korosteleva, 2011). Let k : X × X → R be some
positive definite kernel, H = Hk the associated reproducing kernel Hilbert space, and
Φ : X → H the canonical feature map defined by Φ(x) = k(x, ·) (see Schölkopf and Smola,
2001; Cucker and Zhou, 2007; Steinwart and Christmann, 2008, for a detailed presentation
of reproducing kernel Hilbert spaces). Then, for every i ∈ {1, . . . , n} we define

Yi = Φ(Xi) ∈ H

and µ⋆
i ∈ H the mean element of the distribution of Xi, that is,

∀g ∈ H , 〈µ⋆
i , g〉H = E [g(Xi) ] = E [〈Yi, g〉H ] .

Following Sriperumbudur et al. (2008, 2010), we can exploit the strong connection between
the mean element µ⋆

i and the distribution of Xi. For instance with translation-invariant
kernels satisfying a condition on their Fourier transform, equality of mean elements implies
equality of probability distributions (Sriperumbudur et al., 2008). So, we can focus on
detecting changes in the mean elements, assuming

µ⋆
1 = · · · = µ⋆

k⋆
1

, µ⋆
k⋆
1
+1 = · · · = µ⋆

k⋆
2

, · · · µ⋆
k⋆
D⋆−1

+1 = · · · = µ⋆
n

for some 1 ≤ k⋆1 < · · · < k⋆D⋆−1 ≤ n (the true change-point indices). Moreover if we
define εi := Yi − µ⋆

i (for which we assume its “variance” vi = E[‖εi‖2H] is finite for every
i), the approach of Section 2 formally extends from H = R to any Hilbert space H. The
quadratic and empirical risks of f ∈ Hn are then defined by Eq. (1) again with ‖f − g‖2 =∑n

i=1 ‖fi − gi‖2H for every f, g ∈ Hn.
The rest of the paper provides theoretical grounds for such an extension, showing in

particular a penalty of the form (3) can still be used in the kernel setting with σ2 replaced
by an upper bound on maxi vi. Since we aim at analyzing high-dimensional time series,
we will provide an analysis from the non-asymptotic point of view, by proving an oracle
inequality similar to Eq. (4). Note that such an extension is formally straightforward, but it
still requires to solve some theoretical issues, since some key elements for proving Eq. (4) are
no longer valid in the Hilbertian setting. These issues are detailed in the next subsection.

3.2 Related work and theoretical challenges

A kernelized version of the approach of Section 2 was proposed by Harchaoui and Cappé
(2007), but assuming the number of change-points is known. Our algorithm is the same for
every fixed number of change-points, but goes one step further, since we do not assume the
number of changes is known a priori.

The penalty (3) and the proofs of Birgé and Massart (2001) and Lebarbier (2005) cannot
be extended directly in our case because (i) Yi = Φ(Xi) are not real but Hilbert space
valued random variables (with a possibly infinite-dimensional Hilbert space), (ii) Birgé
and Massart’s approach heavily relies on the assumption that the noise εi is Gaussian
with a constant variance which is questionable in our Hilbertian setting. Indeed, if data
were Gaussian in the feature space, then any linear projection would follow a Gaussian
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distribution, and kernel principal component analysis with usual kernels indicate this does
not hold for most real data sets.

The key step in Birgé and Massart’s approach is to design a penalty pen(·) such that

∀m ∈ Mn , pen(m) ≥ penid(m) :=
1

n
‖µ̂m − µ⋆‖2 − 1

n
‖µ̂m − Y ‖2 (5)

with high probability, without taking pen(m) larger than necessary. The quantity penid(m)
is called “ideal penalty” since using it in Eq. (2) would lead to minimizing the quadratic
risk. For proving Eq. (5), Birgé and Massart (2001) use the concentration properties of
functions of Gaussian variables.

In our non-Gaussian Hilbertian setting, two concentration inequalities could be used in-
stead: (i) Pinelis-Sakhanenko’s inequality (Pinelis and Sakhanenko, 1986), (ii) Talagrand’s
inequality (see Bousquet, 2002). The first one cannot be used as such since it is not a con-
centration but a deviation inequality, hence too loose for our purpose. The second one is
not accurate enough in our setting because it yields too large deviation terms, see Remark 7
in the appendix.

4. Oracle inequality for the kernel change-point problem

This section shows how the penalty (3) can be extended to the Hilbertian setting of Sec-
tion 3, by proving an oracle inequality (Theorem 1).

4.1 Assumptions

Without a Gaussian homoscedastic assumption, we need to assume the following. Let us
recall vi := E[‖Yi − µ⋆

i ‖2H] = E[‖εi‖2H], for every i.

Bounded data/kernel : ∃M > 0 , sup
1≤i≤n

‖Yi‖2H = k(Xi,Xi) ≤ M2 a.s. (Db)

Bounded variance : ∃vmax < +∞ , max
1≤i≤n

vi ≤ vmax (Vmax)

Minimal variance : ∃0 < cmin < +∞ , min
1≤i≤n

vi ≥
M2

cmin
=: vmin > 0 . (Vmin)

Let us make a few remarks:

• (Db) implies (Vmax) with vmax = M2 since vi = E[k(Xi,Xi)]− ‖µ⋆
i ‖2H ≤ M2.

• if k is translation invariant, that is, k(x, x′) = k(x−x′) (e.g., the Gaussian and Laplace
kernels), then vi = k(0) − ‖µ⋆

i ‖2H so that (Vmax) and (Vmin) are assumptions on
‖µ⋆

i ‖H.

• if (Db) holds true, vi = tr(Σi) where Σi is the covariance operator of Φ(Xi).

• if X = R
d and k(x, y) = 〈x, y〉, vi = tr(Σi) where Σi is the covariance matrix of εi.
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4.2 Oracle inequality for change-point estimation

The following theorem shows an oracle inequality still holds for the kernel change-point
problem with a penalty of the form (3) where σ2 is replaced by vmax, up to numerical
constants.

Theorem 1 Let us consider the kernel change-point problem described in Section 3. As-
sume (Db), (Vmin) and (Vmax) hold true. Then, some numerical constant L1 > 0 exists
such that for every x > 0, an event of probability at least 1 − e−x exists on which, for any
C ≥ c2minL1 and any

m̂ ∈ argminm∈Mn

{
R̂n ( µ̂m ) + pen(m)

}
with pen(m) =

CvmaxDm

n

[
1 + log

(
n

Dm

)]
, (6)

R ( µ̂m̂ ) ≤ 2 inf
m∈M

{R ( µ̂m ) + 2pen(m)}+ C ( log 4 + x) vmax

n
. (7)

A sketch of proof of Theorem 1 is given in Section 4.4 and a complete proof can be found
in Appendix B.5. If X = R, k(x, y) = xy, and ∀i, vi = vmax > 0, we recover (Theorem 1)
an oracle inequality similar to the one of Lebarbier (2005).

Note that (Db) is a classical assumption in the machine learning literature on ker-
nels. It holds true for instance with bounded kernels such as the Gaussian kernel (see
Section 5.2). In particular, it avoids assuming data are Gaussian as in Birgé and Massart
(2001). Assumptions (Vmin)–(Vmax) are a natural extension of homoscedastic setting
of Birgé and Massart (2001), which would not be realistic in our Hilbertian setting. Note
that a fully heteroscedastic setting might be considered, for instance following the ideas of
Arlot and Celisse (2011), but with a more complex algorithm and no theoretical guarantees.
We choose (Vmin)–(Vmax) as a compromise between these two extremes.

The constant 2 in front of the oracle inequality (7) can be chosen arbitrary close to
1, at the price of an increase of the numerical constant L1 (which appears in the penalty
and in the remainder term through C). Besides, the constant C suggested by the proof of
Theorem 1 certainly is not tight, as in all similar non-asymptotic oracle inequalities.

Finally, let us mention a byproduct of the proof of Theorem 1 which is detailed in
Appendix A: If some prior knowledge restricts the possible positions of change-points to a
subset of { t1, . . . , tn } with O(log n) elements, then a smaller penalty can be used instead
of (6), leading to an oracle inequality that is optimal in the homoscedastic case.

4.3 Discussion: change-point problem and oracle inequalities

Let us discuss the relationship between minimizing the risk (proving an oracle inequality
like Eq. (4)) and the original change-point problem.

In the one-dimensional setting (X = H = R), an oracle inequality shows that µ̂m̂ is
close to the best piecewise-constant estimator of µ⋆ in terms of quadratic risk. So, we
can roughly expect that m̂ detects all jumps of size (µ⋆(ti+1)− µ⋆(ti))

2 significantly larger
than the noise-level σ2/N , where N is the number of observations available around the
jump. In the non-asymptotic point of view, it seems reasonable (and desirable) to aim
only at detecting jumps for which enough observations are available, which explains why
the procedure proposed by Lebarbier (2005) yields good results in terms of change-point
estimation.
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In the kernelized version of this approach, a similar heuristics holds (as confirmed by our
simulation experiments, see Section 6). However, both the size of a jump, now measured by
‖µ⋆

i+1 − µ⋆
i ‖2H, and the noise-level depend on the kernel k. So, k should be chosen in order

to maximize the signal-to-noise ratio at every true change-point.
For instance, even when X = R, choosing an appropriate kernel k can lead to detect

changes in the mean (with k(x, y) = xy), but also in other features of the distribution (for
instance with the Gaussian kernel, see the experiments of Section 6). Therefore, kernelizing
Birgé and Massart’s approach can also be useful in the one-dimensional case when we do
not look for changes in the mean.

4.4 Sketch of the proof of Theorem 1

The proof mostly follows the general approach of Birgé and Massart for proving an oracle
inequality, that is, we prove new concentration inequalities (Propositions 2 and 3) that are
needed to show the penalty defined by Eq. (6) satisfies Eq. (5) with a large probability.
Note that our proof actually leads to a more general model selection result (Theorem 8 in
the appendix) which admits corollaries of independent interest (see Appendix A).

4.4.1 Elementary computations

The proof starts by splitting the ideal penalty defined by Eq. (6) into two terms that
will be concentrated separately. All statements that are not proved here are detailed in
Appendix B.1.

Recall that for every m ∈ Mn, Sm is the vector space of functions {t1, . . . , tn } → H
that are constant over each λ ∈ m, and all functions f : { t1, . . . , tn } → H are written as
elements of Hn by denoting fi = f(ti). In particular, Sm is considered as a linear subspace
of Hn. For f, g ∈ Hn, let 〈f, g〉 :=

∑n
i=1 〈fi, gi〉H denote the canonical scalar product in

Hn. The associated regressogram estimator is uniquely defined by

µ̂m = ΠmY where ∀g ∈ Hn , Πmg := argminf∈Sm

{
1

n
‖f − g‖2H

}

is the orthogonal projection of g onto Sm. We define also µ⋆
m := Πmµ⋆, and remark that

∀g ∈ Hn , ∀λ ∈ m, ∀i ∈ λ , (Πmg)i =
1

Card(λ)

∑

j∈λ

gj . (8)

Then,

penid(m) =
2

n
‖Πmε‖2 − 2

n
〈(I −Πm)µ⋆, ε〉 − 1

n
‖ε‖2 . (9)

The term n−1‖ε‖2 does not depend on m so it can be removed from the ideal penalty. The
expectations of the two other terms are given by

E [〈(I −Πm)µ⋆, ε〉 ] = 0 and E

[
‖Πmε‖2

]
=
∑

λ∈m

vλ where vλ :=
1

Card(λ)

∑

i∈λ

vi (10)

so that E

[
penid(m) +

1

n
‖ε‖2

]
=

2

n

∑

λ∈m

vλ . (11)
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Then, the key results we need for showing the penalty (6) satisfies Eq. (5) are concentration
inequalities for 〈(I −Πm)µ⋆, ε〉 (Proposition 2) and for ‖Πmε‖2 (Proposition 3).

4.4.2 Two new concentration inequalities

First, for the linear term, we prove in Appendix B.2 the following result, mostly by applying
Bernstein’s inequality.

Proposition 2 (Concentration of the linear term) Let m ∈ Mn and Πm be defined
by Eq. (8). If (Db) holds true, then for every x > 0, with probability at least 1− 2e−x,

∀θ > 0 , |〈(I −Πm)µ⋆, ε〉| ≤ θ ‖µ⋆
m − µ⋆‖2 +

(
vmax

2θ
+

4M2

3

)
x . (12)

Second, for the quadratic term, we prove in Appendix B.3 the following result, that relies
on a combination of Bernstein and Pinelis-Sakhanenko inequalities. Note that directly using
Talagrand’s inequality (Bousquet, 2002) would lead to a less precise result in our setting,
see Remark 7 in the appendix for details.

Proposition 3 (Concentration of the quadratic term) Let m ∈ Mn and Πm be de-
fined by Eq. (8). If (Db), (Vmin) and (Vmax) hold true, then, for every x > 0, with
probability at least 1− 2e−x,

∀θ ∈ (0, 1] ,
∣∣∣‖Πmε‖2 − E

[
‖Πmε‖2

]∣∣∣ ≤ θE
[
‖Πmε‖2

]
+

49c2minvmaxx

θ
. (13)

4.4.3 Conclusion of the proof

The first step towards Eq. (5) is to get a uniform concentration inequality for the ideal
penalty from the combination of Eq. (9), Eq. (11), Proposition 2 and Proposition 3: for
every x ≥ 0, an event Ωm(x) of probability at least 1− 4e−x exists on which

∀θ ∈ (0, 1] ,

∣∣∣∣∣penid(m) +
1

n
‖ε‖2 − 2

n

∑

λ

vλ

∣∣∣∣∣ ≤
4θ

n
‖µ⋆ − µ̂m‖2 + r(x, θ) , (14)

where r(x, θ) := 213c2minvmaxx/(nθ). By definition (6) of m̂, for every m ∈ Mn,

1

n
‖µ⋆ − µ̂m̂‖2 + [pen(m̂)− penid(m̂) ] ≤ 1

n
‖µ⋆ − µ̂m‖2 + [pen(m)− penid(m) ] . (15)

Therefore, uniform bounds on the deviations of pen(m)− penid(m)−n−1‖ε‖2 are sufficient
to get an oracle inequality. Let (xm)m∈Mn

∈ (0,+∞)Mn to be chosen later, and define
the event Ω :=

⋂
m∈Mn

Ωm(xm). By the union bound, P(Ω) ≥ 1 − 4
∑

m∈Mn
e−xm . Then,

combining Eq. (14) and (15), for every penalty such that pen(m) ≥ 2n−1
∑

λ∈m vλ+r(xm, θ)
for every m ∈ Mn, on Ω, for every θ ∈ (0, 1],

1− 4θ

n
‖µ⋆ − µ̂m̂‖2 ≤ inf

m∈M

{
1 + 4θ

n
‖µ⋆ − µ̂m‖2 + pen(m)− 2

n

∑

λ∈m

vλ + r(xm, θ)

}
.

8
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This proves a general oracle inequality (stated as Theorem 8 in the appendix), which implies
Theorem 1 by taking xm = Dm(log(2) + 1+ log( n

Dm
)) + log 4+ x. Indeed, taking θ = 1/12,

we get 2
∑

λ∈m vλ+nr(xm, θ) ≤ vmaxDmC[1+ log( n
Dm

)]+C3 for some constants C,C3, and
m̂ remains unchanged by removing C3 from the penalty. Finally, the probability of Ωc is
upper bounded by

∑

1≤D≤n

Card {m ∈ Mn /Dm = D} e−D( log(2)+1+log( n

D
))−x ≤ e−x

∑

D≥1

2−D = e−x .

5. Kernel multiple change-point algorithm

This section summarizes the multiple change-point estimation algorithm suggested by The-
orem 1, and gives some examples of kernels for vectorial and non-vectorial data.

5.1 Algorithm

Input: observations X1, . . . ,Xn ∈ X , a positive definite kernel k : X ×X → R, some
constants C ≥ 1, Dmax ≤ n and vmax such that (Vmax) holds true.

1. Define Φ(x) = k(x, ·) ∈ H, for every x ∈ X and Y = (Φ(Xi))1≤i≤n ∈ Hn.

2. Define µ̂m ∈ Hn such that ∀λ ∈ m , ∀i ∈ λ , (µ̂m)i = n−1
∑

j∈λΦ(Xj) , for every
m ∈ Mn, where Mn denotes the set of segmentations of {1, . . . , n}.

3. Compute m̂D ∈ argminm∈Mn ,Dm=D{n−1‖Y − µ̂m‖2}, for every D ∈ {1, . . . ,Dmax}.

4. Compute D̂ ∈ argminD∈{1,...,Dmax}{n−1‖Y − µ̂m‖2 + CvmaxDm

n
(log( n

Dm
) + 1)}.

Output: segmentation m̂ = m̂
D̂
.

The above algorithm can be seen as a kernelized version of the one proposed by Lebarbier
(2005). Our main contributions are the theoretical guarantees of Section 4 and the experi-
ments of Section 6.

Computational complexity: For each fixed D, step 3 is the dynamic programming
algorithm proposed by Harchaoui and Cappé (2007); see also (Kay, 1993). Computing
(m̂D)1≤D≤Dmax

requires at most O(Dmaxn
2) times the cost of computing any k(Xi,Xj).

Setting vmax: If (Db) holds true, one can always take vmax = M2, but this bound might
be loose. In most real-world applications, it is realistic to assume that 0 < t < t < 1 are
known such that all the change-points belong to [t, t], that is, 0 < t < t⋆1 and t⋆D⋆−1 < t < 1.
Such “edge instants” can usually be inferred from real-world knowledge, as in Section 6.2.
Then, the signal is stationary over [0, t] and over [t, 1, and we propose to estimate vmax by

v̂max = max
{
tr
(
Σ̂0:t

)
, tr
(
Σ̂t:1

)}
(16)

where Σ̂a:b is the empirical covariance estimator of (Φ(Xi))a≤ti≤b. We shall use this estimate
in the experiments of Section 6.
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5.2 Examples of kernels

The algorithm of Section 5.1 can be used with various sets X (not necessarily vector spaces),
and with several different kernels k for a given X . In particular, our approach is flexible
with respect to the nature of data. It can handle any type of data as long as positive-definite
kernel similarity measure for such data is available. Instances of such data are simplicial
data (histograms), texts, trees, among others (Shawe-Taylor and Cristianini, 2004). Some
classical kernel choices are detailed below.

• when X = R, k(x, y) = xy and we recover the algorithm by Lebarbier (2005) since
‖Φ(x)− Φ(x′)‖2H = (x− x′)2.

• when X = R
d, k(x, y) = 〈x, y〉

Rd yields its natural extension since ‖Φ(x)− Φ(x′)‖2H =∑d
i=1 (xi − x′i )

2 the squared Euclidean norm in R
d.

• when X = R
d, other choices are the Gaussian kernel with bandwidth h > 0, kGh (x, y) =

exp(−‖x− y‖2 /(2h2)) and the Laplace kernel with bandwidth h > 0, kLh (x, y) =
exp(−‖x− y‖ /(2h2)); see Section 6 for experimental results with such kernels.

• when X = {(p1, . . . , pd) ∈ [0, 1]d such that p1 + · · ·+ pd = 1} the set of d-dimensional
histograms, the intersection kernel is k(p, q) =

∑d
i=1 min(pi, qi) (Hein and Bousquet,

2004; Maji et al., 2008); see Section 6 for experimental results with such a kernel.

6. Simulation experiments

We now present experimental results on the performance of our approach, respectively on
synthetic data and on real data.

6.1 Synthetic data

First, we study the statistical behaviour of our approach for estimating the change-point
locations of synthetic time series with X = R and n = 1000. The 9 change-point locations
are fixed and chosen so the segments have various lengths, see the middle part of Figure 1.
The intra-segment distributions are chosen randomly among the first ten probability distri-
butions considered by Marron and Wand (1992) with common mean and variance. Since
they only differ by their higher-order moments, standard approaches aiming at detecting
changes in the mean or in variance would fail in such a situation.

We take the Gaussian RBF kernel k(x, y) = exp(−(x− y)2/(2h2)) with 2h2 among 0.1,
1 and median1≤i,j≤n{‖Xi − Xj‖2}, the latter being a classical heuristic in kernel-based
methods. We use the strategy presented in Section 5 and estimate vmax with v̂max :=
max{tr(Σ̂0:t), tr(Σ̂t:1)} where t = 0.05, t = 0.95 and ti = i/n for all i. In preliminary
experiments, we tested other strategies such as kernel-based counterparts of estimates of
the maximal intra-segment variance using over-segmentation/under-segmentation or the so-
called slope heuristic (Birgé and Massart, 2007); v̂max clearly was the best approach overall.

Comparing the average quadratic risks over 50 replications, the heuristic choice of the
bandwidth clearly leads to the best performance (Table 2 in Appendix). Yet, fixed values of
the bandwidth still lead to satisfactory results. A more detailed account of the performance
of our algorithm is given in Figure 1, where the bandwidth is chosen with the classical
heuristic. The left part of Figure 1 shows our criterion is minimal (in expectation) for

10



Kernel change-point detection

0 5 10 15 20 25 30 35 40

0.4

0.45

0.5

0.55

 

 

Emp. risk
Crit.
True risk

0 200 400 600 800 1000
0

0.005

0.01

0.015

0.02

0.025

0 10 20 30
0

50

100

150

200

250

Figure 1: Synthetic data. Left: Expectations of the model selection criterion, empirical
risk, and quadratic risk as a function of the number of candidate change-points.
Middle: Pictorial representation of the frequency of detection of a change-point
at each position; blue lines correspond to the true change-points. Right: Distri-
bution of the estimated number of change-points D̂ − 1.

Synthetic Audio Video

maxt̂∈{ t̂1,...,t̂D−1}min
t⋆∈{ t⋆

1
,...,t⋆

D⋆−1
}
∣∣t̂− t⋆

∣∣ 0.049±0.003 0.061±0.005 0.081±0.007

max
t⋆∈{ t⋆

1
,...,t⋆

D⋆−1
}min

t̂∈{ t̂1,...,t̂D−1}
∣∣t̂− t⋆

∣∣ 0.053±0.006 0.079±0.006 0.093±0.007

Table 1: Average Hausdorff distances between the estimated and true segmentation in the
three experiments.

the same number of change-points as the quadratic risk, which equals the true number of
change-points. On Figures 1–2, one can notice the empirical risk increases for large D. This
phenomenon is due to the fact that we use heuristic rules for making the computation of m̂D

faster, that do not always give the exact minimizer of the empirical risk for large values of
D. Nevertheless, our algorithm is still accurate enough around the true and selected number
of change-points. The right part of Figure 1 confirms the estimated number of breakpoints
D̂ − 1 is distributed around their true number. The middle part of Figure 1 represents
the frequency of detection of a change-point at each location; for representation purposes,
we fitted a mixture of gaussians centered around the true change-points, so their standard-
deviations represent the accuracy of estimation of each true change-point. In particular,
we observe the change-points are rather accurately detected, and that shorter segments are
harder to detect accurately.

Table 1 provides results on the accuracy in estimating the change-point location in
terms of Hausdorff distance between the set of estimated change-points {t̂1, . . . , t̂D−1} and
the set of true change-points

{
t⋆1, . . . , t

⋆
D⋆−1

}
, a common distance measure in the literature

(Boysen et al., 2009).
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Figure 2: Real data experiment. Left and middle: our criterion and the empirical risk
as a function of D, for one particular chunk (left: audio stream; middle: video
stream). Right: Distribution of the estimated number of change-points D̂ − 1
(video).

6.2 Real data: audio and video temporal segmentation

We now tackle the problem of temporal segmentation of the audio (resp. video) stream
of entertainment TV shows into semantically homogeneous segments: trailer, audience ap-
plause, interview, music performance, and so on. We considered 50 chunks of audio (resp.
video) streams delimited with two annotated changes at the border of this chunk. For each
chunk, the true number of segments (given by manual annotation of semantically homoge-
neous parts of the TV show) is 5, and our goal is to recover these segments automatically,
without knowing their number. Each chunk’s length is at most 30 minutes of the TV show
and of 20 minutes on average.

Audio part We extracted every 10 ms the first 12 Mel Frequency Cepstral Coefficients
(MFCC) of the audio track (Rabiner and Schäfer, 2007). MFCCs are commonly used fea-
tures in speech recognition and audio processing. They provide a representation of the
short-term power spectrum of a sound. We subsampled the signal when necessary to reduce
the computing time of the dynamic programming part of our method. We used the Gaus-
sian RBF kernel with a bandwidth automatically set using the classical heuristic rule as in
Section 6.1. We present the performance of our approach on one particular audio chunk in
Figure 2 (left). On this example, our approach selects the correct number of change-points
in the time series on average (see Figure 3 in Appendix D) with a good accuracy (Table 1).

Video part We extracted 1024-dimensional GIST descriptors for each frame of the video
track (Oliva and Torralba, 2001). GIST descriptors aggregate perceptual dimensions (nat-
uralness, openness, roughness, expansion, ruggedness) that represent the dominant spa-
tial structure of a scene. Again, we subsampled the signal when necessary to reduce
the computing time. We used the so-called intersection kernel (Hein and Bousquet, 2004;
Maji et al., 2008), which is appropriate for data belonging to d-dimensional simplices such
as histograms-like GIST descriptors. Note that an attractive feature of the intersection ker-
nel is that there is no hyperparameter (bandwidth) to tune. We present the performance
of our approach on a particular video chunk in Figure 2 (middle and right). Here, the

12
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good performance of our approach is less clear, as the average of the selected dimensions
by our approach is 8.85 instead of 5. There are two explanations: (i) our estimate of vmax

is too rough, and over-segmentation is favored in the subsequent criterion, (ii) the GIST
descriptors are too loose descriptors for this task.

7. Conclusion

We have proposed a penalty generalizing the one of Lebarbier (2005) to the kernel change-
point problem, and showed it satisfies a non-asymptotic oracle inequality. Such an extension
significantly broadens the possible applications of this penalization approach to the change-
point problem. The theoretical tools developed for our method could also be used in other
settings, such as clustering in general Hilbert spaces. As a future direction, we would like
to investigate the kernel selection problem, which remains a major issue as in most machine
learning problems (see the discussion of Section 4.3).
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Appendix A. Oracle inequality with a small collection of segmentations

Let us state a result which slightly differs from the primary goal of the paper (Theorem 1)
but is a byproduct and can be of independent interest. Assume a subset M′

n of the set Mn

of all segmentations of {1, . . . , n} is given such that

∃αM′
n
> 0 , Card

(
M′

n

)
≤ n

α
M′

n . (Pol)

In particular, this setting corresponds to the situation where some prior knowledge restricts
possible change-point locations to a subset of {t1, . . . , tn } with O(log n) elements. Let us
now consider the model selection procedure defined by

m̂ ∈ argminm∈M′
n

{
1

n
‖µ̂m − Y ‖2 + pen(m)

}
. (17)

Then, Mallows’ heuristics (Mallows, 1973) states that pen(m) ≈ E [penid(m) ] leads to an
oracle inequality. Making this informal argument rigorous, we obtain the following theorem,
where assumption (Vmin) is replaced by a weakest assumption:

∃0 < cmin < +∞ , ∀m ∈ M′
n , ∀λ ∈ m, vλ :=

1

Card(λ)

∑

i∈λ

vi ≥
M2

cmin
= vmin . (Vmin′)

Theorem 4 If (Db), (Vmin′), (Vmax) hold true and if m̂ satisfies Eq. (17) with

∀m ∈ M′
n , pen(m) ≥ 2

n

∑

λ∈m

vλ , (18)

then, for every x ≥ 0, an event of probability at least 1 − e−x exists on which, for every
θ ∈ (0, 1/8),

R ( µ̂m̂ ) ≤ 1

1− 4θ
inf

m∈M′
n

{
(1 + 4θ )R ( µ̂m ) + pen(m)− 2

n

∑

λ∈m

vλ

}

+
[
x+ log

(
4Card

(
M′

n

))] 426c2minvmax

nθ
·

Theorem 4 is proved in Section B.6. Note that Theorem 4 holds for every M′
n (even

M′
n = Mn), but the remainder term is only reasonably small if assumption (Pol) holds

true.
Since (Vmax) implies 2

∑
λ∈m vλ ≤ 2Dmvmax, we get a formula for the penalty if an

upper bound on vmax is known or can be estimated. The corresponding procedure satisfies
the following oracle inequality.

Corollary 5 In the framework of Theorem 4, let us assume some constant A > 0 exists
such that

pen(m) =
2DmA

n
≥ 2Dmvmax

n
. (19)
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Then, for every x ≥ 0, an event of probability at least 1 − e−x exists on which, for every
θ ∈ (0, 1/8),

R ( µ̂m̂ ) ≤ A

vmin

(
1 +

10

log(n)

)
inf

m∈M′
n

{R ( µ̂m )}

+ 426Ac3min

log(n) (x+ log (4Card (M′
n ) ))

n
. (20)

Corollary 5 is proved in Section B.7. If (Db) holds true for some known constant M (for
instance, M = 1 with the Gaussian and Laplace kernels), one can take A = M2 ≥ vmax in
the penalty (19).

If A = vmax, one recovers the leading constant vmax/vmin in front of the oracle inequality,
which is the price for ignoring the variations of noise along the signal. In particular, when

∀1 ≤ i ≤ n, vi = vmax > 0 , (Vc)

(Vmin′) holds true with vmin = vmax and the leading constant in the oracle inequality (20)
is one at first order. If assumption (Pol) holds true, the remainder term is of order at most
(log(n))2/n so that (20) is an “optimal” oracle inequality similar to the one proved when
H = R by Birgé and Massart (2007) in the Gaussian regression setting.

The reason why penalties in Eq. (6) and (19) are different is that Eq. (19) only yields
a good penalty when (Pol) holds true, so not for change-point detection as in Theorem 1.
Indeed, Eq. (5) holds for pen(m) ≈ E [penid(m) ] when the collection of models is “small”
(that is, if (Pol) holds true), but not with a collection as large as Mn. Eq. (6) shows which
additional terms are necessary to get Eq. (5) with a “large” collection of models like Mn.

Appendix B. Proofs

This section gathers the proofs of all results stated previously in the paper.

B.1 Proof of the statements of Section 4.4.1

Proof of Eq. (8) Let f ∈ Sm. For every λ ∈ m, let us define fλ as the common value of
(fi)i∈λ, and

gλ :=
1

Card(λ)

∑

i∈λ

gi .

Then,

‖f − g‖2 =
∑

λ∈m

∑

i∈λ

‖fλ − gi‖2H

=
∑

λ∈m

∑

i∈λ

[
‖fλ − gλ‖2H + ‖gi − gλ‖2H + 2 〈fλ − gλ, gλ − gi〉H

]

=
∑

λ∈m

[
Card(λ) ‖fλ − gλ‖2H

]
+
∑

λ∈m

∑

i∈λ

‖gi − gλ‖2H + 2
∑

λ∈m

〈
fλ − gλ,

∑

i∈λ

(gλ − gi )

〉

H

=
∑

λ∈m

[
Card(λ) ‖fλ − gλ‖2H

]
+
∑

λ∈m

∑

i∈λ

‖gi − gλ‖2H .
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Then, ‖f − g‖2 is minimal if and only if fλ = gλ for every λ ∈ m.
For proving Eq. (9), we compute the empirical and quadratic risks of µ̂m:

1

n
‖Y − µ̂m‖2 = 1

n
‖µ⋆ − µ⋆

m‖2 + 1

n
‖ε‖2 − 1

n
‖Πmε‖2H +

2

n
〈(I −Πm)µ⋆, ε〉 (21)

1

n
‖µ⋆ − µ̂m‖2 = 1

n
‖µ⋆ − µ⋆

m‖2 + 1

n
‖Πmε‖2 (22)

The term n−1‖µ⋆ − µ⋆
m‖2 is called approximation error, or bias.

Proof of Eq. (21)

‖Y − µ̂m‖2 = ‖Y −ΠmY ‖2

= ‖µ⋆ −Πmµ⋆‖2 + ‖ε−Πmε‖2 + 2 〈µ⋆ −Πmµ⋆, ε−Πmε〉
= ‖µ⋆ − µ⋆

m‖2 + ‖ε‖2 − ‖Πmε‖2 + 2 〈(I −Πm)µ⋆, ε〉

since Πm is an orthogonal projection.

Proof of Eq. (22)

‖µ⋆ − µ̂m‖2 = ‖µ⋆ − µ⋆
m‖2 + 2 〈µ⋆ − µ⋆

m, Πmε〉+ ‖Πmε‖2

= ‖µ⋆ − µ⋆
m‖2 + ‖Πmε‖2

since Πm is an orthogonal projection.

Proof of Eq. (9) Eq. (9) follows from Eq. (21)–(22) and from the definition (5) of the
ideal penalty.

For proving Eq. (10), we will use that

∀i, j ∈ {1, . . . , n} , E
[
〈εi, εj〉H

]
= vi1i=j = 1i=j

(
E [k(Xi,Xi) ]− ‖µ⋆

i ‖2H
)

. (23)

Proof of Eq. (23) For every i, j ∈ {1, . . . , n},

E
[
〈εi, εj〉H

]
= E

[
〈Φ(Xi), Φ(Xj)〉H

]
− E

[
〈µ⋆

i , Φ(Xj)〉H
]
− E

[〈
Φ(Xi), µ

⋆
j

〉
H

]
+
〈
µ⋆
i , µ

⋆
j

〉
H

= E
[
〈Φ(Xi), Φ(Xj)〉H

]
−
〈
µ⋆
i , µ

⋆
j

〉
H

= 1i=j

(
E [k(Xi,Xi) ]− ‖µ⋆

i ‖2H
)

Proof of Eq. (10) The first equality comes from the fact that E [〈f, ε〉 ] = 0 for every
(deterministic) f ∈ Hn, by definition of ε = Y −µ⋆. For the second equality, Eq. (8) implies

‖Πmε‖2 =
∑

λ∈m


nλ

∥∥∥∥∥
1

nλ

∑

i∈λ

εi

∥∥∥∥∥

2

H


 =

∑

λ∈m


 1

nλ

∥∥∥∥∥
∑

i∈λ

εi

∥∥∥∥∥

2

H




=
∑

λ∈m


 1

nλ

∑

i,j∈λ

〈εi, εj〉H


 (24)
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where ∀λ ∈ m, nλ := Card (λ). Now, using Eq. (23), we get

E

[
‖Πmε‖2

]
=
∑

λ∈m

[
1

nλ

∑

i∈λ

vi

]
=
∑

λ∈m

vλ .

Eq. (11) follows from Eq. (9)–(10).

B.2 Proof of Proposition 2

Let us note

Sm = 〈µ⋆ − µ⋆
m, ε〉 =

n∑

i=1

Zi with Zi = 〈(µ⋆ − µ⋆
m)i, εi〉H .

The Zi are independent and centered, so Eq. (26)–(27) in Lemma 6 below (which requires as-
sumption (Db)) show the conditions of Bernstein’s inequality are satisfied (see Theorem 9).
Therefore, for every x ≥ 0, with probability at least 1− 2e−x,

∣∣∣∣∣

n∑

i=1

Zi

∣∣∣∣∣ ≤
√

2vmax ‖µ⋆ − µ⋆
m‖2 x+

4M2x

3

≤ θ ‖µ⋆ − µ⋆
m‖2 +

(
vmax

2θ
+

4M2

3

)
x

for every θ > 0, using 2ab ≤ θa2 + θ−1b2.
A key argument in the proof is the following lemma.

Lemma 6 For every m ∈ Mn, if (Db) holds true (hence also (Vmax)), the following
holds with probability one:

∀i ∈ {1, . . . , n} ‖µ⋆
i ‖H ≤ M , ‖εi‖H ≤ 2M (25)

and ‖(µ⋆ − µ⋆
m)i‖H ≤ 2M so that |Zi| ≤ 4M2 . (26)

In addition,
n∑

i=1

Var (Zi ) ≤ vmax ‖µ⋆ − µ⋆
m‖2 . (27)

Proof [of Lemma 6] First, remark that for every i,

vi = E

[
‖εi‖2

]
= E [k(Xi,Xi) ]− ‖µ⋆

i ‖2H ≥ 0 ,

so that with (Db),
‖µ⋆

i ‖2H ≤ E [k(Xi,Xi) ] ≤ M2 ,

which proves the first bound in Eq. (25). As a consequence, by the triangular inequality,

‖εi‖H ≤ ‖Yi‖H + ‖µ⋆
i ‖H ≤ 2M ,

that is, the second inequality in Eq. (25) holds true.
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Let us now define, for every i ∈ {1, . . . , n}, λ(i) as the unique element of m such that
i ∈ λ(i). Then,

(µ⋆ − µ⋆
m)i =

1

Card(λ(i))

∑

j∈λ(i)

(µ⋆
i − µ⋆

j)

so that the triangular inequality and Eq. (25) imply

‖(µ⋆ − µ⋆
m)i‖H ≤ sup

j∈λ(i)

∥∥µ⋆
i − µ⋆

j

∥∥
H
≤ sup

1≤j,k≤n

∥∥µ⋆
k − µ⋆

j

∥∥
H
≤ 2 sup

1≤j≤n

∥∥µ⋆
j

∥∥
H
≤ 2M ,

that is, the first part of Eq. (26) holds true. The second part of Eq. (26) directly follows
from Cauchy-Schwarz inequality. For proving Eq. (27), we remark that

E
[
Z2
i

]
= E

[
〈(µ⋆ − µ⋆

m)i, εi〉2H
]

≤ ‖(µ⋆ − µ⋆
m)i‖2H E

[
‖εi‖2H

]
by Cauchy-Schwarz inequality

≤ ‖(µ⋆ − µ⋆
m)i‖2H vmax by (Vmax) ,

so that

n∑

i=1

Var (Zi ) ≤ vmax ‖µ⋆ − µ⋆
m‖2 .

B.3 Proof of Proposition 3

This proof is inspired from Sauvé (2009), where a similar concentration inequality was
needed for real-valued data, in the context of regression with piecewise polynomial esti-
mators. As in our setting, Talagrand’s inequality was not precise enough in the setting of
Sauvé (2009).

Let us define

Tm := ‖Πmε‖2 =
∑

λ∈m

Tλ with Tλ :=
1

nλ

∥∥∥∥∥∥

∑

j∈λ

εj

∥∥∥∥∥∥

2

H

,

according to Eq. (24). Now, remark that (Tλ)λ∈m is a sequence of independent real-valued
random variables, so we can get a concentration inequality for Tm via Bernstein’s inequality,
as long as Tλ satisfies some moment conditions (see Theorem 9). The rest of the proof will
consist in showing such moment bounds, by using Pinelis-Sakhanenko deviation inequality
(Proposition 10).

First, we showed in the proof of Eq. (10) that for every λ ∈ m, E[Tλ] = vλ. Second, for
every q ≥ 2,

E
[
T q
λ

]
=

1

nq
λ

E



∥∥∥∥∥
∑

k∈λ

εk

∥∥∥∥∥

2q

H


 =

1

nq
λ

∫ 2nλM

0
2qx2q−1

P



∥∥∥∥∥
∑

k∈λ

εk

∥∥∥∥∥
H

≥ x


 dx ,
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since for every k, ‖εk‖H ≤ 2M almost surely by Lemma 6, using (Db). Using again that
‖εk‖H ≤ 2M a.s., we get that for every p ≥ 2 and λ ∈ m,

∑

k∈λ

E
[
‖εk‖pH

]
≤ (2M )p−2

∑

k∈λ

vk ≤ p!

2

(
∑

k∈λ

vk

)(
2M

3

)p−2

,

that is, the assumption of Pinelis-Sakhanenko deviation inequality (see Proposition 10)
holds true with c = 2M/3 and σ2 =

∑
k∈λ vk. Therefore, using (Vmin), we get

E
[
T q
λ

]
≤ 1

nq
λ

∫ 2nλM

0
2qx2q−12 exp

[
− x2

2
(
nλvλ +

2Mx
3

)
]
dx

≤ 4q

nq
λ

∫ 2nλM

0
x2q−1 exp

[
− x2

2nλvλ
(
1 + 4cmin

3

)
]
dx

≤ 2× (q!)

[
2vλ

(
1 +

4cmin

3

)]q
,

since for every q ≥ 1,
∫ +∞

0
u2q−1 exp(−u2/2)du = 2q−1(q − 1)! .

Finally summing over λ ∈ m, it comes (using in particular that cmin ≥ 1)

∑

λ∈m

E
[
T q
λ

]
≤ q!

2
× 4

∑

λ∈m

[
2vλ

(
1 +

4cmin

3

)]q

≤ q!

2
× 4

∑

λ∈m

[
14cminvλ

3

]q

≤ q!

2

∑

λ∈m

(
87.5 c2minvmaxvλ

)
[ 5cminvmax ]

q−2 ,

that is, condition (35) of Bernstein’s inequality holds with

v = 87.5 vmaxc
2
min

∑

λ∈m

vλ and c = 5cminvmax .

Therefore, Bernstein inequality (see Theorem 9) shows that for every x > 0, with probability
at least 1− 2e−x,

|Tm − E [Tm ]| ≤
√
175vmaxc2min

∑

λ∈m

vλx+ 5vmaxcminx

≤ θ
∑

λ

vλ +

(
44c2min

θ
+ 5cmin

)
vmaxx

≤ θ
∑

λ

vλ +
49c2minvmaxx

θ

for every θ ∈ (0, 1], using also that cmin ≥ 1.
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Remark 7 Let us emphasize that the classical approach for proving concentration results
on ‖Πmε‖ when ε is bounded would not yield a result as precise as Proposition 3. Using for
instance Talagrand’s inequality (see Bousquet, 2002), we get

‖Πmε‖ = sup
f∈Hn,‖f‖=1

|〈f, Πmε〉| = sup
f∈Hn,‖f‖=1

∣∣∣∣∣

n∑

i=1

〈fi, (Πmε)i〉H

∣∣∣∣∣

and remark that for every f ∈ Hn, the variables 〈fi, (Πmε)i〉H are real-valued, independent,
centered and bounded. Then, instead of a main deviation term θv with v = E[‖Πmε‖2] as
in Eq. (13), we would have v of order

∑n
i=1 supf∈Hn,‖f‖=1 E[〈fi, (Πmε)i〉2H] which is much

larger than E[‖Πmε‖2] = supf∈Hn,‖f‖=1

∑n
i=1 E[〈fi, (Πmε)i〉2H]. In the remainder of the

proof, we do need a main deviation term
√
2vx with v proportional to E[‖Πmε‖2], which is

why we have to prove a result like Proposition 3.

B.4 Proof of a general model selection theorem

As sketched in Section 4.4, we first prove a general oracle inequality from which Theorems 1
and 4 are corollaries.

Theorem 8 Let M′
n ⊂ Mn and m̂ be some model selection procedure satisfying

m̂ ∈ argminm∈M′
n

{
1

n
‖µ̂m − Y ‖2 + pen(m)

}
. (28)

Assume that (Db), (Vmin), and (Vmax) hold true. Let (xm)m∈M′
n
be any collection of

nonnegative numbers and assume that

∀m ∈ Mn , pen(m) ≥ 2

n

∑

λ∈m

vλ + r(xm, θ) , (29)

with r(xm, θ) := 213c2minvmaxx(θn)
−1. Then, an event Ω(xm) exists such that P(Ω(xm)) ≥

1− 4
∑

m∈M′
n
e−xm and, on Ω(xm), for every θ ∈ (0, 1/8),

1

n
‖µ⋆ − µ̂m̂‖2 ≤ 1

1− 4θ
inf

m∈M

{
(1 + 4θ )

1

n
‖µ⋆ − µ̂m‖2 + pen(m)− 2

n

∑

λ∈m

vλ + r(xm, θ)

}
.

Proof [of Theorem 8] The first step is to combine Eq. (9), Eq. (11), Proposition 2 and
Proposition 3. We get that for every x ≥ 0, an event Ωm(x) of probability at least 1− 4e−x

exists on which, for every θ > 0,

∣∣∣∣∣penid(m) +
1

n
‖ε‖2 − 2

n

∑

λ

vλ

∣∣∣∣∣ ≤
2θ

n
E

[
‖µ⋆ − µ̂m‖2

]
+

98c2min

θ

vmaxx

n
+ 2

(
vmax

2θ
+

4M2

3

)
x

n

≤ 2θ

n
E

[
‖µ⋆ − µ̂m‖2

]
+

[
98c2min + 1

θ
+

8cmin

3

]
vmaxx

n
,

where we used (Vmin).
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Using again Proposition 3 in combination with Eq. (22), we get that on Ωm(x),

∀θ ∈ (0, 1) , E

[
‖µ⋆ − µ̂m‖2

]
≤ (1− θ )−1

[
‖µ⋆ − µ̂m‖2 + θ−149c2minvmaxx

]
. (30)

Therefore, on Ωm(x), for every θ ∈ (0, 1/8),

∣∣∣∣∣penid(m) +
1

n
‖ε‖2 − 2

n

∑

λ

vλ

∣∣∣∣∣ (31)

≤ 2θ

(1− θ)n
‖µ⋆ − µ̂m‖2 +

[
2
(
1 + (1− θ)−1

)
49c2min + 1

θ
+

8cmin

3

]
vmaxx

n

≤ 4θ

n
‖µ⋆ − µ̂m‖2 +

[
210c2min +

4cmin

3
+ 1

]
vmaxx

θn

=
4θ

n
‖µ⋆ − µ̂m‖2 + r0(x, θ) , (32)

where

r0(x, θ) :=

[
210c2min +

4cmin

3
+ 1

]
vmaxx

θn
≤ 213c2minvmaxx

θn
= r(x, θ) .

Then, let Ω(xm) :=
⋂

m∈Mn
Ωm(xm). By the union bound, P(Ω) ≥ 1 − 4

∑
m∈Mn

e−xm .
Now, by definition (28) of m̂, for every m ∈ M′

n,

1

n
‖µ⋆ − µ̂m̂‖2 + [pen(m̂)− penid(m̂) ] ≤ 1

n
‖µ⋆ − µ̂m‖2 + [pen(m)− penid(m) ] . (33)

Therefore, on Ω(xm), combining Eq. (32), (33) and the condition satisfied by pen(m), we
get the result for all θ ∈ (0, 1/8).

B.5 Proof of Theorem 1

We apply Theorem 8 with M′
n = Mn and xm = Dm(log(2) + 1 + log( n

Dm
)) + log 4 + x.

Indeed, the probability of Ωc
(xm) then is upper bounded by

4
∑

m∈Mn

e−xm =
∑

1≤D≤n

Card {m ∈ Mn /Dm = D} exp
[
−D

(
log(2) + 1 + log

( n

D

))
− x

]

=
∑

1≤D≤n

(
n− 1

D − 1

)
exp

[
−D

(
log(2) + 1 + log

( n

D

))
− x

]

≤ e−x
∑

1≤D≤n

exp (−D log(2)) ≤ e−x
∑

D≥1

2−D = e−x .
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Furthermore, we get for every θ ∈ (0, 1/8) that

2

n

∑

λ∈m

vλ + r(xm, θ) ≤ 2vmaxDm

n
+

213c2minvmaxxm
θn

≤
[
2 + θ−1213c2min

(
log(2) + 1 + log

(
n

Dm

))]
Dmvmax

n

+ 213c2min ( log 4 + x)
vmax

θn

≤ vmaxDm

n

[
C1 + C2 log

(
n

Dm

)]
+

C3

n

with

C1 = C1(θ) = 361θ−1c2min

C2 = C2(θ) = 213θ−1c2min

C3 = C3(x, θ) = C2(θ)vmax ( log 4 + x) .

Note that C3(x, θ) is an additive term independent from m, so it can be safely removed
from the penalty.

Finally, taking θ = 1/12 yields the result as long as C1/c
2
min and C2/c

2
min are larger than

some numerical constant L1 = 4332.

B.6 Proof of Theorem 4

First note that Theorem 8 does not rely on (Vmin) but only uses that (Vmin′) holds true.
Then, let us take xm = x+ log(4Card(Mn)) for every m ∈ M′

n with x ≥ 0 in Theorem 8.
First, we get

P(Ω(xm)) ≥ 1− 4


 ∑

m∈M′
n

e− log( 4Card(M′
n) )


 e−x = 1− e−x .

Second, the condition (29) can be reduced to Eq. (18) since the term r(x, θ) no longer
depends on m. Therefore, it can be removed without changing the penalization procedure.

B.7 Proof of Corollary 5

We start from Theorem 4, denoting by Ω the event on which the oracle inequality holds
true.

First, assumption (Vmax) guarantees the penalty defined by Eq. (19) satisfies Eq. (18).
Then, using assumption (Vmin′), we get

2DmA− 2
∑

λ∈m

vλ ≤ 2Dm (A− vmin ) =

(
A

vmin
− 1

)
2Dmvmin

≤
(

A

vmin
− 1

)
2
∑

λ∈m

vλ .
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Therefore, on Ω, since Eq. (30) holds true with x replaced by x+ log(4Card(M′
n))), we get

2DmA− 2
∑

λ∈m

vλ ≤ (1− θ)−1

(
A

vmin
− 1

)

×
[
‖µ⋆ − µ̂m‖2 + θ−149c2minvmax

(
x+ log(4Card(M′

n))
)]

.

(34)

So, on Ω, for every θ ∈ (0, 1/8),

1

n
‖µ⋆ − µ̂m̂‖2 ≤ 1

1− 4θ

(
1 + 4θ + (1− θ)−1

(
A

vmin
− 1

))
inf

m∈M′
n

{
1

n
‖µ⋆ − µ̂m‖2

}

+
c2minvmax

nθ

(
x+ log

(
4Card

(
M′

n

))) [
426 +

49

(1− θ)(1− 4θ)

(
A

vmin
− 1

)]
.

We get the result by taking θ = θn = (log(n))−1 since for n larger than some numerical
constant,

1

1− 4θn

(
1 + 4θn + (1− θn)

−1

(
A

vmin
− 1

))
≤ A

vmin

(
1 +

10

log(n)

)

[
426 +

49

(1− θn)(1− 4θn)

(
A

vmin
− 1

)]
≤ max

{
426 ,

49

(1− θn)(1− 4θn)

}
A

vmin
≤ 426A

vmin

and
c2minvmaxA

vmin
=

c3minvmaxA

M2
≤ Ac3min

where we used (Vmin), A ≥ vmax ≥ vmin, and vmax ≤ M2.

Appendix C. Some useful results

This section collects a few results that are used throughout the paper.

Theorem 9 (Bernstein’s inequality, see Proposition 2.9 in (Massart, 2007))
Let X1, . . . ,Xn be independent real valued random variables. Assume there exist positive
constants v and c satisfying for every k ≥ 2

n∑

i=1

E

[
|Xi|k

]
≤ k!

2
vck−2 . (35)

Then for every x > 0,

P

[
n∑

i=1

(Xi − E [Xi ] ) >
√
2vx+ cx

]
≤ e−x .

In particular, if for every i, |Xi| ≤ 3c almost surely, Eq. (35) holds true with v =
∑n

i=1Var (Xi ).

Proposition 10 (Pinelis and Sakhanenko (1986), Corollary 1) Let X1, . . . ,Xn be n
independent and identically distributed random variables with values in some Hilbert space
H. Assume the Xi are centered and that constants σ2, c > 0 exist such that for every p ≥ 2,

n∑

i=1

E
[
‖Xi‖pH

]
≤ p!σ2cp−2 ,
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Then, for every x > 0,

P

[∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥
H

> x

]
≤ 2 exp

[
− x2

2 (σ2 + cx)

]
.

Appendix D. Additional simulation results

This section gathers a some additional results concerning the experiments of Section 6.1.

Kernel bandwdith Risk ratio

h = 0.1 3.56±0.17

h = 1.0 3.06±0.15

adaptive h 1.61± 0.15

Table 2: Synthetic data. Risk ratio E[R ( µ̂m̂ ) / infm∈Mn
{R ( µ̂m )}] for three bandwidth

choices.
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Figure 3: Real data experiment, audio stream: Distribution of the estimated number of
change-points D̂ − 1.
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