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Abstract. In this paper, we propose a multi-objective optimization
framework for SVM hyperparameters tuning. The key idea is to man-
age a population of classifiers optimizing both False Positive (FP) and
True Positive (TP) rates rather than a single classifier optimizing a scalar
criterion. Hence, each classifier in the population optimizes a particular
trade-off between the objectives. Within the context of two-class classi-
fication problems, our work introduces the ”ROC front concept” depict-
ing a population of SVM classifiers as an alternative to the ROC curve
representation. The comparison with a traditional scalar optimization
technique based on an AUC criterion shows promising results on UCI
datasets.
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1 Introduction

Optimizing the hyperparameters of SVM classifiers is a complex challenge since
it is well known that the choice of their values can dramatically affect the per-
formance of the classification system. In the literature, many contributions in
this field have focused on the computation of the model selection criterion, i.e.
the value which is optimized with respect to the hyperparameters. These con-
tributions have led to efficient scalar criteria and strategies used to estimate the
expected generalization error. One can cite Xi-Alpha bound of [16], the Gener-
alized Approximate Cross-Validation of [23], the empirical error estimate of [4],
the radius-margin bound of [8] or the maximal-discrepancy of [2]. Based on these
criteria, hyperparameters are usually chosen using a grid search, generally cou-
pled with a cross-validation procedure. In order to decrease the computational
cost of grid search, some authors suggest to use gradient-based techniques (e.g.
[5], [17]). In these works, the performance validation function is adapted in order
to be differentiable with respect to the parameters to be optimized.

All the approaches mentioned above, though efficient, use a single criterion as
the objective during the optimization process. Now, it is well known that a single
criterion is not always a good performance indicator since it assumes that both



target class priors and optimal cost/benefit tradeoffs are known precisely and are
not subject to change. Yet this is rarely the case in the real world and classifiers
are often used to find a relatively small number of unusual samples in a large
population. Moreover, the costs of errors are rarely equivalent, since classification
results often lead to actions which can have serious consequences. Screening
medical tests for rare diseases in order to inform the patient of the diagnosis
or looking for defrauded accounts among a large population of customers in
order to deny the corresponding credit charge are classical examples of such a
configuration [21]. Furthermore, the priors relative to the detection of a serious
diseases may change, modifying the operating point of the detection system.

One solution to tackle this problem is to use as performance indicator the
Receiver Operating Characteristics (ROC) curve which offers a synthetic rep-
resentation of the trade-off between the True Positive rate (TP) and the False
Positive rate (FP), also known as sensitivity vs. specificity trade-off. One way
to take into account both FP and TP in the model selection process is to re-
sume the ROC curve into a single criterion, such as the F-Measure (FM), the
Break-Even Point (BEP) or the Area Under ROC Curve (AUC). However, we
will show in the following that we can get more advantages in formulating the
model selection problem as a true 2-D objective optimization task.

In this paper, our key idea is to turn the problem of the search for a global
optimal SVM, (i.e. the best set of hyperparameters) using a single criterion or
a resume of the ROC curve into the search for a pool of locally optimal SVMs
(i.e. the pool of the best sets of hyperparameters) w.r.t. FP/TP rates. The best
classifier among the pool can then be selected according to the needs of some
practitioner. From a real-world application point of wiew, such a result is very
interesting since system designers do not have to choose classifier hyperparam-
eter values before precise knowledge of key evaluation parameters is available.
Moreover, the proposed approach enables to change the classifier in use if target
conditions change. An application of the proposed framework has been applied
on a handwritten character recognition problem where the misclassification costs
can not be accurately estimated [9].

The proposed framework can be viewed as a multiple model selection ap-
proach (rather than a model selection problem) and can naturally be expressed
in a Multi-Objective Optimization (MOO) framework. Under particular condi-
tions, we assume that such an approach could lead to better results than a more
traditional single model selection approach based on a scalar optimization. Fig-
ure 1 depicts our overall multi-model selection process. The resulting output is
a pool of classifiers, each one optimizing some FP/TP rate tradeoff. The set of
trade-off values constitutes an optimal front we call ”ROC front” by analogy
with MOO field.

The remainder of the paper is organized as follows. In section 2, we detail
the rationale behind the ROC front concept and illustrate how our multi-model
selection approach can outperform traditional approaches in a MOO framework.
In section 3, the SVM multi-model selection problem is adressed. Then, section
4 shows that our method compares favourably with traditional model selection



Fig. 1. SVM Multi-model selection framework

techniques on standard benchmarks (UCI datasets). Finally, a conclusion and
future works are drawn in section 5.

2 The ”ROC front” concept

As stated in the introduction, a model selection problem may be seen from a
multiobjective point of view, turning thus into a multi-model selection approach.
In the literature, some multi-model selection approaches have been proposed.
However, these approaches aim at designing a single classifier and thus cannot
be considered as real multi model selection approaches. Caruana for example
proposes in [7] an approach for constructing ensembles of classifiers, but this
method aims at combining those classifiers in order to optimize a scalar criterion
(accuracy, cross entropy, mean precision, AUC). Bagging, boosting or Error-
correcting-output-codes (ECOC) ([12]) also aim at combining different classifiers
of an ensemble in order to produce a single classifier efficient with respect to a
scalar performance metric. In [19], an EA-based approach is applied to find the
best hyperparameters of the set of binary SVM classifiers combined to produce
a multiclass classifier.

The approach which is proposed in this paper is different since our aim is not
to build a single classifier but a pool of classifiers using a real multi-objective
framework. In such a context, let us recall that the problem when ROC curves
are used to quantify classifier performance is their comparison in a 2-D objective
space : a classifier may be better for one of the objectives (e.g. FP) and worse for
the other one (e.g TP). Consequently, the strict order relation that can be used
to compare classifiers when a single objective is considered becomes unusable
and classical mono-objective optimization strategies can not be applied.

Usually, this problem is tackled using a reduction of the FP and TP rates into
a single criterion such as the Area Under ROC Curve (AUC) ([22]). However,
such performance indicators are a resume of the ROC curve taken as a whole



and do not consider the curve from a local point of view. The didactic example
proposed in figure 2 illustrates this statement. One can see on this figure two
synthetic ROC curves. The curve plotted as continuous line has a better AUC
value, but the corresponding classifier is not the best for any specific desired
value of FP rate (resp. TP). Consequently, optimizing such a scalar criterion
to find the best hyperparameters could lead to solutions that do not fit the
practitioner needs in a specific context. It seems a better idea to simultaneously
optimize FP and TP rates using a MOO framework and a dominance relation
to compare classifier performance.

Fig. 2. Comparing ROC curves: the continuous ROC curve provides a better AUC
than the dashed ROC curve, but is not locally optimal for a given range of specificity
values (False Positive Rate).

Let us recall that the dominance concept has been proposed by Vilfredo
Pareto in the 19th century. A decision vector −→u is said to dominate another
decision vector −→v if −→u is not worse than −→v for any objective functions and if
−→u is better than −→v for at least one objective function. This is denoted −→u ≺ −→v .
More formally, in the case of the minimization of all the objectives, a vector
−→u = (u1, u2, . . . , uk) dominates a vector −→v = (v1, v2, . . . , vk) if and only if:

∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃j ∈ {1, . . . , k} : uj < vj

Using such a dominance concept, the objective of a Multi-Objective Opti-
mization algorithm is to search for the Pareto Optimal Set (POS ), defined as
the set of all non dominated solutions of the problem. Such a set is formally
defined as the set :

POS =
{−→x ∈ ϑ/¬∃−→y ∈ ϑ,

−−→
f(x) ≺ −−→

f(y)
}



where ϑ denotes the feasible region (i.e. the parameter space regions where
the constraints are satisfied) and −→f denotes the objective function vector. The
corresponding values in the objective space constitute the so-called Pareto Front.

From our model selection point of view, the POS corresponds to the pool
of non-dominated classifiers (the pool of the best sets of hyperparameters). In
this pool, each classifier optimizes a particular FP/TP trade-off. The resulting
set of FP/TP points constitutes an optimal front we call “ROC front”. This
concept is illustrated with a didactic example as shown in figure 3: let us assume
that three ROC curves have been obtained from three distinct hyperparameter
sets. This could lead to the three synthetic curves plotted as dashed lines. One
can see on this example that none of the classifiers dominates the others on the
whole range of FP/TP rates. The same statement may be drawn concerning the
continuous black curve which may be the ROC curve of a classifier learnt through
a minimization of an AUC criterion [22]. This curve do not dominates the three
synthetic ROC curves. An interesting solution for a practitioner is the “ROC
front” (the black curve with dots), which is made of non-dominated parts of a
set of classifier ROC curves. The method proposed in this paper aims at finding
this “ROC front” (and the corresponding POS ), using an Evolutionary Multi-
Objective Optimization Algorithm called NSGA-II. This class of optimization
algorithm has been chosen since Evolutionary Algorithms (EAs) are known to
be well-suited to search for multiple Pareto optimal solutions concurrently in a
single run, through their implicit parallelism.

Fig. 3. Illustration of the ROC front concept : the ROC front depicts the FP/TP
performance corresponding to the pool of non dominated operating points.



3 SVM multi-model selection

As explained in the previous sections, the proposed framework aims at finding
a pool of SVM classifiers, optimizing simultaneously FP and TP rates.

As stated in [20], classification problems with asymmetric and unknown mis-
classification costs can be tackled using SVM through the introduction of two
distinct penalty parameters C− and C+. In such a case, given a set of m training
examples xi in <n belonging to the class yi :

(x1, y1) . . . (xm, ym), xi ∈ <n, yi ∈ {−1, +1}
the maximisation of the dual lagrangian with respect to the αi becomes :

Maxα

{ m∑

i=1

αi − 1
2

m∑

i,j=1

αiαjyiyjK(xi, xj)
}

subject to the constraints:





0 ≤ αi ≤ C+ for yi = −1
0 ≤ αi ≤ C− for yi = +1∑m

i=1 αiyi = 0

where αi denote the Lagrange multipliers and K(.) denotes the kernel. In the
case of a Gaussian (RBF) kernel, K(.) is defined as :

K(xi, xj) = exp
(−γ × ‖xi − xj‖2

)

Hence, in the case of asymmetric misclassification costs, three parameters
have to be determined to perform an optimal learning of the SVM classifier:

– The kernel parameter of the SVM-rbf : γ.
– The penalty parameters introduced above : C− and C+.

In the following, the proposed framework (see figure 1) is used in order to
tune these three hyper-parameters values. For that, two particular points have
to be specified for the application of NSGA-II to SVM multi-model selection :

– the solution coding : as said before, three hyperparameters are involved in the
learning of SVM for classification problems with asymmetric misclassification
costs : C+, C− and γ. These three hyperparameters constitute the parameter
space of our optimization problem. Consequently, each individual in NSGA-
II has to encode these three real values. We have chosen to use a real coding
of these parameters in order to be as precise as possible.

– the evaluation procedure : each individual in the population corresponds to
some given values of hyperparameters. In order to compute the performance
associated to this individual, a classical SVM learning is performed using
the encoded parameter values on a learning dataset. Then, this classifier is
evaluated on a test dataset with the classical FP and TP rates as performance
criteria.

Let us now present some experimental results on several UCI databases.



4 Experimental results on UCI datasets

In this section, the proposed multi-model selection approach based on the ROC
front concept is evaluated and compared with other approaches on publicly avail-
able benchmark datasets. First, the experimental protocol of our tests is de-
scribed. Then, the results are shown and compared with some reference works,
and finally several comments on these results are proposed.

Our approach has been applied on several 2-class benchmark datasets pub-
licly available in the UCI Machine Learning repository [3] on which state-of-
the-art results have been published. The number of samples and the number of
attributes for each problem are reported in table 1.

problem # samples # attributes

australian 690 14
wdbc 569 30

breast cancer 699 10
ionosphere 351 34

heart 270 13
pima 768 8

Table 1. Number of samples and number of attributes of the considered 2-class UCI
problems.

As we propose a real multi objective approach, the result of our experiment
is a pool of classifiers describing the ROC Front. Thus, the evaluation of our
approach is not easy since as mentioned in the introduction, comparing some
results in a multi-dimensional space is a difficult task. Nevertheless, there exist
some dedicated measures such as the Set Coverage Metric proposed in [25].
However, to the best of our knowledge, the other methods in the literature always
consider a single classifier as a solution for a classification problem, which makes
it difficult to compare our results with those in the literature.

Thus, the only way to evaluate our approach is to reduce the ROC front to a
scalar criterion. For that, an Area Under the ROC Front (AUF) is calculated and
compared with the Area Under the ROC Curve (AUC) of several approaches in
the literature. We know that this comparison is not theoretically correct since the
best results of a pool of classifiers is compared with a curve obtained by varying
the threshold of a unique classifier. However, the aim of this comparison is only
to highlight the fact that more interesting trade-offs may be locally reached with
the ROC front approach. This comparison may also be justified by the fact that
finally, in both cases only one classifier with a unique threshold will be retained
for a given problem. Note also that the results of our approach are compared
with several works based on the optimization of a scalar criterion for various
classifiers. We emphasize that our comparison is based on the selection for each
database of the best results found in the literature up to now: [6] (Decision lists
and rules sets), [10] (Rankboost), [14] (Decision trees), [22] (SVMs) and [24] (five



models : naive Bayes, logistic, decision tree, kstar, and voting feature interval).
We refer to these papers for more explanation of the criterion and the model
used.

Concerning the application of our multiobjective strategy, a cross validation
procedure has been performed with 5 folds for each dataset. The results are
presented in table 2, where the first column is the best AUC among the precited
works based on the optimization of a scalar criterion, and the second one is the
AUF of our approach.

problem ref. AUC literature AUF

australian [24] 90.15 ± 0.53 96.91 ± 1.8
wdbc [14] 94.7 ± 4.6 99.82 ± 0.1

breast cancer [6] 99.13 99.86 ± 0.1
ionosphere [22] 98.7 ± 3.3 99.14 ± 1.2

heart [24] 92.60 ± 0.7 95.67 ± 1.5
pima [10] 84.80 ± 6.5 88.36 ± 3.1

Table 2. Comparison of the Area Under the ROC Curve (AUC) in the literature with
the Area Under the ROC Front (AUF).

As expected, one can see that for every dataset the ROC front yielded by the
pool of classifiers leads to a higher area than the area under the ROC curve of
the other single classifiers. As said before, it is important to emphasise that the
AUF cannot theoretically be compared with AUC since the different operating
points of the ROC front cannot be reached by a single classifier. However, this
comparison with methods which explicitly optimize AUC clearly shows that our
approach enables to reach very interesting local operating points which cannot
be reached by the AUC-based classifiers. Hence, we claim that if the good model
can be selected among the pool of classifiers, our approach can lead to better
results than AUC-based methods.

Let us also remark that compared with other EMOO approaches, the intrin-
sic parameters of the SVM classifiers (i.e. the position and weight of support
vectors) are fixed using a mono-objective optimization algorithm well suited for
such a task. Therefore, the EMOO concentrates on the choice of the hyperpa-
rameter values. This approach differs from other works using EMOO to per-
form both intrinsic and hyperparameter settings. In the context of ROC curve
optimization we can mention [18, 1, 15, 13]. All these works are limited to non-
complex classifiers (with a few number of intrinsic parameters) because EMOO
algorithms rapidly become intractable when the size of the parameter space
increases. Within a monoobjective context, such a limitation has been counter-
acted by developing specific methods for specific problems like the Lagrangian
maximisation for the SVM. Therefore, using the Lagrangian method for the tun-
ing of SVM intrinsic parameters enables the EMOO algorithm to concentrate
on a small number of hyperparameters.



Finally, let us consider the computational issues of the proposed approach.
Assume that o is the learning complexity of the classifier, the learning complexity
of the proposed approach O is defined as:

O = M.N × o

where we recall that M stands for the number of generations of the evolu-
tionary algorithm, and N is the population size. Although high, this complexity
can be compared with that of a full search approach, which is O =

∏K
i Di×o for

a K-hyperparameter problem, where Di is the number of discrete values of each
parameter. It is still higher than a gradient based approach, but as shown before
leads to better results. Let us notice that the decision complexity of our approach
is the same as the standard decision complexity of the involved classifier.

5 Conclusions

In this paper, we have presented a framework to tackle the problem of SVM
model selection with unknown misclassification costs. The approach is based on
a multi-model selection strategy in which a pool of SVM classifiers is trained
in order to depict an optimal ROC front. Using such a front, it is possible
to choose the FP/TP trade-off that best fits the application constraints. An
application of this strategy with Evolutionary Multi-Objective Optimization has
been proposed, with a validation on UCI datasets. Obtained results have shown
that our approach compares favourably with a state-of-the-art approach based
on the Area Under ROC Cure criterion since better operating points can be
locally reached. As a conclusion, one can say that an AUC-based approach suits
pattern recognition problems where the operating point may vary, whereas our
approach better suits problems where the operating point is supposed to be
static.

The proposed approach is simple and generic. It can be applied to other para-
metric classifiers (KNN, Neural network, etc.) with other optimization methods
([11]). Moreover, it can be easily extended through the introduction of other pa-
rameters (kernel type) or objectives (number of support vectors, decision time).
Note that a feature selection process could also be included in the optimization
process in order to provide a complete model selection approach. In our future
works, we also plan to extend the approach to the multiclass problem.
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