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Introduction

Optimizing the hyperparameters of SVM classifiers is a complex challenge since it is well known that the choice of their values can dramatically affect the performance of the classification system. In the literature, many contributions in this field have focused on the computation of the model selection criterion, i.e. the value which is optimized with respect to the hyperparameters. These contributions have led to efficient scalar criteria and strategies used to estimate the expected generalization error. One can cite Xi-Alpha bound of [START_REF] Joachims | Making large-scale support vector machine learning practical[END_REF], the Generalized Approximate Cross-Validation of [START_REF] Wahba | The bias-variance tradeoff and the randomized gacv[END_REF], the empirical error estimate of [START_REF] Ayat | Automatic model selection for the optimization of svm kernels[END_REF], the radius-margin bound of [START_REF] Chapelle | Choosing multiple parameters for support vector machines[END_REF] or the maximal-discrepancy of [START_REF] Anguita | Hyperparameter design criteria for support vector classifiers[END_REF]. Based on these criteria, hyperparameters are usually chosen using a grid search, generally coupled with a cross-validation procedure. In order to decrease the computational cost of grid search, some authors suggest to use gradient-based techniques (e.g. [START_REF] Bengio | Gradient-based optimization of hyperparameters[END_REF], [START_REF] Keerthi | An efficient method for gradient-based adaptation of hyperparameters in svm models[END_REF]). In these works, the performance validation function is adapted in order to be differentiable with respect to the parameters to be optimized.

All the approaches mentioned above, though efficient, use a single criterion as the objective during the optimization process. Now, it is well known that a single criterion is not always a good performance indicator since it assumes that both target class priors and optimal cost/benefit tradeoffs are known precisely and are not subject to change. Yet this is rarely the case in the real world and classifiers are often used to find a relatively small number of unusual samples in a large population. Moreover, the costs of errors are rarely equivalent, since classification results often lead to actions which can have serious consequences. Screening medical tests for rare diseases in order to inform the patient of the diagnosis or looking for defrauded accounts among a large population of customers in order to deny the corresponding credit charge are classical examples of such a configuration [START_REF] Provost | Robust classification for imprecise environments[END_REF]. Furthermore, the priors relative to the detection of a serious diseases may change, modifying the operating point of the detection system.

One solution to tackle this problem is to use as performance indicator the Receiver Operating Characteristics (ROC) curve which offers a synthetic representation of the trade-off between the True Positive rate (TP) and the False Positive rate (FP), also known as sensitivity vs. specificity trade-off. One way to take into account both FP and TP in the model selection process is to resume the ROC curve into a single criterion, such as the F-Measure (FM), the Break-Even Point (BEP) or the Area Under ROC Curve (AUC). However, we will show in the following that we can get more advantages in formulating the model selection problem as a true 2-D objective optimization task.

In this paper, our key idea is to turn the problem of the search for a global optimal SVM, (i.e. the best set of hyperparameters) using a single criterion or a resume of the ROC curve into the search for a pool of locally optimal SVMs (i.e. the pool of the best sets of hyperparameters) w.r.t. FP/TP rates. The best classifier among the pool can then be selected according to the needs of some practitioner. From a real-world application point of wiew, such a result is very interesting since system designers do not have to choose classifier hyperparameter values before precise knowledge of key evaluation parameters is available. Moreover, the proposed approach enables to change the classifier in use if target conditions change. An application of the proposed framework has been applied on a handwritten character recognition problem where the misclassification costs can not be accurately estimated [START_REF] Chatelain | Multi-objective optimization for svm model selection[END_REF].

The proposed framework can be viewed as a multiple model selection approach (rather than a model selection problem) and can naturally be expressed in a Multi-Objective Optimization (MOO) framework. Under particular conditions, we assume that such an approach could lead to better results than a more traditional single model selection approach based on a scalar optimization. Figure 1 depicts our overall multi-model selection process. The resulting output is a pool of classifiers, each one optimizing some FP/TP rate tradeoff. The set of trade-off values constitutes an optimal front we call "ROC front" by analogy with MOO field.

The remainder of the paper is organized as follows. In section 2, we detail the rationale behind the ROC front concept and illustrate how our multi-model selection approach can outperform traditional approaches in a MOO framework. In section 3, the SVM multi-model selection problem is adressed. Then, section 4 shows that our method compares favourably with traditional model selection techniques on standard benchmarks (UCI datasets). Finally, a conclusion and future works are drawn in section 5.

The "ROC front" concept

As stated in the introduction, a model selection problem may be seen from a multiobjective point of view, turning thus into a multi-model selection approach. In the literature, some multi-model selection approaches have been proposed. However, these approaches aim at designing a single classifier and thus cannot be considered as real multi model selection approaches. Caruana for example proposes in [START_REF] Caruana | Ensemble selection from libraries of models[END_REF] an approach for constructing ensembles of classifiers, but this method aims at combining those classifiers in order to optimize a scalar criterion (accuracy, cross entropy, mean precision, AUC). Bagging, boosting or Errorcorrecting-output-codes (ECOC) ( [START_REF] Dietterich | Solving multiclass learning problems via error-correcting output codes[END_REF]) also aim at combining different classifiers of an ensemble in order to produce a single classifier efficient with respect to a scalar performance metric. In [START_REF] Lebrun | An ea multi-model selection for svm multiclass schemes[END_REF], an EA-based approach is applied to find the best hyperparameters of the set of binary SVM classifiers combined to produce a multiclass classifier.

The approach which is proposed in this paper is different since our aim is not to build a single classifier but a pool of classifiers using a real multi-objective framework. In such a context, let us recall that the problem when ROC curves are used to quantify classifier performance is their comparison in a 2-D objective space : a classifier may be better for one of the objectives (e.g. FP) and worse for the other one (e.g TP). Consequently, the strict order relation that can be used to compare classifiers when a single objective is considered becomes unusable and classical mono-objective optimization strategies can not be applied.

Usually, this problem is tackled using a reduction of the FP and TP rates into a single criterion such as the Area Under ROC Curve (AUC) ( [START_REF] Rakotomamonjy | Optimizing auc with support vector machine[END_REF]). However, such performance indicators are a resume of the ROC curve taken as a whole and do not consider the curve from a local point of view. The didactic example proposed in figure 2 illustrates this statement. One can see on this figure two synthetic ROC curves. The curve plotted as continuous line has a better AUC value, but the corresponding classifier is not the best for any specific desired value of FP rate (resp. TP). Consequently, optimizing such a scalar criterion to find the best hyperparameters could lead to solutions that do not fit the practitioner needs in a specific context. It seems a better idea to simultaneously optimize FP and TP rates using a MOO framework and a dominance relation to compare classifier performance. Let us recall that the dominance concept has been proposed by Vilfredo Pareto in the 19th century. A decision vector -→ u is said to dominate another decision vector -→ v if -→ u is not worse than -→ v for any objective functions and if -→ u is better than -→ v for at least one objective function. This is denoted -→ u ≺ -→ v .

More formally, in the case of the minimization of all the objectives, a vector

- → u = (u 1 , u 2 , . . . , u k ) dominates a vector -→ v = (v 1 , v 2 , . . . , v k ) if and only if: ∀i ∈ {1, . . . , k}, u i ≤ v i ∧ ∃j ∈ {1, . . . , k} : u j < v j
Using such a dominance concept, the objective of a Multi-Objective Optimization algorithm is to search for the Pareto Optimal Set (POS ), defined as the set of all non dominated solutions of the problem. Such a set is formally defined as the set :

P OS = -→ x ∈ ϑ/¬∃ -→ y ∈ ϑ, --→ f (x) ≺ --→ f (y)
where ϑ denotes the feasible region (i.e. the parameter space regions where the constraints are satisfied) and -→ f denotes the objective function vector. The corresponding values in the objective space constitute the so-called Pareto Front.

From our model selection point of view, the POS corresponds to the pool of non-dominated classifiers (the pool of the best sets of hyperparameters). In this pool, each classifier optimizes a particular FP/TP trade-off. The resulting set of FP/TP points constitutes an optimal front we call "ROC front". This concept is illustrated with a didactic example as shown in figure 3: let us assume that three ROC curves have been obtained from three distinct hyperparameter sets. This could lead to the three synthetic curves plotted as dashed lines. One can see on this example that none of the classifiers dominates the others on the whole range of FP/TP rates. The same statement may be drawn concerning the continuous black curve which may be the ROC curve of a classifier learnt through a minimization of an AUC criterion [START_REF] Rakotomamonjy | Optimizing auc with support vector machine[END_REF]. This curve do not dominates the three synthetic ROC curves. An interesting solution for a practitioner is the "ROC front" (the black curve with dots), which is made of non-dominated parts of a set of classifier ROC curves. The method proposed in this paper aims at finding this "ROC front" (and the corresponding POS ), using an Evolutionary Multi-Objective Optimization Algorithm called NSGA-II. This class of optimization algorithm has been chosen since Evolutionary Algorithms (EAs) are known to be well-suited to search for multiple Pareto optimal solutions concurrently in a single run, through their implicit parallelism. 

SVM multi-model selection

As explained in the previous sections, the proposed framework aims at finding a pool of SVM classifiers, optimizing simultaneously FP and TP rates.

As stated in [START_REF] Osuna | Support vector machines: Training and applications[END_REF], classification problems with asymmetric and unknown misclassification costs can be tackled using SVM through the introduction of two distinct penalty parameters C -and C + . In such a case, given a set of m training examples x i in n belonging to the class y i :

(x 1 , y 1 ) . . . (x m , y m ), x i ∈ n , y i ∈ {-1, +1}
the maximisation of the dual lagrangian with respect to the α i becomes :

M ax α m i=1 α i - 1 2 m i,j=1 α i α j y i y j K(x i , x j )
subject to the constraints:

   0 ≤ α i ≤ C + f or y i = -1 0 ≤ α i ≤ C -f or y i = +1
m i=1 α i y i = 0 where α i denote the Lagrange multipliers and K(.) denotes the kernel. In the case of a Gaussian (RBF) kernel, K(.) is defined as :

K(x i , x j ) = exp -γ × x i -x j 2
Hence, in the case of asymmetric misclassification costs, three parameters have to be determined to perform an optimal learning of the SVM classifier:

-The kernel parameter of the SVM-rbf : γ.

-The penalty parameters introduced above : C -and C + .

In the following, the proposed framework (see figure 1) is used in order to tune these three hyper-parameters values. For that, two particular points have to be specified for the application of NSGA-II to SVM multi-model selection :

-the solution coding : as said before, three hyperparameters are involved in the learning of SVM for classification problems with asymmetric misclassification costs : C + , C -and γ. These three hyperparameters constitute the parameter space of our optimization problem. Consequently, each individual in NSGA-II has to encode these three real values. We have chosen to use a real coding of these parameters in order to be as precise as possible. -the evaluation procedure : each individual in the population corresponds to some given values of hyperparameters. In order to compute the performance associated to this individual, a classical SVM learning is performed using the encoded parameter values on a learning dataset. Then, this classifier is evaluated on a test dataset with the classical FP and TP rates as performance criteria.

Let us now present some experimental results on several UCI databases.

In this section, the proposed multi-model selection approach based on the ROC front concept is evaluated and compared with other approaches on publicly available benchmark datasets. First, the experimental protocol of our tests is described. Then, the results are shown and compared with some reference works, and finally several comments on these results are proposed.

Our approach has been applied on several 2-class benchmark datasets publicly available in the UCI Machine Learning repository [START_REF] Asuncion | UCI machine learning repository[END_REF] As we propose a real multi objective approach, the result of our experiment is a pool of classifiers describing the ROC Front. Thus, the evaluation of our approach is not easy since as mentioned in the introduction, comparing some results in a multi-dimensional space is a difficult task. Nevertheless, there exist some dedicated measures such as the Set Coverage Metric proposed in [START_REF] Zitzler | Comparison of multiobjective evolutionary algorithms : Empirical results[END_REF]. However, to the best of our knowledge, the other methods in the literature always consider a single classifier as a solution for a classification problem, which makes it difficult to compare our results with those in the literature.

Thus, the only way to evaluate our approach is to reduce the ROC front to a scalar criterion. For that, an Area Under the ROC Front (AUF) is calculated and compared with the Area Under the ROC Curve (AUC) of several approaches in the literature. We know that this comparison is not theoretically correct since the best results of a pool of classifiers is compared with a curve obtained by varying the threshold of a unique classifier. However, the aim of this comparison is only to highlight the fact that more interesting trade-offs may be locally reached with the ROC front approach. This comparison may also be justified by the fact that finally, in both cases only one classifier with a unique threshold will be retained for a given problem. Note also that the results of our approach are compared with several works based on the optimization of a scalar criterion for various classifiers. We emphasize that our comparison is based on the selection for each database of the best results found in the literature up to now: [START_REF] Bostrm | Maximizing the area under the roc curve using incremental reduced error pruning[END_REF] (Decision lists and rules sets), [START_REF] Cortes | Auc optimization vs. error rate minimization[END_REF] (Rankboost), [START_REF] Ferri | Learning decision trees using the area under the roc curve[END_REF] (Decision trees), [START_REF] Rakotomamonjy | Optimizing auc with support vector machine[END_REF] (SVMs) and [START_REF] Wu | A scored auc metric for classifier evaluation and selection[END_REF] (five models : naive Bayes, logistic, decision tree, kstar, and voting feature interval). We refer to these papers for more explanation of the criterion and the model used.

Concerning the application of our multiobjective strategy, a cross validation procedure has been performed with 5 folds for each dataset. The results are presented in table 2, where the first column is the best AUC among the precited works based on the optimization of a scalar criterion, and the second one is the AUF of our approach. As expected, one can see that for every dataset the ROC front yielded by the pool of classifiers leads to a higher area than the area under the ROC curve of the other single classifiers. As said before, it is important to emphasise that the AUF cannot theoretically be compared with AUC since the different operating points of the ROC front cannot be reached by a single classifier. However, this comparison with methods which explicitly optimize AUC clearly shows that our approach enables to reach very interesting local operating points which cannot be reached by the AUC-based classifiers. Hence, we claim that if the good model can be selected among the pool of classifiers, our approach can lead to better results than AUC-based methods.

Let us also remark that compared with other EMOO approaches, the intrinsic parameters of the SVM classifiers (i.e. the position and weight of support vectors) are fixed using a mono-objective optimization algorithm well suited for such a task. Therefore, the EMOO concentrates on the choice of the hyperparameter values. This approach differs from other works using EMOO to perform both intrinsic and hyperparameter settings. In the context of ROC curve optimization we can mention [START_REF] Kupinski | Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characterisitic curves[END_REF][START_REF] Anastasio | Optimization and froc analysis of rule-based detection schemes using a multiobjective approach[END_REF][START_REF] Fieldsend | Roc optimisation of safety related systems[END_REF][START_REF] Everson | Multi-class roc analysis from a multi-objective optimisation perspective[END_REF]. All these works are limited to noncomplex classifiers (with a few number of intrinsic parameters) because EMOO algorithms rapidly become intractable when the size of the parameter space increases. Within a monoobjective context, such a limitation has been counteracted by developing specific methods for specific problems like the Lagrangian maximisation for the SVM. Therefore, using the Lagrangian method for the tuning of SVM intrinsic parameters enables the EMOO algorithm to concentrate on a small number of hyperparameters.

Finally, let us consider the computational issues of the proposed approach. Assume that o is the learning complexity of the classifier, the learning complexity of the proposed approach O is defined as:

O = M.N × o
where we recall that M stands for the number of generations of the evolutionary algorithm, and N is the population size. Although high, this complexity can be compared with that of a full search approach, which is O = K i D i ×o for a K-hyperparameter problem, where D i is the number of discrete values of each parameter. It is still higher than a gradient based approach, but as shown before leads to better results. Let us notice that the decision complexity of our approach is the same as the standard decision complexity of the involved classifier.

Conclusions

In this paper, we have presented a framework to tackle the problem of SVM model selection with unknown misclassification costs. The approach is based on a multi-model selection strategy in which a pool of SVM classifiers is trained in order to depict an optimal ROC front. Using such a front, it is possible to choose the FP/TP trade-off that best fits the application constraints. An application of this strategy with Evolutionary Multi-Objective Optimization has been proposed, with a validation on UCI datasets. Obtained results have shown that our approach compares favourably with a state-of-the-art approach based on the Area Under ROC Cure criterion since better operating points can be locally reached. As a conclusion, one can say that an AUC-based approach suits pattern recognition problems where the operating point may vary, whereas our approach better suits problems where the operating point is supposed to be static.

The proposed approach is simple and generic. It can be applied to other parametric classifiers (KNN, Neural network, etc.) with other optimization methods ( [START_REF] De Souza | Multiclass svm model selection using particle swarm optimization[END_REF]). Moreover, it can be easily extended through the introduction of other parameters (kernel type) or objectives (number of support vectors, decision time). Note that a feature selection process could also be included in the optimization process in order to provide a complete model selection approach. In our future works, we also plan to extend the approach to the multiclass problem.
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 1 Fig. 1. SVM Multi-model selection framework
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 2 Fig.2. Comparing ROC curves: the continuous ROC curve provides a better AUC than the dashed ROC curve, but is not locally optimal for a given range of specificity values (False Positive Rate).
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 3 Fig. 3. Illustration of the ROC front concept : the ROC front depicts the FP/TP performance corresponding to the pool of non dominated operating points.
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 1 on which state-ofthe-art results have been published. The number of samples and the number of attributes for each problem are reported in table 1. Number of samples and number of attributes of the considered 2-class UCI problems.

	problem # samples # attributes
	australian	690	14
	wdbc	569	30
	breast cancer	699	10
	ionosphere	351	34
	heart	270	13
	pima	768	8

Table 2 .

 2 Comparison of the Area Under the ROC Curve (AUC) in the literature with the Area Under the ROC Front (AUF).

	problem ref. AUC literature	AUF
	australian [24] 90.15 ± 0.53 96.91 ± 1.8
	wdbc	[14] 94.7 ± 4.6	99.82 ± 0.1
	breast cancer [6] 99.13	99.86 ± 0.1
	ionosphere [22] 98.7 ± 3.3	99.14 ± 1.2
	heart	[24] 92.60 ± 0.7	95.67 ± 1.5
	pima	[10] 84.80 ± 6.5	88.36 ± 3.1