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5Department of Physics, University of California, Berkeley, California 94720, USA
(Received 14 June 2011; published 31 January 2012)

Time-periodic perturbations can be used to engineer topological properties of matter by altering the

Floquet band structure. This is demonstrated for the helical edge state of a spin Hall insulator in the

presence of monochromatic circularly polarized light. The inherent spin structure of the edge state is

influenced by the Zeeman coupling and not by the orbital effect. The photocurrent (and the magnetization

along the edge) develops a finite, helicity-dependent expectation value and turns from dissipationless to

dissipative with increasing radiation frequency, signalling a change in the topological properties. The

connection with Thouless’ charge pumping and nonequilibrium zitterbewegung is discussed, together

with possible experiments.
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Introduction.—Topological insulators (TIs) are a focus
of attention, not least due to their possible application in
spintronics and quantum computation. They represent dis-
tinct states of matter with robust, topologically protected
conducting helical edge or surface states [1,2]. The impor-
tance of the spin-orbit interaction is reflected in their
charge carriers having their spin locked to their momen-
tum. In particular, the two-dimensional TI, namely, the
quantum spin Hall (QSH) state, has been predicted for a
variety of systems including graphene [3], HgTe/CdTe [4],
and InAs/GaSb [5] quantum wells, lattice models [6–8],
and multicomponent ultracold fermions in optical lattices
[9–11]. Nevertheless, in all of these, the gapless helical
edge state originates from a subtle band inversion [1,2]
which requires careful Bloch band structure engineering
[3–11] as well as a high degree of sample control [12–14].

Bloch states and energy bands arise from spatially peri-
odic Hamiltonians in condensed matter systems. Extending
the periodicity in the time domain through a time-periodic
perturbation increases tunability of the Hamiltonian: The
temporal analog of Bloch states (the Floquet states) can be
manipulated via the periodicity and amplitude of the ex-
ternal perturbation.

Recently, topological phases of periodically driven
quantum systems have been characterized [15] by using
Floquet theory, extending the time-independent topologi-
cal classification [16–18]. Interestingly, novel topological
edge states can be induced by shining electromagnetic
radiation on a topologically trivial insulator, e.g., a non-
inverted HgTe/CdTe quantumwell with no edge state in the
static limit [19]. Besides, a time-dependent perturbation
may also be harmful for the coherence of the edge or
surface states of TIs by introducing dissipation. It is
therefore natural to investigate to what extent the steady

state of a TI remains robust against time-dependent
perturbations and how the electrical and magnetic proper-
ties are altered.
In this work, we consider the one-dimensional helical

edge state of a QSH insulator in a circularly polarized
radiation field. When increasing the radiation frequency,
the steady edge state is found to switch from a dissipation-
less charge pumping to a dissipative transport regime. We
characterize those regimes by their dc and ac photocurrent
responses and provide experimental proposals to measure
them. Finally, we demonstrate that the photocurrent, the
magnetization, and the zitterbewegung phenomenon are
ruled by the very same unit vector, whose winding number
determines a topological invariant for the system.
Although our predictions could be tested by experiments
similar to those in graphene [20] and HgTe/CdTe quantum
wells [21], they rely on a different coupling mechanism,
that is, Zeeman coupling rather than orbital coupling.
Model.—We consider a QSH insulator located in the xy

plane and irradiated by a circularly polarized electromag-
netic field AðtÞ ¼ A0ð cosð!t� kzÞ; sinð!t� kzÞÞ with
wave vector k and frequency !, whose sign determines
the helicity of the polarization (Fig. 1). The time-
dependent Hamiltonian of the QSH edge reads [22]

HðtÞ ¼ vF�
z½p� eAxðtÞ� þ g½�þe�i!t þ H:c:�; (1)

where � is the vector of Pauli matrices representing the
physical spin of the electron, p the momentum along
the one-dimensional channel, vF the Fermi velocity, and
e the electron charge. The electric current operator [23] is
j ¼ evF�

z. The circularly polarized radiation acts both on
the orbital motion through the vector potential AxðtÞ ¼
A0 cos!t and on the electron spin through the Zeeman
coupling g ¼ geff�BB0, geff being the effective g factor
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and �B the Bohr magneton. Nevertheless, at high fre-
quency, the orbital effect can be safely neglected according
to a simple semiclassical argument (for a more rigorous
treatment, see [23]). An electron traveling at the speed vF

in an electric field E0 ¼ A0! ¼ cB0 (c the speed of light)
during a time 1=! picks up an energy vFeE0=! from the
vector potential which has to be compared to the smallest
energy quantum it can absorb, @! (restoring original
units). Hence, in the regime vFeE0=! � @!, only the
time-dependent Zeeman effect is effective, and in this
respect, our effective Hamiltonian differs significantly
from other studies on similar systems [24–31] with a
dominant orbital effect. For typical parameters (vF ¼
105 m=s, laser power of 1 mW focused onto an area
of 1 mm2, yielding E0 � 600 V=m), this requires ! �
0:5 THz, i.e., lasers operating in the far infrared or in the
visible range. We also assume that @! is smaller than the
bulk gap of the 2D insulator.

Floquet states.—In order to study the steady state of the
edge, we solve the time-dependent Schrödinger equation
i@t�pðtÞ ¼ HðtÞ�pðtÞ, with Ax ¼ 0 in Eq. (1). By apply-

ing Floquet theory [32,33], the solution of the time-
dependent Schrödinger equation is written as

�pðtÞ ¼ exp½�iE�ðpÞt���ðp; tÞ; (2)

where E�ðpÞ is the Floquet quasienergy and ��ðp; tÞ ¼
��ðp; tþ TÞ with T ¼ 2�=!. From this, physically
equivalent steady states can be created [32] by shifting
the quasienergy En;�ðpÞ ¼ E�ðpÞ þ n! and defining

�n;�ðp; tÞ ¼ ��ðp; tÞ expðin!Þ, where n is a relative

integer. Then, the quasienergy and wave function are ob-
tained as

E�ðpÞ ¼ !

2
þ ��; (3)

��ðp; tÞ ¼ 1ffiffiffiffiffiffi
2�

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ�ðvFp�!=2Þp
�expði!tÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

���ðvFp�!=2Þp
�
; (4)

where � ¼ �1 and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ ðvFp�!=2Þ2p

. The qua-
sienergies describe the opening of a gap of size g around

!=2 [23]. This photoinduced gap is located at momentum
p ¼ !=2vF and stems from one-photon assisted
processes. A given ��ðp; tÞ describes the steady state
where an initial state with g ¼ 0 would evolve adiabati-
cally if we switch on the magnetic field at t ¼ �1.
We introduce the average energy [33], which is used to

identify the filled Floquet states [27], in analogy to the
stationary situation [23], as

�E�ðpÞ ¼ �þ
p ðtÞH�pðtÞ ¼ �

�
�þ!ðvFp�!=2Þ

2�

�
;

(5)

which is always single-valued as opposed to the ladder of
quasienergies En;�ðpÞ.
High- and low-frequency regimes.—It is natural to dis-

tinguish high and low frequencies in terms of the ratio of
the Zeeman coupling strength g and radiation frequency!.
More specifically, the Floquet spectrum happens to be
gapped for j!j< 4g and gapless for j!j> 4g. In the
low-frequency regime, the bands are well separated by
the photoinduced gap for any momentum, the (� ¼ �1)
band being the fully occupied one. In contrast, in the high-
frequency regime (j!j> 4g), the states of the ð� ¼ þ1Þ
band become lower in energy than the ones of the (�¼�1)
band within the momenta range !� < vFp <!þ with

4!� ¼ !� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � 16g2

p
[23]. The band touching at

j!j ¼ 4g has a clear signature in the total energy which
picks up a singular contribution as

Etot ¼ Esðg;!Þ þ �0
ffiffiffi
g

p
3

ðj!j � 4gÞ3=2 (6)

for j!j*4g, while Esðg;!Þ¼�0½!2=4�g2 lnð2W ffiffiffi
e

p
=gÞ�

is a smooth function of (!� 4g). The lattice constant is
denoted by a, �0 ¼ a=�vF, andW is a high energy cutoff.
The exponent 3=2 appears also in the orbital contribution
to the ground state energy of two-dimensional Dirac fer-
mions [34].
Electromagnetic response and topological invariants.—

The electromagnetic response of the QSH edge state is
more easily detected than the singularity in the ground state
energy Eq. (6). As a main signature, a dc photocurrent hji is
generated along the edge whose direction is determined by
the helicity of the circular polarization. Interestingly, there
is no accompanying ac current in the absence of orbital
coupling. Moreover, the current operator being j ¼ evF�

z,
such a dc current also corresponds to a steady-state mag-
netization h�zi along the edge.
We have obtained the full dependence of the dc-

photocurrent or steady-state magnetization for any arbi-
trary frequency within the bulk gap of the QSH insulator.
Besides, we demonstrate that the dc photocurrent is
directly related to a topological property of the time-
dependent Floquet state, that is, the topological invariant:

FIG. 1 (color online). The quantum spin Hall insulator (light
yellow rectangle) with its helical edge state (counterpropagating
red and blue arrows) in a circularly polarized electromagnetic
field with frequency! and wave vector k. In the plane z ¼ 0, the
rotating magnetic field BðtÞ ¼ B0ðcos!t; sin!tÞ is perpendicular
to the �z direction (vertical green arrows). A small tilting from
the z axis does not influence our results.
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C� ¼ 1

2

X
p

Z T

0
dtd̂�;pðtÞ � ½@pd̂�;pðtÞ � @td̂�;pðtÞ�: (7)

This Chern number C�, associated with the band �, is the

winding number of the mapping, ðp; tÞ ! d̂�;pðtÞ ¼
�þ

� ðp; tÞ���ðp; tÞ ¼ �ðg cos!t; g sin!t; vFp�!=2Þ=�,
between the (1þ 1)-dimensional extended Brillouin zone
in ðp; tÞ space and the unit sphere [1,19], the summation
being taken over occupied bands.

In the low-frequency regime (j!j< 4g), the dc
photocurrent

hji ¼
Z 1

�1
evFdp

2�
d̂z�;pðtÞ ¼ e!

2�
; (8)

is independent of the coupling strength g, the charge
pumped within one cycle (T) being exactly the unit charge.
This adiabatic pumped current has been considered in
Ref. [22]. As noticed by Thouless [35], the integer charge
pumped across a 1D insulator in one period of an
(adiabatic) cycle is a topological invariant that character-
izes the cycle. Here this specific quantization of charge
stems directly from the quantized Chern number

C� ¼ �
Z 1

�1
dp

� sgnð!ÞvFg
2

2�3
¼ �� sgnð!Þ; (9)

the ground state being the filled � ¼ �1 band, yielding
hji ¼ eC�=T. The dc current is therefore dissipationless,
protected by a photoinduced gap [23].

At high frequency j!j> 4g, the system undergoes a
photoinduced band inversion and the Chern number

C� ¼ �� sgnð!Þ
�
1� X

s¼�1

s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2!!s

p
!

�
(10)

is no longer quantized (Fig. 2), reminiscent of the transfer
of the Chern number between equilibrium bands which
touch. We note that the Chern number is continuous at the

transition j!j ¼ 4g and vanishes slowly as C� ¼ ��2g=!
for j!j � g.
The corresponding dc photocurrent is

hji ¼ e

2�

�
!� X

s¼�1

s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2!!s

p �
: (11)

While the current still satisfies hji ¼ eC�=T for j!j> 4g,
it is dissipative and no longer quantized due to the band
touching, in analogy with the photovoltaic Hall effect [24]
in graphene. The photocurrent approaches the finite
asymptotic value hji ¼ eg sgnð!Þ=� for j!j � g, which
can be regarded as the lowest-order, linear response cor-
rection to the current in g, hence the weak-coupling regime
(Fig. 2).
Proposal for a measurement setup.—In practice, the

weak-coupling regime g � j!j is usually realized. There
a typical radiation field (magnetic field strength of the
order of 10�4–10�5 T) yields a photocurrent of the order
of 0:1–10 pA, depending on the effective g-factor values,
which can be significantly enhanced (geff � 20–50) for
materials with strong spin-orbit coupling like HgTe/
CdTe, InAs/GaSb, HgSe, or Bi2Se3. Such induced current
can be detected in a contactless measurement. When the
total area of the QSH insulator is exposed to the radiation
field (i.e., the laser’s spot size is bigger than the area of the
sample), a circulating loop current flows around the sample
as in Fig. 1. A perpendicular magnetic field is induced

according to the Biot-Savart law as Bind ¼ �02
ffiffiffi
2

p hji=�L,
with L the linear size of a square-shaped sample (�0 the
vacuum permeability), staying roughly constant within the
sample. For hji ¼ 1 pA and L ¼ 1 �m, this gives Bind ¼
1 pT. This induced magnetic field is within the detectabil-
ity limit of an ac SQUID [23]. Finally, standard 2-contacts
measurement can also be used in order to detect the photo-
current. For a strip sample with a laser spot size bigger than
the width but smaller than the length, backscattering is
induced [29], which suppresses the photocurrent.
So far, we have considered the idealistic situation for the

generation of the dc photocurrent, namely, zero chemical
potential in the QSH edge modes, strictly vanishing orbital
effect, and no inversion symmetry breaking. In the follow-
ing, we discuss how additional effects may influence the dc
photocurrent (see also [23]).
Orbital effect and ac-current response.—When the vec-

tor potential is taken into account (in the typical
vFeA0=! � 1 regime), an ac current develops on top of
the dc one as hji � jdc þ jac cosð!tÞ. We have solved
Eq. (1) numerically [23] with the vector potential, and
the results are shown in Fig. 3. The induced ac component
stays always small compared to the dc one, because the
vector potential without the Zeeman term cannot cause
spin-flip processes and is unable to generate any current.
Indeed, the matrix element for optical transitions due to the
vector potential is �þþðp; tÞ�z��ðp; tÞ ¼ g=�. Therefore,

FIG. 2 (color online). The induced photocurrent (blue solid
line) and the C� Chern number (black dashed line) are shown as
a function of the frequency!. The photocurrent roughly behaves
as hji � e sgnð!Þminðg; j!j=2Þ=�, and it is maximal at the
transition j!j ¼ 4g between the low- and the high-frequency
regimes. The Chern number becomes nonquantized when band
touching occurs at 4g ¼ j!j.
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the extended Kubo formula [27] predicts the scaling of the
ac component as jac 	 vFeA0 [23].

Effect of the finite doping on the edge.—So far, we have
considered the optimal situation for photocurrent genera-
tion, namely, zero Fermi energy in the QSH state. In the
case of a finite chemical potential, the dc photocurrent
vanishes gradually as we move away from half filling of
the QSH edge states. The one-dimensional momentum acts
as a polarizing effective magnetic field in Eq. (1). For large
momenta jpj � ðj!j; jgjÞ=vF, this polarization is so
strong that the circularly polarized magnetic field hardly
induces any magnetization, while close to the Dirac point
(p	 0), the magnetic field represented by the momentum
is very weak, and the circularly polarized field dominates
over the momentum. The induced, helicity-dependent
magnetization originates from these states living close to
p ¼ !=2vF, as indicated by the nontrivial Aharonov-
Anandan phase in this region [23].

Inversion symmetry breaking and static magnetic
field.—We also consider the effect of a perturbation g0�x

in the Hamiltonian Eq. (1) in order to mimic an eventual
inversion symmetry breaking [22] and subsequent Sz non-
conservation (as in HgTe/CdTe quantum wells). This static
Zeeman term opens a gap at p ¼ 0, whereas the dc current
is mainly built up from states near p ¼ !=2vF. Therefore,
the effect of inversion symmetry breaking on the dc photo-
current is expected to be weak. Indeed, we have checked
that the dc current and also the ac component (in the
presence of an orbital effect) are almost identical to those
of Fig. 3 for g0 < g [23].

Zitterbewegung.—The trembling motion of the center of
mass coordinate is caused by interference between the
positive and negative energy states (i.e., interband transi-
tions) [36]. The topological invariant measures it indirectly

through d̂�;pðtÞ in Eq. (7). The position operator satisfies

@tx ¼ vF�
z ¼: vðtÞ. Generalizing Ref. [36] to nonequilib-

rium Floquet states, we find

vðtÞ
vF

¼ f½n 
 nþ ð1� n 
 nÞ cosð2�~tÞ

þ sinð2�~tÞn���0gz (12)

where n ¼ d̂�;pðt0Þ, ~t ¼ t� t0, n 
 n is the dyadic prod-

uct, and �0 is the spin configuration at t ¼ t0.
Conclusion.—Radiation of a helical edge drives a tran-

sition between nondissipative charge pumping at low fre-
quency and a high-frequency dissipative regime, reflected
in the behavior of the photocurrent. Note that, for (neutral)
atoms in optical traps, one can introduce a Zeeman term
without any orbital counterpart or fabricate chiral edge
states with spin quantized parallel to the momentum
[11]: Without any vector potential, the full transition
from dissipationless to dissipative charge pumping can
then be followed.
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