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This paper addresses the possibility to realize the group synchronization of short linear, binary, block codes without the use of a preamble. The proposed algorithm is based on the cyclic use of the coding relations. The input data are equal probable and generated by a binary, memoryless source. We consider a binary symmetric channel (BSC) with known error probability. It is shown that the reliability of the proposed algorithm depends on the channel error probability and the length of the cumulative sums used for synchronization.

INTRODUCTION

In several applications as transmission of medical parameters obtained by measurements [START_REF] Obeid | Non-Contact Heartbeat Detection at 2.4, 5.8 and 60 GHz: A Comparative Study[END_REF][START_REF] Obeid | Multi-tunable Microwave System for Touch-less Heartbeat Detection and Heart Rate Variability Extraction[END_REF], short messages from vehicles to infrastructure in V2I configurations [START_REF] Kdouh | ZigBee-Based Sensor Network for Shipboard Environments[END_REF] or in the case of several wireless sensor networks (WSN) [START_REF] Berder | Cooperative communications between vehicles and intelligent road signs[END_REF] the amount of data is reduced. In order to obtain a reliable communication, error-correcting codes like linear block codes can be used [START_REF] Neubauer | Coding Theory[END_REF][START_REF] Morelos-Zaragoza | The Art of Error Correcting Coding[END_REF]. The main idea of these codes is to add some redundancy by appending to k binary information symbols m parity-check symbols in order to increase the Hamming distance between the resulting code words of length n=k+m. These m parity-check symbols are computed as linear combinations of the k information symbols. Thus, the code rate is k/n. The received data must be divided in code words. Generally, this group synchronization can be done using a periodic preamble [START_REF] Pacheco | Analysis of a frame synchronization method using periodic preamble for OFDM based WLANs[END_REF][START_REF] Rakotondrainibe | Performance Analysis of a 60 GHz near gigabit system for WPAN applications[END_REF]. In order to avoid the reduction of the code rate due to the periodic preamble, for small values of n it is interesting to investigate to possibility to exploit the periodicity of encoding relations of a linear block code (LBC) for the group synchronization. Indeed, in a previous study [START_REF] Munteanu | Analysis of linear block codes as sources with memory[END_REF] it has been shown that a LBC can be characterized as an information source with memory if the input data are generated by a memoryless binary source. In [START_REF] Zaharia | Characterization of linear block codes as cyclic sources with memory[END_REF], the LBCs have been characterized as cyclic Markov chains with a period equal to n. In this paper, we study the performance of the group synchronization based on the period of the cyclic Markov chain corresponding to a given LBC. The encoding process is shown in Fig. 1.
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Generally, for a linear block code, the encoding operation is performed according to relation [START_REF] Neubauer | Coding Theory[END_REF][START_REF] Morelos-Zaragoza | The Art of Error Correcting Coding[END_REF]:

1 2 [ ... ] k v ii i G =
(1) where: v is the code word;

i j , 1, j k =
are the information symbols; G is the generator matrix.

The number of rows of the generator matrix G is equal to the number of the information symbols k, while the number of columns is equal to the code word length n.

Since from (1) 2 k distinct code words have to result, the rank of the generator matrix G must be equal to k. This means that, by elementary transformations, the generator matrix can be expressed in the equivalent form:

k G I P = ⎡ ⎤ ⎣ ⎦ (2) 
where I k denotes the identity matrix of rank k and P is a k x m matrix with binary elements. If the generator matrix is as in (2), the code is systematic, with the information symbols placed on the first k positions of the code word, that is:

1 2 1 2 [ ... ... ] k m v ii i cc c = (3) 
where c j ∈{0,1}, 1, j m = , are the parity-check symbols. We assume that the binary information symbols are equal probable and provided by the memoryless source X={0, 1}. The parity-check symbols can be computes as: 

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ (4) 
In order to perform the group synchronization even when the received data is absent (i.e., all the information symbols are equal to 0), the proposed algorithm uses the relations: 

= ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ (5) 
This inversion of the logical value of the parity-check symbols does not modify the correction properties of the considered LBC.
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II. SYNCHRONIZATION ALGORITHM

The main idea of the proposed algorithm is to exploit the periodicity of the encoding relations [START_REF] Neubauer | Coding Theory[END_REF]. At the receiver, without errors, we compute: 

k k k k m m m k k m m s i p i p i p c s i p i p i p c s i p i p i p c = ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ (7)
where ⊕ is the modulo-2 addition. It is simple to verify that in this case all the binary symbols s j = 1 (j = 1, 2, ... , k), thus:

1 = . m j j S s m = = ∑ (8) 
Let us consider a sequence of 2n-1 successive received bits:

r = [r 1 r 2 ... r 2n-1 ] (9) 
For d = 1, 2, ... , n we compute: 

1 1 1 1 2 1 1 1 2 1 2 1 2 2 1 2 1 1 1 2 1 
+ + - + + + - + + + + - + + + = ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ (10) 
If r d is the first symbol of a received code word, then, in the absence of errors, we have for {1, 2, ..., }: 

d n ∈ 1 ( ) ( )
{ } ( ) ( , ) max ( , ') , ' s s s Diff P CS P d CS P d d d = - ≠ (15) 
will be quite large to allow a reliable determination of d even in the presence of some errors. Thus, the first position r d of a received code word can be determined. The value P s depends on the LBC parameters, the error probability p characterizing the transmission channel and the false alarm (false detection) probability. Its value can be determined by simulation.

III. ALGORITHM SIMULATION FOR H [START_REF] Pacheco | Analysis of a frame synchronization method using periodic preamble for OFDM based WLANs[END_REF][START_REF] Berder | Cooperative communications between vehicles and intelligent road signs[END_REF] We consider the well-known binary [START_REF] Pacheco | Analysis of a frame synchronization method using periodic preamble for OFDM based WLANs[END_REF][START_REF] Berder | Cooperative communications between vehicles and intelligent road signs[END_REF] Hamming code with k = 4 information symbols and m = 3 parity-check symbols. This code can correct one error. In order to simplify the simulation program, a systematic version of this code is used. Thus, for a given code word:

v = [v 1 v 2 v 3 v 4 v 5 v 6 v 7 ]
(16)

we consider the first k = 4 bits as information symbols, while the last m = 3 bits as parity-check symbols given by:

5 1 2 3 6 1 2 4 7 1 3 4 v v v v v v v v v v v v = ⊕ ⊕ = ⊕ ⊕ = ⊕ ⊕ (17) 
Based on these relations, the generator matrix of this code can be obtained:

1 0 0 0 1 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 G ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ (18) 
As explained in introduction, we prefer to inverse the coding relations (17):

5 1 2 3 6 1 2 4 7 1 3 4 v v v v v v v v v v v v = ⊕ ⊕ = ⊕ ⊕ = ⊕ ⊕ (19) 
For this code, d = 1, 2,..., 7. The symbols s j (d) are:

1 1 2 4 2 1 3 5 3 2 3 6 ( ) ( ) ( ) d d d d d d d d d d d d s d v v v v s d v v v v s d v v v v + + + + + + + + + = ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ (20) 
For the simulation, we consider a noisy channel with the error probability p = 10 -2 . In fact, for each code word v it is possible to obtain an error vector e = [e 1 e 2 e 3 e 4 e 5 e 6 e 7 ] (

The received code word vr is calculated as the module-2 sum between the transmitted vector v and the error vector e:

r v v e = ⊕ (22) 
Each symbol of the error vector e is generated with the error probability p. This can be done using a uniform random variable [0, 1[. u ∈ If 0 ≤ u ≤ 1-p, then we consider ej = 0, else ej = 1. The results shown in Fig. 2 are obtained with Ps = 24. The number of code words simulated is N = 10 5 . The frame considered for simulation began with a code word. Therefore, the decision d = 1 indicates that that the first received bit r1 is the start of a code word. During the reception, there was no decision modification, so there were no missing bits and the group synchronization was performed without errors. 13) and ( 24). This difference is sufficient large to take each time the good decision. However, the capacity of this algorithm to take good decisions is limited. For example, for p = 4.10 -2 , as shown in Fig. 4, this algorithm has some wrong decisions. The value d = 6 shows that for a bad enough channel, it is possible to obtain the maximum value of the cumulative sums CS(d) for a wrong value of d (as shown before, because the received vector r starts with the first bit of a code word, the right decision for these simulations is d = 1). It is also possible to observe in Fig. 4 several values d = -1. This indicates that the maximum value of the cumulative sums CS(d), with d = 1, 2, ..., n is obtained for at least 2 different values of d. In this case, the decision cannot be correctly taken. However, it is possible to remark that the values d = -1 are isolated (before and after a value d = -1 one can observe good decisions d = 1). This remark suggests an improvement of the basic synchronisation algorithm.

IV. ALGORITHM SIMULATION FOR H(15,11)

In order to determine the performance of the proposed algorithm, a longer code is conserved for simulation: the Hamming code with a length n = 15 and k = 11 information symbols. As for the previous code, this code can correct just one error. Let consider:

v = [v1 v2 ..., v15] (21) 
the code word with the information symbols placed on the first k = 11 positions. The last m = 4 parity-check symbols can be computed as:

12 1 2 4 5 7 9 11 1 3 1 3 4 6 7 1 0 1 1 1 4 2 3 4 8 9 1 0 1 1 1 5 2 6 7 8 9 1 0 1 1 v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ (22) 
As explained in introduction, we prefer to inverse the coding relations (22): 

v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v v = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ (23) 
For this code, d = 1, 2,...,15. The symbols sj(d) are: 

s d v v v v v v v v s d v v v v v v v v s d v v v v v v v v s d v v v v v v v v + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ = ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ (24) 
For the simulation, we consider a noisy channel with the error probability p = 10 -2 and Ps = 28. The number of code words simulated is N = 10 5 . The frame considered for simulation began with a code word. One can observe in Fig. 5 a good result obtained with Ps = 28. However, the first decisions are not correct. This is an expected result, because the cumulative sums given by (13) are computed with few terms S(d). However, a small number of terms S(d) (Fig. 6 indicates 2 terms) are sufficient to take a good decision. Hence, after a transient regime, the group synchronization is realized without errors. Fig. 7 presents the time evolution of the difference Diff(Ps) computed with (25). One can observe that this difference is sufficient large to take each time the good decision. This is possible after a short transient regime (some few code words).

With p = 2.10 -2 , these differences are smaller. Therefore, sometimes, some synchronization decisions are wrong. In this case, a larger value Pr = 30 is sufficient to obtain a good synchronization (as given in Fig. 5).

IV. CONCLUSION

A new and original non-preamble group synchronization based on coding relations has been proposed in this paper. With a convenient choice of length of the cumulative sums given by the parameter P r , this algorithm gives good results even for quite bad transmission channels (error probability of 10 -2 ). The main advantage is the reliability of the decisions of the proposed algorithm without using a preamble and, therefore, without further reduction of the coding rate. However, for practical applications, this algorithm is convenient only for short code words. If the length of the code word increases, the number of electronic circuits needed for the implementation becomes quite large. However, for the actual FPGAs or ASICs, this can be easily realized.

The future work will focus on the convenient choice of the parameter P r as a function of p and n for a given low value of the miss detection probability. It will be also interesting to confirm the simulation results by theoretical calculations. The theoretical values of the synchronization miss-detection and false-alarm probabilities must also be considered.
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