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Mercier, Marc Foretz, Celine Aguer, Abnormal metabolism flexibility in response to high
palmitate concentrations in myotubes derived from obese type 2 diabetic patients, BBA
- Molecular Basis of Disease (2010), doi: 10.1016/j.bbadis.2010.12.007

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/10.1016/j.bbadis.2010.12.007
http://dx.doi.org/10.1016/j.bbadis.2010.12.007


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 
 

Abnormal metabolism flexibility in response to high palmitate concentrations in 

myotubes derived from obese type 2 diabetic patients 

Magali Kitzmanna,b,1, Louise Lantierc,d, Sophie Hébrardc,d, Jacques Merciera,b,e, Marc 

Foretzc,d, Celine Aguera,b,2* 
a INSERM, ESPRI25 Muscle et pathologies, Montpellier, F-34295, France 
b Université MONTPELLIER1, EA4202 Muscle et pathologies, Montpellier, F-34060, 

France 
c Institut Cochin, Université Paris Descartes, CNRS, UMR8104, Paris, F-75014, France 
d INSERM, U567, Paris, F-75014, France 
e CHU Montpellier, Hôpital Lapeyronie, Service de Physiologie Clinique, Montpellier, F-

34295, France 
1 Present address: IGH, UPR1142, Montpellier, F-34296, France 
2 Present address: Mitochondrial Bioenergetics Laboratory, Faculty of Medicine, 

Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 

Ottawa, ON, K1H 8M5, Canada  

*A ddress correspondence to: Celine Aguer: caguer@uottawa.ca, Phone: +1-613-562-

5800 x8667, Fax: +1-613-562-5452, Mitochondrial Bioenergetics Laboratory, Faculty of 

Medicine, Department of Biochemistry, Microbiology and Immunology, University of 

Ottawa, Ottawa, ON, K1H 8M5, Canada  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2 
 

Abstract 

 

Insulin resistance in type 2 diabetes (T2D) is associated with intramuscular lipid (IMCL) 

accumulation. To determine whether impaired lipid oxidation is involved in IMCL 

accumulation, we measured expression of genes involved in mitochondrial oxidative 

metabolism or biogenesis, mitochondrial content and palmitate beta-oxidation before and 

after palmitate overload (600 µM for 16h), in myotubes derived from healthy subjects 

and obese T2D patients. Mitochondrial gene expression, content and network were not 

different between groups. Basal palmitate beta-oxidation was not affected in T2D 

myotubes, whereas after 16h of palmitate pre-treatment, T2D myotubes in contrast to 

control myotubes, showed an inability to increase palmitate beta-oxidation (p<0.05). 

Interestingly, acetyl-CoA carboxylase (ACC) phosphorylation was increased with a 

tendency for statistical significance after palmitate pre-treatment in control myotubes 

(p=0.06) but not in T2D myotubes which can explain their inability to increase palmitate 

beta-oxidation after palmitate overload. To determine whether the activation of the AMP 

activated protein kinase (AMPK)-ACC pathway was able to decrease lipid content in 

T2D myotubes, cells were treated with AICAR and metformin. These AMPK activators 

had no effect on ACC and AMPK phosphorylation in T2D myotubes as well as on lipid 

content, whereas AICAR, but not metformin, increased AMPK phosphorylation in 

control myotubes. Interestingly, metformin treatment and mitochondrial inhibition by 

antimycin induced increased lipid content in control myotubes. We conclude that T2D 

myotubes display an impaired capacity to respond to metabolic stimuli. 

 

Key words: lipid overflow, palmitate beta-oxidation, mitochondria, acetyl-CoA 

carboxylase, AMP activated protein kinase 

 

Abbreviations. 

T2D, type 2 diabetes ; IMCL, intramuscular lipid; ACC, acetyl-CoA carboxylase; AMP 

activated protein kinase, AMPK; AICAR, AMP-mimetic 5-aminoimidazole-4-

carboxamide-1-β-D-ribofuranoside; FA, fatty-acid; ASM, acid-soluble metabolites; CS, 
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citrate synthase; HAD, 3-hydroxy-acyl-CoA-dehydrogenase; NRF1, nuclear respiratory 

factor 1; CPT1, carnitine palmitoyltransferase 1 
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1. Introduction 

 

During overweight and obesity development, a redistribution of adipose tissue occurs 

with increased accumulation of visceral fat. This ectopic lipid accumulation has been 

shown to be related to diverse metabolic diseases including dyslipidemia, cardiovascular 

disease, insulin resistance and type 2 diabetes (T2D). In healthy people, skeletal muscle 

accounts ~80% of postprandial glucose disposal. However, during T2D development, 

skeletal muscle becomes primary significant site of insulin resistance [1, 2]. Several 

studies have demonstrated a strong negative relationship between ectopic lipids 

accumulation in skeletal muscle (intramyocellular lipid (IMCL)) and whole body insulin 

resistance [3-5]. However, the precise mechanisms leading to IMCL accumulation during 

T2D development are still under investigation. During the last decade, several studies 

have focused on the implication of mitochondrial dysfunction in insulin resistance 

development and IMCL accumulation [6-10]. Mitochondrial oxidative phosphorylation 

was shown to be reduced in the skeletal muscle of type 2 diabetic patients [6-8] and lean 

insulin-resistant offspring of type 2 diabetic parents [9, 10]. However, more recent 

studies have shown that mitochondrial function is not altered in T2D skeletal muscle 

when normalised for mitochondrial content [11] or when diabetic and non-diabetic 

subjects are matched for body composition [12]. Another hypothesis to explain increased 

lipid content in skeletal muscle of diabetic patients is an increased fatty-acid (FA) uptake 

due to increased membrane expression of the major muscle FA transporter FAT/CD36 

[13]. 

Primary human myotubes isolated from type 2 diabetic patients have been shown to 

express metabolic characteristics that approximate the in vivo phenotype of the donor 

subject [14-19]. This in vitro muscle system provides an attractive model in which lipid 

accumulation can be evaluated apart from the systemic influences of the in vivo 

environment. We have recently shown in this model that an increased membrane 

expression of FAT/CD36 could explain ~50% of the increase in lipid content in 

myotubes derived from obese T2D patients [20]. Thus, other mechanisms may be 

involved in increased IMCL content in myotubes derived from obese T2D patients. 

Reduced lipid oxidation, particularly oxidation of saturated FA [21, 22], as well as 
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reduced citrate synthase activity [23], have been shown to be maintained in myotubes 

established from obese T2D patients. More recently, it has been shown that myotubes 

derived from obese T2D patients present a decrease in intramyocellular lipid oxidation 

compared to control myotubes and that this decrease in lipid oxidation was not the result 

of lower mitochondrial mass [24]. However, the cause of impaired mitochondrial 

function per se during T2D is not clearly understood and still under investigation. 

Among the different treatments for type 2 diabetes, it is important to note that some of 

them act through the same target. Indeed, physical activity, metformin and 

thiazolidinediones activate AMP activated protein kinase (AMPK). AMPK is a major 

metabolic sensor which is activated by an increase in the ratio of AMP/ATP in order to 

restore energy status of the cell by stimulating ATP-producing pathways (glucose uptake, 

fatty acid oxidation, and mitochondrial biogenesis) [25-27] and inhibiting ATP-

consuming pathways (fatty acid synthesis, glycogen synthesis, and protein synthesis) [28-

30]. Interestingly, some studies have shown that the activation of AMPK induces an 

increase in mitochondrial function and lipid oxidation leading to decreased IMCL content 

[31-33]. This effect could be the result of an increase in long-chain FA entrance and 

oxidation in mitochondria due to the reduction in ACC (acetyl-CoA carboxylase) activity, 

a well known target of AMPK [34, 35]. Taken together these results show that AMPK 

activation may be an excellent target in order to decrease lipid content in the skeletal 

muscle of type 2 diabetes patients. 

In order to gain further insight into the mechanisms underlying elevated lipid 

accumulation in T2D primary muscle cells, the aim of our study was to determine 

whether lipid oxidation is affected in basal condition or after palmitate overload in 

diabetic myotubes compared to control myotubes and to better understand the 

mechanisms leading to these defects. We also tested whether AMPK activation could 

modulate lipid content in these myotubes. 
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2. Materials and methods 

 

2.1. Primary human satellite cell culture 

Skeletal muscle biopsy of the vastus lateralis was performed according to the 

percutaneous Bergström technique after local anesthesia (xylocaine) [36, 37]. The 

experimental protocol was approved by the local ethic committee (03/10/GESE, 

Montpellier, France). Informed and written consent was obtained from all subjects after 

explanation of the protocol. In the present study, biopsies were taken from four control 

subjects (age: 49.2 ±2.7 years, body mass index: 24.0 ±1.2 kg/m²) with no familial or 

personal history of diabetes and from five moderately obese type 2 diabetic patients (age: 

53.4 ±2.4 years, body mass index: 31.5 ±0.6 kg/m²). Clinical characteristics of the 

subjects were previously described [21, 41]. Cell culture of primary human satellite cells 

was performed as previously described [20]. Cultures were maintained in a growth 

medium composed of (DMEM, 10% FBS and 1% Ultroser G) and when myoblasts 

reached confluence, medium was changed (growth medium minus Ultroser G) and the 

differentiation process occurred until fusion and terminal differentiation into contractile 

myotubes (8 days). The experiments were performed on passages 2 to 4, after 8 days of 

differentiation. 

 

2.2. Myotube treatments 

Treatments performed on differentiated myotubes are detailed in the figure legends and 

were done in triplicate for each of the independent cell cultures. The following reagents 

were purchased from Sigma-Aldrich (Saint Quentin Fallavier, France): L-Glutamine, 

DMEM, antimycin A, AMP-mimetic 5-aminoimidazole-4-carboxamide-1-β-D-

ribofuranoside (AICAR), metformin and palmitate. Fetal bovine serum was from 

Hyclone (Brebières, France). Palmitate was dissolved in chloroform (0.6 mol/l), diluted to 

600 µM in DMEM containing 10% of FBS (differentiation medium) and added to the 

myotubes as previously described [20, 38]. 
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2.3. Lipid accumulation 

Lipid accumulation in myotubes was visualized by oil red O (Sigma, Saint-Quentin 

Fallavier, France) staining as previously described [20, 38, 39]. Oil red O staining was 

carried for one hour followed by 2 or 3 washes with distilled water. Lipid droplets were 

then visualized by light microscopy.  In order to quantify lipid accumulation in myotubes, 

oil red O was extracted using isopropanol. The absorbance value was measured using a 

spectrophotometer set at 490 nm and blanked to untreated cells [20, 38, 39]. 

 

2.4. Real-time RT-PCR analysis 

Total RNA was isolated with Trizol (Invitrogen, Cergy-Pontoise, France) and single-

strand cDNA was synthesized from 2.5 µg of total RNA with random hexamer primers 

and Superscript II (Invitrogen, Cergy-Pontoise, France). Real-time RT-PCR reactions 

were carried out with a LightCycler reaction kit (Eurogenetec, Angers, France) in a final 

volume of 20 µl containing 125 ng of reverse-transcribed total RNA, 500 nM of primers 

[40], 10 µl of 2x PCR mix and 0.5 µl of SYBR Green. The reactions were carried out in 

capillaries in a LightCycler instrument (Roche, Rosny-sous-bois, France) with 40 cycles. 

We determined the relative amounts of the mRNAs studied by means of the second 

derivative maximum method, with LightCycler analysis software version 3.5 and 18S 

RNA as the invariant control for all studies. 

 

2.5. Western blots 

Cellular extracts were quantified and lysed in Laemmli buffer. 30-50 µg of total proteins 

were transferred to nitro-cellulose membranes (Schleicher and Schuell, Bioscience, 

Dassel, Germany). Western blots were performed as described [41]. The following 

primary antibodies were used: phospho-Ser222-ACC, ACC, phospho-Thr172-AMPK and 

AMPK (Cell signaling, Paris, France), non-glycosylated protein component of 

mitochondria (Ab2, Interchim, Montlucon, France); and anti-α-tubulin (Sigma Saint-

Quentin Fallavier, France) was used as a loading control. The secondary antibodies were 

anti-rabbit and anti-mouse antibodies coupled to horseradish peroxidase (GE Healthcare, 

Orsay, France). Proteins were visualized using an enhanced luminescent reagent (Tebu-
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Bio), and exposed on film (GE Healthcare, Orsay, France). Expression of proteins was 

quantified by density analysis using ImageJ Launcher Software. 

 

2.6. Citrate synthase activity 

Cellular extracts were homogenized in a solution containing: 10 mM Tris HCl (pH 7.2), 

0.1 mM EDTA, 75 mM saccharose and 225 mM mannitol. Citrate synthase activity was 

measured with 0.5 mM oxaloacetate, 0.3 mM acetyl-CoA, 0.1 mM of 5, 5’-Dithiobis 2-

nitro-benzoic acid (DTNB), 100 mM Tris HCL (pH=8.0) and 0.1% Triton 100X. Enzyme 

activity was monitored by recording the changes in absorbance at 412 nm over 2min at 

37°C, and normalized to protein content. 

 

2.7. Immunofluorescence 

Differentiated satellite cells were fixed with 4% paraformaldehyde in PBS for 10min, 

permeabilized with 0.5% triton in PBS for 2min, saturated with 0.5% BSA in PBS for 

10min and then incubated with primary antibodies against a non-glycosylated protein 

component of mitochondria (Ab2, Interchim, Montlucon, France). Secondary antibody 

was Alexa Fluor 596 anti-mouse (Invitrogen, Molecular Probes, France). 

 

2.8. Palmitate beta-oxidation 

Cells were cultured in 96-well plates and differentiated as described above. Differentiated 

satellite cells were exposed or not to cold palmitate (0.6 mM) for the last 16h of 

differentiation and then exposed to differentiation medium (DMEM + 10% Foetal Bovin 

Serum) supplemented with 1% bovine serum albumin, 50 µM palmitate and 9.5 µM (0,09 

µCi) [1-14C]palmitate. Identical incubations were conducted on parallel plates that 

contained no cells. Palmitate beta-oxidation was determined by measuring production of 
14C-labeled acid-soluble metabolites (ASM), a measure of tricarboxylic acid cycle 

intermediates and acetyl esters. After incubation for 30 min at 37°C, reactions were 

terminated by aspiration of the media and addition of 100 µl of HClO4 at 5% for 15min at 

room temperature. The ASM was assayed in supernatants of the acid precipitate. 

Radioactivity of ASM was determined by liquid scintillation counting by use of 4.5 ml of 

liquid scintillation cocktail (Optiphase ‘Hisafe’ 3, Perkin Elmer) in scintillation vials. For 
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protein determination, identical incubations were conducted on parallel plates with the 

same number of cells. 

 

2.9. Statistical analysis 

Statistical analyses were performed using Statview 5.0. Data are means ± SEM.  

Statistical analyses were performed using Student’s t test for unpaired and paired 

comparison, or ANOVA with Fisher’s PLSD post-hoc test for multiple comparisons. 

P<0.05 was considered to be significant. 
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3. Results 

 

As previously shown by our team, lipid content in the presence of palmitate is increased 

in myotubes derived from obese T2D patients as compared to myotubes derived from 

healthy control subjects [20]. Here, we have confirmed this finding (Fig S1A and B, 

(p<0.01)). 

 

3.1. Mitochondrial content and network are normal in T2D myotubes 

We examined several mitochondrial parameters between control and T2D myotubes in 

order to determine whether mitochondrial content is decreased in T2D myotubes. 

We first measured the mRNA levels of genes involved in mitochondrial oxidative 

metabolism (citrate synthase (CS) and 3-hydroxy-acyl-CoA-dehydrogenase (HAD)), of a 

gene known to mediate the transcriptional control of mitochondrial biogenesis (nuclear 

respiratory factor 1 (NRF1)) and of a gene involved mitochondrial lipid uptake (carnitine 

palmitoyltransferase 1 (CPT1)). The expression of all of these genes was not significantly 

different between control and T2D myotubes (Fig. 1A). 
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We determined by western blot the expression of a non-glycosylated protein component 

of mitochondria (Ab2) which has been previously used by others as a marker of 

mitochondria in subcellular fractions [42] (Fig. 1B). As a second marker of mitochondrial 

content, we measured the activity of citrate synthase ( Fig. 1C). As shown in figure 1B 

and C, the expression of the non-glycosylated protein component of mitochondria was 

variable between subjects independently of type 2 diabetes, and citrate synthase activity 

was not significantly different between control and T2D myotubes. Furthermore, we have 

performed immunofluorescence experiments to check the specificity of the antibody used 

in western blot as well as to determine whether the mitochondrial network was different 

between the two groups (Fig. 1D). As shown in Figure 1D, mitochondria Ab-2 antibody 

showed a specific mitochondrial “spaghetti”-like staining pattern in the cytoplasm of 

control as well as in T2D myotubes, without obvious differences in morphology between 

groups. 

Taken together, results presented in figure 1 show that neither mitochondrial content nor 

the mitochondrial network are affected in differentiated primary muscle cells derived 

from obese T2D patients. 

 

3.2. Palmitate pre-treatment reveals mitochondrial dysfunction and an abnormal 

response at the level of ACC phosphorylation in T2D differentiated cells 

A reduction in fatty acid oxidation with no difference in mitochondrial content has been 

observed in T2D myotubes [24]. We measured palmitate beta-oxidation in fully 

differentiated myotubes without palmitate pre-treatment (-) or with 16h of palmitate pre-

treatment (+, cold palmitate, 600 µM). As shown in figure 2A, palmitate beta-oxidation 

was not significantly different in T2D differentiated cells compared to control cells in the 

basal state, but was significantly lower in T2D myotubes compared to control myotubes 

after palmitate overload (p<0.05). There was a trend for an increased palmitate oxidation 

after palmitate pre-treatment compared to basal condition in control myotubes (p=0.09), 

but not in T2D myotubes (P=0.37).  

We have next monitored ACC phosphorylation (expressed as a ratio of phosphorylated to 

total protein) (Fig. 2B and C) in 4 cultures of control and 4 cultures of T2D differentiated 
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muscle cells. In the basal state, ACC phosphorylation was not different between groups 

(Fig. 2B and C). 

We next examined the impact of palmitate pre-treatment (600 µM, 16h) on ACC 

phosphorylation (Fig. 2D and E). Palmitate pre-treatment was able to increase ACC 

phosphorylation in control myotubes with a tendency of statistical significance (p=0.06) 

but not in T2D myotubes (Fig. 2D and E). 

Figure 2 shows that T2D myotubes are not able to increase palmitate beta-oxidation and 

ACC phosphorylation to the same degree as control myotubes in response to high 

concentrations of palmitate pre-treatment. These results suggest that the impairment in 

palmitate beta-oxidation in response to high level of palmitate pre-treatment in T2D 

myotubes (Fig. 2A) could be explained by an abnormal response to palmitate at the level 

of ACC phosphorylation (Fig. 2D and E). 

 

 

 

3.3. AICAR or metformin treatments are not able to decrease lipid content in T2D 

myotubes 

To test whether AMPK activation was able to decrease lipid content in T2D myotubes, 

fully differentiated myotubes were treated with 2 different AMPK activators: AICAR (5-

aminoimidazole-4-carboxamide-β-D-ribofuranoside) and metformin (Fig. 3). AICAR 

treatment for 16h showed a significantly increased AMPK phosphorylation only in 

control myotubes (p<0.05) but not in T2D myotubes, due to a greater variability in the 

response to AICAR treatment in our T2D cells (Fig. 3 A and B). However, the 

phosphorylation of ACC was not increased after AICAR treatment in the 2 groups of 

cells (Fig. 3A and C). Metformin treatment for 16h did not increase either AMPK or 

ACC phosphorylation in control and T2D myotubes (Fig. 3A, B and C). As a 

consequence, no decrease in lipid accumulation was observed in T2D myotubes after 

metformin and AICAR treatments (Fig. 3D, left panel). AICAR treatment also had no 

effect on lipid content in control myotubes (Fig. 3D, left panel). Surprisingly, long term 

metformin treatment induced a significant increase in lipid content in control myotubes 

but not in myotubes from T2D patients (Fig. 3D, right panel). 
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3.4. Mitochondrial inhibition alters lipid content in control myotubes 

AICAR activates AMPK by increasing the intracellular pool of ZMP, an AMPK 

analogue (for review see [43]). Metformin activates AMPK indirectly by inhibiting 

complex I of the respiratory chain [44, 45].Thus we sought to examine the effect of 

antimycin A, a mitochondrial inhibitor (complex III), before challenging cells with a high 

concentration of palmitate (600 µM for 16h) in order to evaluate if the metformin effect 

on lipid accumulation could be attributable to mitochondrial inhibition. As shown in 

figure 4 A and B, after treatment of the cells with antimycin A, palmitate-induced lipid 

accumulation in control myotubes was significantly increased by 22% (p<0.05). 

Interestingly, no increase in lipid content was found in T2D myotubes after antimycin A 

treatment which is in accordance with the results shown in Fig. 4 after metformin 

treatment. 

Figure 4 shows that mitochondrial inhibition is sufficient to increase lipid content in 

control myotubes to the same level as in T2D myotubes. 
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4. Discussion 

 

Mitochondrial involvement in intramuscular lipid accumulation and T2D development 

has been widely studied over the last 10 years. Numerous studies have shown a 

mitochondrial dysfunction in skeletal muscle of T2D patients [6-8] as well as in muscle 

from persons at risk for developing T2D [9, 10]. However, these results have been 

refuted in more recent studies showing that mitochondrial function was not altered in 

T2D skeletal muscle after normalization by mitochondria content [11] or when T2D and 

control subjects were matched for obesity [12]. Thus, the involvement of mitochondrial 

dysfunction in T2D is still under investigation. In the present study, we have shown that 

baseline palmitate oxidation and mitochondrial content were similar between primary 

human satellite cells derived from healthy control subjects and moderately obese T2D 

patients. A defect in palmitate beta-oxidation was only revealed when T2D myotubes 

were challenged with high concentrations of palmitate, and this impaired response to 

palmitate overload could be the result of a lack of inhibition of ACC activity by 

palmitate. Thus a mitochondrial dysfunction in T2D myotubes is only revealed upon 

challenge with saturated fatty acid overload. This result is in accordance with another 

study showing that myotubes from patients with a history of type 2 diabetes were unable 

to adapt to a hyperglycaemic–hyperinsulinaemic challenge [46]. Thus, it seems that 

response to nutrient challenge is impaired in T2D myotubes. 

In the present study, we used primary muscle cells in culture to study mitochondrial fatty 

acid oxidation apart from the systemic influences of the in vivo environment. 

Interestingly, under basal conditions (no palmitate pre-treatment), no evidence for 

differential expression of genes involved in mitochondrial oxidative metabolism or in 

genes involved in mitochondrial biogenesis was found between myotubes derived from 

lean healthy subjects and obese type 2 diabetic patients, confirming results previously 

described [47]. Furthermore, we found no differences in mitochondrial content (estimated 

by citrate synthase activity or expression of a mitochondrial protein) or in the 

mitochondrial network between the two populations of cells. These results differ from 

previous published findings showing an intrinsic defect in citrate synthase activity [23] 

but are in accordance with a recent study [24]. 
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Under basal conditions, we found no significant difference in palmitate beta-oxidation in 

cells derived from obese type 2 diabetic patients compared to those derived from control 

subjects. This result may be due to a lack of power in consequence of the small n size. 

However, only one out of 3 T2D myotubes show smaller beta-oxidation values than the 

control cells. Interestingly, after palmitate pre-treatment for 16h, palmitate beta-oxidation 

was significantly decreased in T2D myotubes compared to control cells. Palmitate pre-

treatment also revealed a greater increase in lipid content in T2D myotubes as compared 

to control cells, whereas no difference in lipid accumulation was found between the two 

groups of myotubes in basal conditions (not shown). Thus, control myotubes were able to 

increase palmitate beta-oxidation after palmitate pre-treatment  allowing an only 

moderate lipid accumulation whereas T2D myotubes showed a smaller response to high 

palmitate pre-treatment at the level of palmitate beta-oxidation (compared Fig. 2A with 

Fig. 2B) leading to greater lipid accumulation. The stimulation of fatty acid beta-

oxidation by high concentrations of palmitate in control myotubes is in accordance with 

another study [48]. Moreover, direct inhibition of the electron transport chain by 

antimycin A and metformin was able to increase palmitate-induced lipid accumulation in 

control myotubes showing that mitochondrial inhibition can in fact lead to increased lipid 

content in control myotubes. In contrast, in satellite cells derived from obese T2D 

patients, neither antimycin A nor metformin treatment lead to an increase in lipid content 

in T2D myotubes indicating that mitochondrial function was already defective in T2D 

myotubes or that the lipid accumulation capacity in T2D myotubes was already at its 

maximum without these treatments. 

To obtain mechanistic insights into the modified response to palmitate pre-treatment in 

T2D myotubes, we monitored changes in P-ACC. Active (dephosphorylated) ACC 

inhibits fatty acid oxidation by increasing the availability of malonyl-CoA which, in turn, 

inhibits carnitine palmitoyl transferase 1 (CPT1) and the entrance of long-chain fatty acid 

in mitochondria. Phosphorylation of ACC inhibits its activity leading to increased fatty 

acid uptake by mitochondria and, subsequently, increased fatty acid oxidation [49, 50]. In 

the basal state, no difference in P-ACC or ACC expression was observed between 

groups. After palmitate pre-treatment, the phosphorylation of ACC tend to be increased 

in control myotubes which is in accordance with the increase in palmitate beta-oxidation 
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is those myotubes. Interestingly, in T2D myotubes, no modification of the 

phosphorylation of ACC was observed after palmitate overload. Thus a lack of inhibition 

of ACC could explain why palmitate beta-oxidation was not increase in T2D myotubes in 

response to palmitate overload. Interestingly lack of a significant increase in AMPK 

phosphorylation was also found in T2D myotubes following AICAR treatment. This 

result, taken together with the absence of ACC inhibition by palmitate treatment in T2D 

myotubes suggests that T2D myotubes display a defective response to different stimuli at 

the level of the AMPK-ACC pathway. These preliminary but really intriguing results 

need further investigation to better understand the mechanisms leading to this defect in 

T2D myotubes. Unfortunately, due to the inability of T2D myotubes to activate the 

AMPK-ACC pathway, we were not able to reduce lipid content in T2D myotubes. Other 

experiments are necessary to determine whether AMPK is a good target in order to 

decrease lipid content in T2D myotubes. 

Some methodological aspects of the study should be acknowledged. ). In the present 

study, we focused on response to palmitate overload since it is well known that insulin 

resistance development in response to high FA level is the consequence of high saturated 

FA level (i.e. palmitate) and not to high unsaturated FA level (i.e. oleate) [51-54]. W 

acknowledge that the use of 600 µM of palmitate is not physiological since, in vivo, 

circulating free FA are a mix of saturated and unsaturated FA. The best experiment 

would be to use a cocktail of FA (i.e. oleate + palmitate) since it has been shown that the 

adverse effect of palmitate on cellular functions can be rescued with the addition of oleate 

[53, 54]. However, our results are in accordance with a recent study using only oleate as 

FA supply [24]. 

In summary, this study shows that skeletal muscle cells derived from moderately obese 

T2D patients exhibited decreased palmitate beta-oxidation and increased lipid 

accumulation in response to palmitate overload, possibly due to a palmitate-induced 

inhibition of ACC. In contrast, control myotubes responded to fatty acid overload with an 

increase in palmitate oxidation, and less lipid accumulation; this response did not reflect 

an inability of control myotubes to accumulate lipid as demonstrated by the antimycin A 

and metformin experiments. Studies are needed to evaluate whether the inhibition of 

ACC phosphorylation in control myotubes is able to reproduce the diabetic phenotype 
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(i.e. decreased palmitate beta-oxidation and increased myotube lipid content) and to 

evaluate whether an increase in ACC phosphorylation in T2D myotubes is able to 

increase palmitate beta-oxidation and decrease lipid accumulation. 
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FIGURE LEGEND 

Fig. 1. Mitochondrial gene expression, content and network in control and T2D 

myotubes. A. Expression of genes encoding proteins involved in mitochondrial oxidative 

metabolism (citrate synthase, CS and 3-hydroxy-acyl-CoA-dehydrogenase, HAD), in 

transcriptional control of mitochondrial biogenesis (nuclear respiratory factor 1, NRF1) 

and in lipid metabolism (carnitine palmitoyltransferase 1, CPT1) was evaluated by 

quantitative real-time PCR in control (n=4) and T2D differentiated satellite cells (n=4). 

Each value indicates the amount of mRNA expressed relative to 18S RNA. Each 

experiment was performed in triplicate for each of the 8 independent cell cultures. Data 

are presented as means ±SEM normalized to mRNA level in control myotubes. B. 

Representative western blot analysis of a non glycosylated protein component of 

mitochondria (Ab2) expression in myotubes established from control and T2D myotubes. 

α-Tubulin was used as a loading control. C. Citrate synthase activity was determined in 

control (n=3) and T2D differentiated satellite cells (n=3) under basal conditions and 

expressed relative to protein content. Experiments were performed in duplicate for each 

of the 6 independent cell cultures. Data are means ± SEM. D. Representative 

immunofluorescence microscopy of control and T2D myotubes after 8 days of 

differentiation, incubated with an antibody against a non glycosylated protein component 

of mitochondria (Ab2) visualized using a monoclonal secondary antibody conjugated to 

Alexa 546. Scale bar represents 30 µm.  

 

Fig. 2. Effect of palmitate pre-treatment on palmitate beta-oxidation and 

phosphorylated acetyl-CoA carboxylase expression in control and T2D myotubes. A. 

Basal palmitate beta-oxidation and palmitate beta-oxidation after 16h of cold palmitate 

pre-treatment (600 µM) in control (n=3) and T2D differentiated satellite cells (n=3) 

expressed relative to protein content. Experiments were performed in triplicate for each 

of the 6 independent cell cultures. Data are means ± SEM. *, P<0.05, T2D cells versus 

control cells. B. Representative western blot analysis of P-ACC in differentiated satellite 

cells established from 4 control subjects and 4 type 2 diabetic (T2D) patients in the basal 

state (no palmitate pre-treatment). ACC protein expression was used as a loading control. 

C. Quantification by density analysis of western blot shown in (A). Data are means ± 
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SEM. D. Representative western blot analysis of P-ACC in differentiated satellite cells 

established from 4 control subjects and 4 type 2 diabetic (T2D) patients with (+) or 

without (-) palmitate pre-treatment (600 µM for 16h). ACC protein expression was used 

as a loading control. E. Quantification by density analysis of P-ACC and ACC expression 

in myotubes established from control subjects (n=4) and T2D patients (n=4) with (+) or 

without (-) palmitate pre-treatment (600 µM for 16h). Data are means ± SEM. P=0.06, 

palmitate-treated differentiated satellite cells versus untreated cells. 

 

 

Fig. 3. Effect of AMPK activation on lipid accumulation in control and T2D 

myotubes. A. Representative western blot analysis of P-ACC and P-AMPK in 

differentiated satellite cells established from a control subjects and a type 2 diabetic 

(T2D) patients. AMPK and ACC protein expressions were used as loading controls. B. 

Quantification by density analysis of P-AMPK (left panel) and P-ACC (right panel) in 

myotubes with (+) or without (−) AICAR (500 µM) or metformin (2 mM) treatment for 

16h, from 4 cultures established from control subjects and 5 cultures established from 

type 2 diabetic patients (T2D). Data are presented normalized to AMPK and ACC 

expression, respectively. Data are shown as mean ±SEM. *p < 0.05, basal versus AICAR 

for control cells. C. Quantification of lipid content in control (n=3) and T2D 

differentiated satellite cells (n=3-4) with (+) or without (-) AICAR (500 µM, left panel) 

or metformin (2 mM, right panel) treatment (30 min) followed by palmitate treatment 

(600 µM for 16h). Data are means ±SEM. Each point was assayed in triplicate for each of 

the 7 independent cell cultures. *, P<0.05, T2D cells versus control cells. #, P<0.05, 

metformin and palmitate treatment versus palmitate alone.  

 

Fig. 4. Effect of mitochondrial inhibition on lipid accumulation in control and T2D 

myotubes. A. Representative phase contrast microscopy of control and T2D myotubes 

after 16h of palmitate (600 µM) treatment with (+) or without (-) previous treatment with 

antimycin A (1 µM for 30min). Scale represents 30 µm. B. Quantification of lipid content 

in control (n=4) and T2D differentiated satellite cells (n=5) with (+) or without (-) 

antimycin A stimulation (1 µM for 30min) followed by palmitate treatment (600 µM for 
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16h). Data are means ±SEM. Each point was assayed in triplicate for each of the 9 

independent cell cultures. **, p<0.01 palmitate-treated T2D cells versus control cells; #, 

p<0.05 antimycin + palmitate-treated control versus palmitate-treated control cells. 

 

Fig. S1. Effect of palmitate treatment in control and T2D myotubes. A. 

Representative phase contrast microscopy of control and T2D myotubes after 16h of 

palmitate (600 µM) treatment. Scale represents 30 µm. B. Quantification of lipid content 

in control (n=4) and T2D differentiated satellite cells (n=5) after palmitate treatment (600 

µM for 16h). Data are means ±SEM. Each point was assayed in triplicate for each of the 

9 independent cell cultures. **, p<0.01 palmitate-treated T2D cells versus control cells. 
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Research highlights 
- Mitochondrial content is normal in type 2 diabetic myotubes 
- Palmitate oxidation is decreased in type 2 diabetic myotubes compared to control 
myotubes only in condition of lipid overload 
- ACC inactivation by palmitate is impaired in type 2 myotubes 
- AICAR and metformin treatments don’t activate AMPK or decrease lipid content in 
type 2 diabetic myotubes 
- Mitochondrial inhibition by antimycin or metformin induce an increase in lipid content 
in control myotubes 
 


