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In previous papers we proved that the geometrical elements of the wave described by the
Schrödinger equation, namely the wave surfaces and their normals, denoted by C curves,
are solutions of the Hamilton-Jacobi equations, written for the same system, in the case
of stationary systems. The C curves correspond to the same constants of motion as the
eigenvalues of the Schrödinger equation. In two recent papers we presented a central field
method for the calculation of the C curves, and of the corresponding energetic values. The
method was verified for the atoms He, Li, Be, B, C, N and O. In this paper we extend this
method, using the symmetry properties of the systems, in the case of the diatomic molecules,
with exemplification for Li2, Be2, B2, C2, LiH, BeH, BH and CH. The accuracy of the
method is, as in the case of the atoms, comparable to the accuracy of the Hartree-Fock
method, for the same system. This could be a potential useful result, because our approach
predicts also basic properties of the molecules in discussion.

Keywords: diatomic molecules; energetic values; unconventional semiclassical method

1. Introduction

Over the last few years, a large number of semiclassical approaches were published
in the field of atomic and molecular systems [1]-[5]. The semiclassical methods lead
to solutions which are relatively easy to calculate, using the information obtained
from the study of classical trajectories. In numerous papers the semiclassical eigen-
values of the bond states are related to the periodic trajectories [6]-[12], in others
they are related to the phase manifolds generated by quasiperiodic trajectories
[13]-[15]. In this family of topics we can consider also the study of the semiclassical
trajectories with the aid of the propagator functions [16]-[20] or the application of
a generalized semiclassical theory to multidimensional dynamical systems [21]. In
this paper we present a multidimensional semiclassical analysis which applies to a
wide class of atoms and molecules.

In a series of papers [22]-[24] we presented a method for calculating the energetic
values of atomic and molecular systems, which is based on the following prop-
erty [22]: the energy of the Schrödinger equation can be rigorously calculated by
line integrals of analytical functions, if the Hamilton-Jacobi equation, written for
the same system, is satisfied by a periodical trajectory. We proved [24] that this
property is a consequence of the fact that, for stationary systems, the Schrödinger
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equation is equivalent to the wave equation. Starting from this equivalence, we
have proposed [24]-[26] a wave model for stationary atomic and molecular systems.
In recent papers [27, 28] we have elaborated a central field method for calculation
of energetic values of atomic systems, which is based on the above wave model.
The central point of this method is the the following property [25, 26]: the geomet-
rical elements of the wave described by the Schrödinger equation, namely the wave
surfaces and their normals (the C curves) are rigorously solutions of the Hamilton-
Jacobi equation, written for the same system. We have verified this method for
a large number of atoms, and we found that its accuracy is comparable to the
accuracy of the Hartree-Fock method applied to the same atoms.

In this paper we use symmetry properties of the systems to show that the cen-
tral field method for calculating the energetic values [27, 28] can be extended to
diatomic molecules, both homonuclear and heteronuclear, with the same accuracy
as that of the Hartree-Fock method. We compare our data with theoretical data
taken from The Computational Chemistry Comparison and Benchmark Database
(CCCBDB) [29]. In addition, the method presented in this paper predicts basic
properties of the molecules [30, 31], such as the existence of the simple, double
and triple bonds in the case of the C − C bond, the symmetry properties of these
bonds, the fact that in the case of the C2 molecule the bond is double, and it also
explains the ionic character of the LiH bond.

The paper is structured as follows. In Section 2 we present briefly the relations
and results from previous papers which are necessary in this paper. In Section 3 we
give exact solutions to the equations of the C curves, in the case of simple, double
and triple covalent bonds of homonuclear molecules and in the case of ionic and
covalent bonds of heteronuclear molecules. In Section 4 we present the method for
calculating the energetic values, and in Section 5 we apply the method to several
molecules. We present the computation details in two typical cases, Li2 and Be2,
and we give the results of the computation in the other cases investigated: the B2,
C2, LiH, BeH, BH and CH. Details of the computation for the these molecules
are given in the Supplementary Online Material for this article, where we also give
the Mathematica 7 scripts containing all the calculations from this paper.

Throughout the paper the equations are written in the International System.

2. Preliminary results

In this section we present the relations which have been deduced in previous papers
[25]-[28] and which are necessary in this paper. In Refs. [25, 26] we studied the
wave properties of a discrete system composed of N electrons and N ′ nuclei. The
Cartesian coordinates of the electrons are xa, ya ,za, where a takes values between
1 and N . Our analysis is made in the space R3N of the electron coordinates, which
are denoted by qj (where q1 = x1, q2 = y1, q3 = z1,. . . , q3N = zN ), j taking values
between 1 and 3N . We denote by q = (q1, q2, ..., q3N ) the coordinates of a point in
the space R3N .

We consider a system which fulfills the following initial hypotheses: (h1) The
system is closed and conservative (i.e. the total energy, denoted by E, is constant
and the potential energy, denoted by U , does not depend explicitly on time); (h2)
The total energy has real negative values (i.e. the system is in a bound state); (h3)
The behavior of the system is completely described by the Schrödinger equation;
(h4) The relativistic and magnetic effects are neglected; (h5) The nuclei motion is
neglected. We proved [25, 26] that the following properties are valid for this system:

(p1) In the case of the stationary systems, the Schrödinger and wave equations are
rigorously equivalent, and the characteristic surface of the wave equation (which has
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the significance of a wave surface), denoted by Σ, and its normals, denoted by C, are
solutions of the Hamilton-Jacobi, written for the same system, and corresponding
to constants of motion identical to the eigenvalues of the Schrödinger equation.

(p2) The motion of the surface Σ is periodical, and the C curves are closed (see
Section 4 of Ref. [25]).

(p3) The generalized Bohr quantization condition

∆CS0 = nh (1)

is valid for the C curve (see Section 5 of Ref. [26]). Here S0 is the reduced action
function, ∆CS0 is the variation of the function S0 which corresponds to the curve
C and n is the principal quantum number.

In the case of systems for which the separation of variables is possible, namely
when the function S0 can be written S0 =

∑
a S0a, where S0a = S0a(xa, ya, za), the

following quantization relation is valid [26]

∆Ca
S0a = nah (2)

where na is the principal quantum number associated to the motion of the electron
a and Ca is the curve corresponding to the electron a.

The property (p1) establishes a direct connection between the Schrödinger and
Hamilton-Jacobi equations in the case of the stationary systems. A similar con-
nection, which has been derived through entirely different method, is presented
in [32], where it is shown that the discontinuities of the partial second deriva-
tives of the wave function propagate following the trajectories determined by the
Hamilton-Jacobi equation, written for the same system.

The particular curve of a given electron is obtained from the projection of the
trajectory C from the R3N space of coordinates to the three dimensional space of
that electron. For example, the curve of electron a is obtained from the projection
of the curve C to the space of coordinates xa, ya, za. The projection is also a closed
curve, denoted by C ′

a, where a = 1, 2, ..., N . When the separation of variables is
possible, we have C ′

a ≡ Ca.
The above properties imply that the problem of calculating the energetic values

of atomic and molecular systems reduces to the calculation of the C ′
a or Ca curves,

or, in other words, to the calculation of the systems’ periodic solutions. In previous
papers [27, 28] we have shown that the problem can be solved exactly, or with
good accuracy, by a central field method, which makes possible the separation of
the variables, and, consequently, the calculation of the Ca curves. In this case we
have applied the quantization condition, namely (2) for each Ca curve and have
obtained the following relations for the calculation of the total energy, which are
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valid for all the atoms which have been analyzed in Refs. [27, 28]:

E = E1 + E2 +
∑

a≥3

Ea (3)

E1 = E2 = −Z1K1

r1
+

m

2

(
dr1

dt

)2

= −R∞Z2
1

n2
1

(4)

Ea = −ZaK1

ra
+

m

2

(
dra

dt

)2

= −R∞Z2
a

n2
a

(5)

Z1 = Z2 = Z − s12e −
∑

a≥3

s1ae with s12e =
1
4

(6)

Za = Z − 2sa1e −
∑

b≥3;b6=a

sabe (7)

Here ra is the norm of position vector of the electron ea in a Cartesian system of
coordinates with origin at the nucleus, m is the electron mass, t is the time, Z is
the order number of the nucleus, and K1 is a constant given by the relation

K1 =
e2

4πε0
(8)

where e and ε0 are the absolute value of the electron charge and the vacuum
permitivity, respectively. In these equations E1 and E2 are the energies of the 1s
electrons, Ea is the energy of the valence electron a, where a ≥ 3 for Z ≥ 3, Z1 and
Z2 are the effective order numbers of nucleus, which enter in the motion equations
of the 1s electrons, Za is the effective order number of nucleus which enters in
the equation of electron a and R∞ is the Rydberg energy. The quantities s1ae

and sa1e are the effective reciprocal screening coefficients between the 1s electrons
and the valence electrons ea, which are calculated with the aid of the equation
system (59)-(62) from Ref. [27], when eccentricity of the curve Ca is very closed
to unit, and with the aid of the system (73)-(77) from Ref. [27], when Ca is an
elliptic curve. The quantities s12e and sabe are, respectively, the effective reciprocal
screening coefficients between the 1s electrons and between the valence electrons,
which are calculated with the aid of the relation (7) from Ref. [28], which is:

sabe = sbae =
1

4 sin(αab/2)
(9)

where αab is the angle between the two straight lines which pass through nucleus
and the average positions of the two electrons.

The interaction energy between two electrons, let us say ea and eb, can be written:
[27, 28]

Uabe =
K1

|r̄a − r̄b| =
K1sabe

ra
+

K1sbae

rb
(10)

From this relation and from (4)-(7), it follows that part of the interaction en-
ergy enters in the expression of Ea, by the term K1sabe/ra, while the other part,
K1sbae/rb, enters in the expression of Eb.

The expression of the total energy, given by (3), contains, in adition, a correction
energy due to the spin magnetic interaction of the 1s electrons, which has been
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deduced in Ref. [27]. This term is

Em1s = R∞
Z

3
2
1

8n3
1

with n1 = 1 (11)

The model represented by equations (3)-(10) has two properties which are both
attributes of a central field type solution. The first is that the motion of an ar-
bitrary electron is similar to that in a hydrogenoid system, and it takes place in
the averaged field of the other electrons. The effect of the interaction with these
electrons is included in the effective order number of the nucleus. The second prop-
erty, which is useful in applications, is that adding a supplementary electron to the
system leads only to the modification of the effective order numbers corresponding
to the other electrons, while their equations remain unchanged.

On the other hand, in Ref. [33] it is shown that, for a multielectron system,
the energetically most favorable geometric configuration minimizes the electron-
electron repulsion and, generally, this configuration corresponds to the maximum
symmetry of the geometrical configuration of the electrons. Our results [27, 28]
confirm this property, because the Ca curves, as result from our treatment, have also
a configuration with maximum symmetry. For example, the Ca curves of the valence
electrons in the case of helium and beryllium are two symmetrical ellipses, having
eccentricities very close to unity, for boron the Ca curves are three symmetrical
ellipses, whose axes are oriented toward the corners of an equilateral triangle, and
so on. A strong simplification of the calculation of the total energy results if we
apply this property. In this case we suppose the average positions of the electrons,
which have maximum symmetry, calculate the s1ae, sa1e and sabe and the total
energy results directly from the equations (4) and (5). The average distance and
the maximum distance of the electron from the nucleus, denoted, respectively, by
r̃a and rM , are [28]

r̃a =
n2

aa0

Za

(
1 +

e2

2

)
and rM =

n2
aa0

Za
(1 + e) (12)

where a0 is the Bohr radius and e is the eccentricity of the Ca curve.
We have applied this method and resulted that the accuracy of the calculation

of the energy is comparable with the accuracy of the Hartree-Fock method for the
atoms He, Li, Be, B, C, N and O (see Table 1 from Ref. [27] and Table 4 from
Ref. [28]). We will use this method in the case of molecules, for the calculation of
the energies of the electrons which do not participate directly to the bonds.

3. Calculation of the Ca curves corresponding to simple, double and triple
bonds of homonuclear molecules and to ionic and covalent bonds of
heteronuclear molecules

In this section we present calculations of the Ca curves corresponding to the bond
electrons in homonuclear and heteronuclear molecules. The Ca curves for the simple
bond of homonuclear molecules were presented in Refs. [23, 24]. In this paper we
present them, taking into account the new data resulted from the central field
method, applied in the case of atoms. The new topics presented in this paper refers
to the double and triple bonds of the homonuclear molecules, to the modeling of
the heteronuclear molecules and to the explaining of a lot of properties of the
molecules, which result from our calculations.
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Notations.

The symbols used in the equations that describe the behavior of the molecules
contain supplementary indexes, which refer to different nuclei of the molecule.
These indexes are, as follows.

1) The 1s electrons which move in the field of the nucleus nA are denoted by
eA1, eA2, while the valence electrons which move in the field of the nucleus nA and
do not participate to the bond are denoted by eA3, eA4, eA5, and so on. Similar
notations correspond to electrons which move in the field of the nucleus nB. The
bond electrons are denoted by e1, e2, e3, and so on.

2) In the case of the homonuclear diatomic molecules, the nuclei order numbers,
denoted by ZA and ZB, are equal. In this case, the order numbers corresponding to
the electrons eAi and ej , where i, j = 1, 2, ..., are denoted, respectively, by ZAi and
Zj . The screening coefficients between electrons eAi and eAk are denoted by sAi,Ak

and sAk,Ai, those between the bond electrons ej and ek are denoted by sj,k and
sk,j , and the screening coefficients between the electrons eAi and ej are denoted by
sAi,j and sj,Ai.

3) The effective order number of the nucleus nA in interactions between nuclei
includes the effect of the 1s electrons and the effect of the electrons that do not
participate to the bond. In this case the effective order number of nA is denoted
by ZnA.

3.1. Ca curves for simple, double and triple bonds of homonuclear molecules

We consider a molecule composed of two fixed identical nuclei, denoted by nA and
nB, two 1s electrons in the vicinity of the nA nucleus, denoted by eA1 and eA2,
two 1s electrons in the vicinity of the nB nucleus, denoted by eB1 and eB2, and
Nb valence electrons which participate to the bond, denoted by e1, e2,...,eNb

. The
Cartesian coordinates of the nuclei are nA(−σ, 0, 0) and nB(σ, 0, 0) and their order
number is equal to ZA. The equations of motion for the electrons are as follows:

−K1Z
′(r̄a − σī)

|r̄a − σī|3 − K1Z
′(r̄a + σī)

|r̄a + σī|3 +
∑

b

K1(r̄a − r̄b)
|r̄a − r̄b|3 = m

d2r̄a

dt2
(13)

where a, b = 1, 2, ...Nb and a 6= b

Here r̄a are the position vectors of the ea electrons, which have their origin in the
origin of the Cartesian coordinate axes, whose versors are denoted by ī, j̄, k̄, and
Z ′ is an order number which includes the effect of the 1s electrons. It is given by
the relation Z ′ = ZA − 2sa,A1.

This system has three exact solutions similar to the solutions of the valence bond
electrons. More precisely, there is one solution for each one of the following three
cases: a) for Nb = 2, which corresponds to simple bond; b) for Nb = 4, which
corresponds to the double bond and c) for Nb = 6, which corresponds to the triple
bond.

3.1.1. Simple bond (Nb = 2)

The solution of the system in this case is presented in Section 3 of Ref. [23]. This
solution is:

r̄1 = −r̄2 = r̄ for r̄ · k̄ = 0 (14)

It is easy to show that, in virtue of (14), the solution the system represented by
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Figure 1. Ca curves for simple bond in homonuclear diatomic molecules.

(13) reduces to the solution of the following equation

−K1Z
′(r̄a − σī)

|r̄a − σī|3 − K1Z
′(r̄a + σī)

|r̄a + σī|3 +
K1r̄a

4|r̄a|3 = m
d2r̄a

dt2
(15)

which is valid for a = 1 or a = 2. This solution corresponds to symmetrical veloci-
ties. The symmetry of the velocities results from the total derivative of (14) with
respect to time, which gives v̄1 = −v̄2 = v̄. In virtue of (14), (15) is equivalent to
the following two scalar equations, in the plane (x, y):

− K1Z
′(x− σ)

[(x− σ)2 + y2]3/2
− K1Z

′(x + σ)
[(x + σ)2 + y2]3/2

+
1
4

K1x

(x2 + y2)3/2
= m

d2x

dt2
(16)

− K1Z
′y

[(x− σ)2 + y2]3/2
− K1Z

′y
[(x + σ)2 + y2]3/2

+
1
4

K1y

(x2 + y2)3/2
= m

d2y

dt2
(17)

The numerical solution of the above system of equations is given in Ref. [23],
and it leads to the curve C1 that corresponds to electron e1. The curve C2, corre-
sponding to electron e2, is symmetrical to the curve C1.

The atomic curves for the fundamental states of atoms, calculated in Refs. [27]
and [28], are ellipses with eccentricities very close to unity. For this reason, in
this paper we restrict ourselves to the case in which the molecular C1 curve is
composed of two atomic curves, denoted by C1A and C1B, which are ellipses with
eccentricities very close to unity, as shown in Fig. 1. At the scale of the figure, these
ellipses are drawn as straight lines in the vicinities of the nuclei, in spite of the fact
that the curve C1A surrounds the nucleus nA, while the curve C1B surrounds the
nucleus nB. The curves C1 and C2 depend on three parameters: Eb, σ and a, where
Eb is the total energy of the particles that participate to the bond, and a is the
maximum distance between the electron and the line on which the two nuclei are
situated [23]. In Fig. 1 the electrons are situated in average positions, in agreement
with (12).
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Figure 2. Ca curves for (a) double bond and (b) triple bond in homonuclear diatomic molecules.

3.1.2. Double bond (Nb = 4)

In this case the solution of the system represented by (13) is very similar to the
solution for the simple bond. This solution is:

r̄1 = −αī + βj̄ (18)

r̄2 = −αī− βj̄ (19)

r̄3 = αī + βk̄ (20)

r̄4 = αī− βk̄ (21)

where α and β are real variables. It is easy to show that, in virtue of (18)-(21), the
solution of the system represented by (13) reduces to the solution of the following
equation, in which the unknown is r̄a

−K1Z
′(r̄a − σī)

|r̄a − σī|3 − K1Z
′(r̄a + σī)

|r̄a + σī|3 +
r̄a − (r̄a · ī) ī

4
[
r̄2
a − (r̄a · ī)2

]3/2
+ (22)

r̄a + (r̄a · ī) ī
√

2
[
r̄2
a + (r̄a · ī)2

]3/2
= m

d2r̄a

dt2

This equation is valid for any bond electron. For example, Eq. (22) written for r̄1

(i.e. a = 1) is obtained from (13) in which we plug in the solutions of r̄2, r̄3 and
r̄4 given by (19)-(21). Same procedure can be used to derive (22) for a = 2, 3, 4.
The solution to (22) corresponds to symmetrical velocities. The symmetry of the
velocities results from the total derivative of (18)-(21) with respect to time.

Equation (22) leads again to a plane C1 curve, for the electron e1. It is equivalent
to two scalar equations, very similar to (16, 17). An identical numerical solution,
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as that shown in Ref. [23], leads again to a molecular curve, which is composed of
two elliptic quasilinear curves, when the minimum distance between electron and
the nucleus is negligible. The curves for the other electrons are symmetrical, in
agreement to (18)-(21). These curves, which result from (22), are represented in
Fig. 2(a). From this figure we see that, in the vicinities of the nuclei, C1 and C2

are two symmetrical curves, in the plane (x, y), similar to the valence curves in the
case of the helium atom, or in the case of beryllium. The other curves, C3 and C4

are two symmetrical curves, with the same properties, situated in the plane (x, z).

3.1.3. Triple bond (Nb = 6)

In this case the symmetrical solution of the system represented by (13) is as
follows:

r̄1 = −αī + βj̄ (23)

r̄2 = −αī− 1
2
βj̄ +

√
3

2
βk̄ (24)

r̄3 = −αī− 1
2
βj̄ −

√
3

2
βk̄ (25)

r̄4 = αī− βj̄ (26)

r̄5 = αī +
1
2
βj̄ −

√
3

2
βk̄ (27)

r̄6 = αī +
1
2
βj̄ +

√
3

2
βk̄ (28)

where α and β are real variables. It is easy to show that, as in the previous case,
in virtue of (23)-(28), the solution the system represented by (13) reduces to the
solution of the following equation in which the unknown is r̄a

−K1Z
′(r̄a − σī)

|r̄a − σī|3 − K1Z
′(r̄a + σī)

|r̄a + σī|3 +
r̄a

4 |ra|3
+

r̄a + 3 (r̄a · ī) ī
[
r̄2
a + 3 (r̄a · ī)2

]3/2
+ (29)

r̄a − (r̄a · ī) ī
√

3
[
r̄2
a − (r̄a · ī)2

]3/2
= m

d2r̄a

dt2

This equation is valid for any value of a. For example we obtain (29) for a = 1 by
introducing the solutions for r̄2, r̄3, ..., r̄6, given by (24)-(28), in (13) written for
the electron e1. In the same manner we obtain the above equation for a = 2, ...6.
The solution to (29) corresponds again to symmetrical velocities.

Equation (29) leads to a plane C1 curve for electron e1. It is equivalent, as in
the previous case, to two scalar equations, very similar to (16), (17). An identical
numerical solution, as that shown in Ref. [23], leads again to a molecular curve,
which is composed of two elliptic quasilinear curves. The curves for the other
electrons are symmetrical, in agreement to (23)-(28). These curves, which result
from (29), are represented in Fig. 2(b). From this figure we see that, in the vicinities
of the nuclei, C1, C2, C3 are three symmetrical curves, similar to the curves of the
valence electrons, in the case of the boron atom. The other curves, C4, C5 and C6

are three symmetrical curves, with the same properties.
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Figure 3. Ca curves for (a) ionic bond and (b) covalent bond in heteronuclear diatomic molecules.

3.2. Ca curves for ionic and covalent bonds in heteronuclear molecules

We consider a heteronuclear molecule composed of two fixed different nuclei, de-
noted by nA and nB, two 1s electrons in the vicinity of the nA nucleus, denoted
by eA1 and eA2, and two valence electrons which participate to the bond, denoted
by e1 and e2, as shown in Fig. 3(a). The Cartesian coordinates of the nuclei are
nA(0, 0, 0) and nB(r0, 0, 0) and their order numbers are, respectvely, equal to ZA

and ZB, where ZA > AB. The equations of motion for electrons are as follows:

−K1Z
′
Ar̄a

|r̄a|3 − K1ZB (r̄a − r0ī)
|r̄a − r0ī|3 +

∑

b

K1(r̄a − r̄b)
|r̄a − r̄b|3 = m

d2r̄a

dt2
(30)

where a, b = 1, 2 and a 6= b

Here r̄a are the position vectors of the electrons having the origin in the origin of
the Cartesian coordinate axes, and Z ′A is an effective order number which includes
the effect of the 1s electrons.

This system has the following symmetrical solution:

x1 = x2, y1 = −y2 and z1 = z2 = 0 (31)

The symmetry of the velocities results from the total derivative of these relations
with respect to time.

An identical procedure, as that presented in the previous subsection, shows that,
for this solution, the above system reduces to the following two scalar equations in
the plane (x, y):

− K1Z
′
Axa

(x2
a + y2

a)3/2
− K1ZB(xa − r0)

[(xa − r0)2 + y2
a]3/2

= m
d2xa

dt2
(32)

− K1Z
′
Aya

(x2
a + y2

a)3/2
− K1ZBya

[(xa − r0)2 + y2
a]3/2

+
K1ya

4 |ya|3
= m

d2ya

dt2
(33)

which are valid for a = 1, 2.
The numerical solution of the above system of equations is almost identical to
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the solution of the system represented by (16), (17), which is given in Ref. [23].
Same numerical method presented in Ref. [23] can be used to compute curves C1

and C2 corresponding to the electrons e1 and e2, which are shown in Fig. 3(a). In
this figure, the coordinates of the points A1 and A2 are, respecively, (σ1, a, 0) and
(σ1,−a, 0). We have also σ2 = r0−σ1. The difference between the curve C1 resulted
from (16), (17) and the curve C1 resulted from (32), (33) is that the latter does not
have an axis of symmetry parallel to the oy axis, as illustrated by the comparison
between Figs. 1 and 3(a), respectively. On the other hand the curves C1 and C2

shown in Fig. 3(a) are symmetric to each other with respect to the ox axis. Each
of these curves is composed of two quasilinear ellipses. The analysis of this figure
shows the existence of two phases, the phase A, when the electrons are situated on
the curves C1A and C2A, in the vicinity of the nucleus nA, and the phase B, when
the electrons are situated on the curves C1B and C2B, in the vicinity of the nucleus
nB. These curves correspond to the ionic bond because, due to the nonsymmetry,
in the majority of the time, the electrons are in the vicinity of the nucleus whose
order number is smaller.

A similar analysis, as that presented above, leads to the Ca curves corresponding
to the covalent bond in heteronuclear diatomic molecule. In this case the e1 and
e2 electrons are situated in the vicinities of different nuclei, as shown in Fig. 3(b).
Unlike the ionic bond, in the covalent bond the electrons move alternatively in the
fields of different nuclei, and their charge is disposed in the vicinities of both nuclei.

In this section we have calculated the Ca curves when the bond electrons move
in the fields of two nuclei and the system contains only valence electrons which
participate to the bond. In Appendix we proved that the motion of a bond elec-
tron in the case of homonuclear molecules with simple bond is similar to that in
a central field. An example of such an electron is e1 which moves on curves C1A

and C1B. This property results from relation (A3). Identical properties are proved
in the Supplementary Online Material for other types of bonds. It follows from
Section 2 that, in virtue of the second property of motion in the central field,
adding a supplementary electron that does not participate to the bond in the field
of the nucleus nA does not change the equation of motion of the electron e1. The
only change is the fact that the expression of Z1 contains a supplementary screen-
ing coefficient corresponding to the interaction between e1 and the supplementary
electron. In the next section we will see that for the general case of the molecules
which contains electrons which do not participate to the bond, the relations from
Appendix remain valid, with the only difference that the expressions of the order
numbers are changed.

4. Analytical method for the calculation of energetic values of diatomic
molecules

In this section, we present a general analytical method for the calculation of the
energetic values and geometric parameters of diatomic molecules, which leads to
values in close agreement with the experimental values for all the molecules ana-
lyzed in this paper.

The structure of the molecule is illustrated by Fig. 4. Despite the fact that in
this figure we consider the case of a homonuclear molecule with a simple bond,
the method presented in this section is valid for all types of bonds. The molecule
shown in Fig. 4 is composed of two nuclei denoted by nA and nB and having
ZA = ZB, four 1s electrons, denoted by eA1, eA2, eB1 and eB2, two electrons which
participate to the bond, denoted by e1 and e2, NA electrons which move in the
field of the nucleus nA and do not participate to the bond, denoted by eAi, and NB
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Figure 4. General structure of a homonuclear diatomic molecule.

electrons which move in the field of the nucleus nB and do not participate to the
bond, denoted by eBj . The electrons eAi and eBj are shown in average positions
in Fig. 4. We suppose that the molecule is symmetrical, and have NA = NB and
i, j = 3, 4, ..., NA.

The calculation of the energetic values and geometric parameters of the diatomic
molecule is performed in two stages, as follows.

1) In the first stage we calculate the values of Eb, σ and a with the aid of (A6),
(A9) and (A10) in the Appendix. The method of computation originates in Refs.
[23, 24], and in Appendix A we present an improved version of this method in the
typical case of the simple bond of homonuclear diatomic molecules.

We use normalized quantities. The energies are normalized to R∞ and the dis-
tances to 2a0, as follows: Eb = Eb/R∞, σ = σ/(2a0) and a = a/(2a0). Taking
into account these relations, together with the relations R∞ =

(
mK2

1

)
/

(
2~2

)
=

K1/ (2a0) (see Appendix A of Ref. [27]), (A6), (A9) and (A10) become

Eb = −2
Z2

1

n2
1

− 8Z1M√
9a2 + 25σ2

+
2√

9a2 + σ2
+

Z2
nA

2σ
(34)

Eb = − 2n1

√
Z1M

(a2 + σ2)3/4
(35)

Eb = − 4Z1M√
a2 + σ2

+
1
2a

+
Z2

nA

2σ
(36)

This is a system of three equations with three unknowns: Eb, σ and a. In this case,
taking into account the structure of the molecule (shown in Fig. 4) the expression
of Z1 must contain the screening coefficients due to the eAi electrons and it can be
written:

Z1 = ZA − 2s1,A1 −
NA∑

i=3

s1,Ai (37)

where s1,A1 is approximated very well by s31e, calculated for atoms, while s1,Ai is

Page 12 of 63

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 31, 2010 16:57 Molecular Physics TMPH-2010-0364.revised

Molecular Physics 13

calculated with (9). The expression of Z1M is modified, as follows:

Z1M = ZA − 2−
NA∑

i=3

s1,Ai (38)

Also, the expression of ZnA must be modified, in order to take into account the
effect of the screening due to the electrons eAi. This expression is deduced in Ref.
[24] and it is given by Eq. (4.8) from that paper. With the notations from Fig. 4,
where rinB is the average distance between nB and eAi and αi is the angle between
the two lines which pass, respectively, through nB and eAi and through nB and
nA, this relation can be written, as follows

ZnA = ZA − 2−
NA∑

i=3

(2σ)2

r2
inB

cosαi (39)

2) In the second stage, we calculate directly the normalized expression of the
total energy, corresponding to the average positions of the electrons. We assume
that the average positions of the electrons which do not participate to the bond are
disposed in a configuration having maximum symmetry. The average normalized
distance between the eAi electron and the nucleus is calculated from (12), which
can be written:

rAi =
n2

Ai

2ZAi

(
1 +

e2

2

)
(40)

where ZAi is the order number corresponding to the electron eAi.
Taking into account the symmetry of the system, where E1 = E2, EAi = EBi,

EA1 = EA2 = EB1 = EB2, U e1nB
= U e2nA

, U eAinB
= U eBinA

and U eAie2
= U eBie1

,
the normalized expression of the total energy can be written as follows:

E = 2E1 + 2
NA∑

i=3

EAi + 4EA1 + U e1e2
+ 2U e1nB

+ 2
NA∑

i=3

U eAie2
+ (41)

2
NA∑

i=3

U eAinB
+

NA∑

i=3

NB∑

j=3

U eAieBj
+ UnAnB

+ 2Em1s = −2
Z2

1

n2
1

− 2
NA∑

i=3

Z2
Ai

n2
Ai

−

4
Z2

A1

n2
A1

+
1

|r (e1)− r (e2)| −
2 (ZA − 2)

|r (e1)− r (nB)| + 2
NA∑

i=3

1
|r (eAi)− r (e2)| −

2
NA∑

i=3

ZA − 2
|r (eAi)− r (nB)| +

NA∑

i=3

NB∑

j=3

1
|r (eAi)− r (eBj)| +

(ZA − 2)2

|r (nA)− r (nB)| +

2
Z

3/2
A1

8n3
A1

where r (e1) and r (nA) are, respectively, the average normalized position vectors
of the electron e1 and nucleus nA, U e1e2

is the normalized potential energy of
electrostatic interaction between the electron e1 and nucleus e2, and so on. The
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expressions of the order numbers are Z1 given by (37) and

ZA1 = ZA − sA1,A2 − sA1,1 −
NA∑

i=3

sA1,Ai (42)

ZAi = ZA − 2sAi,A1 − sAi,1 −
NA∑

j=3;i6=j

sAi,Aj for i ≥ 3 (43)

where sAi,A1 are, with good approximaton, equal to s31e, calculated in the case of
atoms, while sA1,1 and sA1,Ai are equal to s13e. The coefficients s1,Ai, sAi,Aj and
sA1,A2 are calculated with (9).

The first, second and third terms of the second member in (41) are the total
normalized energies of the electrons which move in the field of the same nucleus.
Their significance is identical to the significance of electron energies in an atomic
system (see Section 2), taking into account that new indexes are introduced in
the case of molecular systems, as it is shown in Section 3. We recall that the
components of the energies, denoted by E1, EAi or EA1, are given by the equations
(4) and (5). The other terms represent the normalized electrostatic interaction
energies, corresponding to interactions at distance between electrons that do not
move in the field of the same nucleus, between electrons and nuclei which are
situated at distance from them, and between nuclei, having order numbers which
include the screening effects of the 1s electrons. The last term is given by (11) and
represents the normalized correction energies due to the spin magnetic interaction
of the 1s electrons. An analysis of equation (41) shows that all the components of
the interaction energies are taken into account.

In virtue of the hypothesis (h5), the kinetic energy of the nuclei is zero. It follows
that the distance between nuclei, denoted by r0 and calculated with the relation

r0 = 2σ (44)

corresponds to values of the nuclei velocities of zero. On the other hand, the ex-
perimental value of the distance between nuclei, denoted by re, corresponds to the
minimum of the Morse curve [34]. The theory of the harmonic oscillation of the
nuclei shows that this minimum corresponds to maximum velocities of the nuclei.
It follows that r0 is different from re because the first corresponds to zero velocities
of the nuclei, while the last corresponds to the maximum velocities of the nuclei.

The normalized experimental values of the total energy are obtained with the
aid of the relation

Eexp = −2SEiA −D0
0 (45)

where SEiA and D0
0 are, respectively, the sum of the ionization energies of the atom

A and the observed dissociation energy. The values of SEiA and D0
0 are taken,

respectively, from Refs. [35] and [36]. Since our calculation method is based on the
central field approximation under the assuption that a given electron moves in the
averaged field of the other electrons, in Table 1 we will compare our theoretical
results, with similar results reported in literature [29], obtained with the aid of the
Hartree-Fock method.

The calculations are made with the aid of Mathematica 7, the absolute error
being of the order 10−16.
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Table 1. Normalized values of the total energies

E, calculated for homonuclear and heteronuclear

diatomic molecules. For comparison, are given the

best two values of the normalized values of the to-

tal energies from CCCBDB [29], denoted by EHF ,

which are calculated with the aid of the Hartree-

Fock method and the corresponding experimental

values Eexp. All the values are given in Rydbergs.

Molecule E EHF [29] Eexp

Li2 -30.0919 -29.73625 -29.9896
-29.736246

Be2 -58.7676 -58.486596 -58.8396
-58.48645

B2 -98.3341 -98.182662 -98.8574
-98.18259

C2 -151.148 -150.804028 -151.883
-150.803916

LiH -16.1821 -15.967824 -16.1348
-15.96775

BeH -30.4238 -30.300286 -30.4872
-30.300248

BH -50.4587 -50.256246 -50.5691
-50.256092

CH -76.6349 -76.561468 -76.968
-76.560994

Table 2. Coordinates of average positions of particles, effective screening coefficients, effective

order numbers and solutions of the equations describing the behavior of Li2 and Be2 molecules.

Particle coordinates; quantum numbers Screening coefficients; order numbers
Calculated and experimental values
Li2
nA(−σ, 0, 0, ); nB(σ, 0, 0, ) s1,A1 = 0.854942 [27]; sA1,1 = 0.0013792 [27]
e1

(− 1
4
σ, 3

4
a, 0

)
; e2

(
1
4
σ,− 3

4
a, 0

)
sA1,A2 = 0.25

n1 = 2; nA1 = nA2 = 1 Z1 = Z2 = ZA − 2s1,A1

Eb = −1.0115 Z1M = Z2M = ZA − 2
σ = 1.46474; a = 2.02683 ZA1 = ZA2 = ZA − sA1,A2 − sA1,1

SEiA = 14.9563 [35]; D0
0 = 0.0768815 [36] ZnA = ZnB = ZA − 2

Be2

nA(0, 0, 0, ); nB(2σ, 0, 0, ) s1,A1 = sA3,A1 = 0.83882 [27]
e1

(
3
4
σ, 3

4
a, 0

)
; e2

(
5
4
σ,− 3

4
a, 0

)
sA1,1 = sA1,A3 = 0.00221203 [27]

eA3 (−rA3, 0, 0); eB3(2σ + rA3, 0, 0) sA1,A2 = .25

n1 = nA3 = 2; nA1 = nA2 = 1 s1,A3 = (
√

2/4)/
√

1 + σ√
σ2+a2

Eb = −2.39104 Z1 = Z2 = ZA − 2s1,A1 − s1,A3

σ = 1.04502; a = 1.32709 Z1M = Z2M = ZA − 2− s1,A3

SEiA = 29.3377 [35]; D0
0 = 0.1643 [37] ZA1 = ZA2 = ZA − sA1,A2 − 2sA1,1

ZA3 = ZB3 = Z1 = Z2

rA3 = 3/ZA3

ZnA = ZnB = ZA − 2− (2σ)2

(2σ+rA3)
2

5. Typical examples of applications

a) Li2 molecule.
This molecule contains only valence electrons that participate to the bond. Its

structure is shown in Fig. 1. We follow the algorithm presented in Section 4 and
calculate the screening coefficients, order numbers and then solve the system (34)-
(36). All these values are given in Table 2. The screening coefficients between the
1s electrons and the e1 and e2 electrons, namely s1,A1 and sA1,1 are identical,
respectively, to s31e and s13e, which have been calculated in Ref. [27] for the 1s22s
state of lithium atom. The coefficient sA1,A2 is calculated from equation (9). Since
2s valence electrons participate to the bond, we have n1 = 2. Also, we have nA1 = 1
because this number corresponds to 1s electrons. We solve the system (34)-(36) in
order to obtain Eb, σ and a.
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Table 3. Values of r0 calculated in this paper

compared with the experimental values of re

[29], and also with the range of values for reHF

calculated using Hartree-Fock methods [29]. All

the values are given in angstroms.

Molecule r0 re reHF

Li2 3.10043 2.673 2.696-2.816
Be2 2.212 2.460 1.780-2.049
B2 1.7883 1.590 1.512-1.562
C2 1.35694 1.243 1.240-1.308
LiH 1.84635 1.5957 1.511-1.636
BeH 1.4389 1.3426 1.301-1.356
BH 1.21642 1.2324 1.213-1.232
CH 1.07572 1.1199 1.111-1.127

Since in this case Eb has the significance of the total energy from which the
energies of the 1s electrons are subtracted, we have:

E = Eb + 4EA1 + 2Em1s = Eb − 4
Z2

A1

n2
A1

+ 2
Z

3/2
A1

8n3
A1

(46)

The values of r0, calculated from (44), and the experimental value of the distance
between nuclei, denoted by re and taken from Ref. [29], are given in angstroms in
Table 3. Table 3 also gives the range of values for the distances between nuclei,
denoted by reHF , calculated with the Hartree-Fock method and taken from [29].

The normalized value of the total energy, E, obtained from equation (46), to-
gether with the experimental value, denoted by Eexp, are presented in Table 1.
We also present in this table the best two values of the normalized total ener-
gies, calculated with the aid of the Hartree-Fock method, denoted by EHF , which
are taken from CCCBDB [29]. The experimental values of the total energy are
obtained with the aid of equation (45), where SEiA and D0

0 which are taken, re-
spectively, from Refs. [35] and [36], are given in Table 2. The analysis of the data
from Table 1 shows that the value of E is closer to the experimental value, Eexp,
than the values of EHF . The relative errors in the two cases are, respectively,∣∣(E − Eexp

)
/Eexp

∣∣ = 0.003 and
∣∣(EHF −Eexp

)
/Eexp

∣∣ = 0.008.

b) Be2 molecule.
The structure of this molecule is shown in Fig. 5. This molecule contains two

electrons, denoted by eA3 and eB3, which do not participate to the bond. The
geometrical structure of the molecule results from the system (34)-(36), where the
expressions of Z1, Z1M , ZnA and the value of n1 are given in Table 2. The screening
coefficients between the 1s electrons and the e1, e2, eA3 and eB3 electrons, namely
s1,A1, sA1,1, sA3,A1, sA1,A3, and so on, are identical, respectively to s31e and s13e,
which have been calculated in Ref. [27] for the 1s22s2 state of beryllium atom. The
coefficient s1,A3 is calculated with (9). This calculation reduces to the evaluation
of the angle between the two lines which pass, respectively, through nucleus nA

and electron e1 and through nucleus nA and electron eA3, with the aid of the
coordinates of the particles, which are shown in Table 2. All the other necessary
data are given in Table 2.

The normalized value of the total energy is calculated with the aid of equation
(41), and can be written for Be2 molecule in the following form, taking into account
the symmetry of the system (namely E1 = E2, EA3 = EB3, EA1 = EA2 = EB1 =
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Figure 5. Structure of Be2 molecule.

EB2, U e1nB
= U e2nA

, U eA3e2
= U eB3e1

and U eA3nB
= U eB3nA

):

E = 2E1 + 2EA3 + 4EA1 + U e1e2
+ 2U e1nB

+ 2U eA3e2
+ 2U eA3nB

+(47)

U eA3eB3
+ UnAnB

+ 2Em1s = −2
Z2

1

n2
1

− 2
Z2

A3

n2
A3

− 4
Z2

A1

n2
A1

+
1

2
√(

1
4σ

)2 +
(

3
4a

)2
−

2 (ZA − 2)√(
5
4σ

)2 +
(

3
4a

)2
+

2√(
5
4σ + rA3

)2 +
(

3
4a

)2
− 2 (ZA − 2)

2σ + rA3

+

1
2σ + 2rA3

+
(ZA − 2)2

2σ
+ 2

Z
3/2
A1

8n3
A1

In this case Eexp is obtained from equation (45), where SEiA is taken from Ref.
[35], but the value of D0

0 is obtained from Fig. 6-2 of Ref. [37] (Ref. [36] does not
contain this data). The values of r0 and re are given in Table 3, while E, EHF and
Eexp are shown in Table 1. The relative errors corresponding to E and EHF are,
respectively,

∣∣(E − Eexp

)
/Eexp

∣∣ = 0.001 and
∣∣(EHF − Eexp

)
/Eexp

∣∣ = 0.006.

c) Other molecules.
The procedure for calculating the energetic values of B2, C2, LiH, BeH, BH and

CH molecules is almost identical to that shown in the above examples. The values
of E, EHF and Eexp, corresponding to these molecules are shown also in Table 1.
The specific differences, referring to these molecules are given briefly below.

The B2 molecule contains four electrons, denoted by eA3, eA4, eB3 and eB4 which
do not participate to the bond. Taking into account this difference, the procedure
for calculating the energetic values is identical to that for the Be2 molecule.

We have analyzed the C2 molecule in three cases: when the bond is simple,
double and triple and found that the total energy is minimum in the case of the
double bond, resulting that the real bond of the C2 molecule is double. This result
is identical to that obtained by pure quantum evaluations (see, for example pag.
97 of Ref. [31]). In Table 1 it is shown the value of E corresponding to the C2

molecule with double bond, together with EHF and Eexp. We have found also that
the symmetry properties of the C2 molecules, corresponding to simple, double and
triple bonds are identical, respectively, to the experimental symmetry properties of
the ethane, ethylene and acetylene molecules, namely C2H6, C2H4 and C2H2 (see
Ref. [29]). This explains why adding 6, 4 and, respectively, 2 hydrogen atoms to
the structures of C2 with simple, double and triple bonds leads to the formation of
the C2H6, C2H4 and, respectively, C2H2 molecules. Also, our calculations explain
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the property that the length of the bond decreases as the bond order increases.
We have analyzed the following heteronuclear diatomic molecules: LiH, BeH,

BH and CH. The model of ionic bond, as it results from Fig. 3(a), is in agreement
with the experimental data for LiH, BeH, while the model of covalent bond, which
is shown in Fig. 3(b), is in agreement with the experimental data only for BH and
CH. For example, if we apply the covalent model in the case of LiH, it will lead
to a symmetrical molecule, for which σ1 = σ2, which is in strong disagreement
with the fact that this molecule has a strong ionic character [31]. Outside of these
differences, the procedure of calculation of the energetic values is almost identical
to that shown in the above examples.

All the details of the computations and the Mathematica 7 scripts used for all
the molecules are given in the Supplementary Online Material for this article.

6. Conclusions

We presented a semiclassical central field method for the calculation of the energetic
values of the diatomic molecules Li2, Be2, B2, C2, LiH, BeH, BH and CH, which
is based on an exact theoretical connection between the geometric elements of the
wave described by the Schrödinger equation and the Hamilton-Jacobi equation,
written for the same system. This connection was proved and was checked on
atomic systems in previous papers. The accuracy of our method is comparable with
the accuracy of the standard central field Hartree-Fock method, for both, atomic
systems and diatomic molecules. Our method reveals a series of other properties of
the diatomic molecules, such as the fact that the bond of C2 is double, or LiH has
a strong ionic character, which is in agreement with experimental measurements.

Appendix A. Analytical calculation method for geometric parameters in the
typical case of the simple bond of homonuclear diatomic
molecules.

We consider a molecule composed of two fixed identical nuclei, denoted by nA and
nB, four 1s electrons and two valence electrons which participate to the bond,
denoted by e1 and e2. The Cartesian coordinates of the nuclei are, respectively,
nA(−σ, 0, 0) and nB(σ, 0, 0) and their order number is equal to ZA. The C1 and C2

curves, which correspond to the bond electrons are situated in the plane (x, y), as
shown in Fig. 1. In Subsection 3.1 we have shown that each curve is composed of two
quasilinear ellipses, denoted by CaA and CaB. We assume that the kinetic energies
of the electrons positioned at points A1(0, a, 0) and A2(0,−a, 0) are negligible as
compared to the total energy. The electrons are situated in average positions in
Fig. 1, and their coordinates are e1[−(1/4)σ, (3/4)a, 0] and e2[(1/4)σ,−(3/4)a, 0],
in agreement with (12), for e ∼= 1 and rM =

√
a2 + σ2. In this case Eb has the

significance of the total energy from which the energies of the 1s electrons are
subtracted. The three quantities Eb, σ and a are calculated with the aid of the
following three equations [23, 24].

1) The first relation. This relation results from the central field approximation.
It results in a similar manner as in the case of atoms [27, 28]: we have to write
the expression of the energy of the electron e1, denoted by E1, and to consider
the approximation of the central field. We have E1 = T1 + Ue1nA

, where T1 is the
kinetic energy of the electron e1 and Ue1nA

is the electrostatic energy of interaction
between the electron e1 and the nucleus nA, which includes the screening effect of
the 1s electrons. Taking into account the symmetry of the system (from where we
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have T1 = T2, Ue1nA
= Ue2nB

, Ue1nB
= Ue2nA

) and the expression of the energy Eb,
we have

E1 = T1 + Ue1nA
=

Eb

2
− U0 with U0 = Ue1nB

+
1
2

(Ue1e2 + UnAnB
) (A1)

The significance of the above electrostatic terms is specified by their notations
(for example, Ue1nB

is the potential energy of electrostatic interaction between the
electron e1 and nucleus nB, and so on), and the screening effect of the 1s electrons
is taken into account through the terms Ue1nB

and UnAnB
. In these terms, which

refer at the interaction at distance between electrons and nuclei, and, respectively,
between nuclei, the screening coefficient due to the 1s electrons is equal to unity.
The expressions of these terms are (see Fig. 1): Ue1nB

= K1Z1M/s′1 and UnAnB
=

K1Z
2
nA/(2σ), where the corresponding order numbers are

Z1M = ZA − 2 and ZnA = ZA − 2 (A2)

Since U0 is a relatively small quantity, we consider its averaged value, denoted by
U0m, calculated for the average positions of the electrons. In this case the expression
E1 = T1 + Ue1nA

= Eb

2 − U0m represents the constant energy of a hydrogenoid
system, resulting that the electron e1 moves in the central field of the nucleus in an
averaged field of the other electron. We apply the quantization relation from (2),
which is ∆C1A

S01 = n1h, for the curve C1A and, in virtue of the relations shown in
Appendix A of Ref. [27], we have:

E1 =
Eb

2
− U0m = −Z2

1R∞
n2

1

(A3)

where

U0m = − 4K1Z1M√
9a2 + 25σ2

+
K1√

9a2 + σ2
+

K1Z
2
nA

4σ
(A4)

and

Z1 = ZA − 2s1,A1 (A5)

From (A3), (A4) obtain

Eb = −2
Z2

1R∞
n2

1

− 8K1Z1M√
9a2 + 25σ2

+
2K1√

9a2 + σ2
+

K1Z
2
nA

2σ
(A6)

2) The second relation. This relation results from the virial theorem. Taking
into account that the curve C1 is symmetrical, the virial theorem can be written

Eb = −T̃ = −1
τ

∫

τ
mv2

1dt = −∆C1A
S01

τ
= −n1h

τ
(A7)

where T̃ is the average value of the total kinetic energy and τ is the period
corresponding to the curve C1A. Since τ = 2

∫ rM

0 ds1/v1 where v1 = 0 and
T1 = 0 for s1 = rM , it results that the domain in the vicinity of the point A1,
which is relatively far from nucleus, has a big weight in the calculation of the
integral. In this case we have Ue1nA

∼= −K1Z1M/s1, and from (A1) we obtain
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Eb/2 − U0 = T1 −K1Z1M/s1 = −K1Z1M/rM , or T1 = K1Z1M/s1 −K1Z1M/rM .
The expression of τ becomes:

τ = 2
∫ rM

0

ds1√
2T1
m

=
√

2m

∫ rM

0

ds1√
K1Z1M

s1
− K1Z1M

rM

= π

√
m

2K1Z1M
r

3
2
M (A8)

Introducing the expression of rM , and taking into account (A7), the above rela-
tion becomes

Eb = − n1h
√

2K1Z1M

π
√

m (σ2 + a2)
3
4

(A9)

3) The third relation. This relation results from the equation of the energy Eb,
when the electrons are situated at maximum distance from the nuclei, respectively,
in the points A1(0, a, 0) and A2(0,−a, 0), as follows:

Eb = 4Ue1nA
+ Ue1e2 + UnAnB

= − 4K1Z1M√
σ2 + a2

+
K1

2a
+

K1Z
2
nA

2σ
(A10)

The calculations of the geometric parameters of the bond in the cases of the dou-
ble and triple covalent bonds of homonuclear molecules and in the cases of ionic and
covalent bonds in heteronuclear molecules are similar to the calculation presented
in this Appendix. These calculations are shown in details in the Supplementary
Online Material.
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SUPPLEMENTARY ONLINE MATERIAL

for the paper

Unconventional semiclassical method for calculating the energetic val-
ues of diatomic molecules

Alexandru Popa

National Institute for Laser, Plasma and Radiation Physics, Laser Department,
P.O. Box MG-36, Bucharest, Romania 077125

In this material we extend the calculation of the geometric parameters of the
bond, which has been presented in the Appendix A of the paper, to the cases of
the double and triple covalent bonds of homonuclear molecules and to the cases
of ionic and covalent bonds in heteronuclear molecules. We present also detailed
calculations of the molecules properties in the cases of B2, C2, LiH, BeH, BH
and CH molecules, together with Mathematica 7 scripts containing the calcula-
tions necessary for all the molecules which have been analyzed in paper and in
supplementary material. The references are those from the paper.

S1. Calculation of the geometric parameters in the particular cases of the
double and triple covalent bonds of homonuclear molecules and of ionic and
covalent bonds in heteronuclear molecules.

S1.1. Covalent double bond of homonuclear molecules

1) The first relation. The procedure is identical to that for simple bonds, which
has been presented in Appendix A of the paper. We need, however, to take into
account that four electrons participate in this case to the bond. Their average
positions are e1[−(1/4)σ, (3/4)a, 0], e2[−(1/4)σ,−(3/4)a, 0], e3[(1/4)σ, 0, (3/4)a]
and e4[(1/4)σ, 0,−(3/4)a], as shown in Fig.2(a) from the paper. In this case,
taking into account the symmetry relations T1 = T2 = T3 = T4, Ue1nA

=
Ue2nA

= Ue3nB
= Ue4nB

, Ue1nB
= Ue2nB

= Ue3nA
= Ue4nA

and Ue1e3 = Ue1e4 =
Ue2e3 = Ue2e4 , (A1) from paper becomes: E1 = T1 + Ue1nA

= Eb

4 − U0 with
U0 = Ue1nB

+ 1
4 (4Ue1e3 + UnAnB

). A procedure identical to the one presented in
Appendix A of the paper, while taking into account the quantization relation, leads
to the equation E1 = −Z2

1R∞/n2
1 where

Z1 = ZA − 2s1,A1 − s1,2 and s1,2 = s2,1 =
√

σ2 + a2

4a
(S1)

The screening coefficient s1,2 is calculated with (9) from paper. We have also

Z1M = ZA − 2− s1,2 (S2)

In virtue of the above relations, the second term of the second member of (A6)
from paper corresponds to Ue1nB + Ue2nB + Ue3nA + Ue4nA = 4Ue1nB instead of
2Ue1nB obtained in the case of the single bond. We can further write: 4Ue1nB =

4K1(ZB−2)√
(5σ/4)2+(3a/4)2

= 16K1(Z1M+s1,2)√
25σ2+9a2 . The third term of the second member of (A6)

from paper corresponds to the interactions between the bond electrons e1, e2 and
the bond electrons e3, e4, and, because of symmetry, it corresponds to 4Ue1e3 ,

Page 22 of 63

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 31, 2010 16:57 Molecular Physics TMPH-2010-0364.revised

Molecular Physics 23

instead of Ue1e2 obtained in the case of simple bond. With these modifications, the
correspondent of (A6) from paper, in the case of double bond is:

Eb = −4
Z2

1R∞
n2

1

− 16K1 (Z1M + s1,2)√
9a2 + 25σ2

+
8K1√

σ2 + 4.5a2
+

K1Z
2
nA

2σ
(S3)

2) The second relation. Since there are four bond electrons, the virial relation
must be modified, namely instead of (A7) from paper, we have Eb = −2n1h/τ ,
from which it follows that the second relation, i.e. (A9) from paper, becomes:

Eb = − 2n1h
√

2K1Z1M

π
√

m (σ2 + a2)
3
4

(S4)

3) The third relation. This relation results directly, taking into account
that the first term from the second member represents the sum of the interac-
tions between the bond electrons e1, e2, e3, e4, (situated, respectively, at points
A1, A2, A3, A4) and nuclei, and the second term represents the sum of the inter-
action between all the bond electrons, corresponding to these positions. The third
relation, (A10) from paper must be rewritten as follows:

Eb = −8K1 (Z1M + s1,2)√
σ2 + a2

+
K1

a
+

2
√

2K1

a
+

K1Z
2
nA

2σ
(S5)

S1.2. Covalent triple bond of homonuclear molecules

The solution is similar to that for simple bonds. We have to take into account
that, in this case, six electrons participate to the bond. Their average positions are
e1[−1

4σ, 3
4a, 0], e2[−1

4σ,−3
4 · 1

2a, 3
4 ·

√
3

2 a], e3[−1
4σ,−3

4 · 1
2a,−3

4 ·
√

3
2 a], e4[14σ,−3

4a, 0],
e5[14σ, 3

4 · 1
2a,−3

4 ·
√

3
2 a] and e6[14σ, 3

4 · 1
2a, 3

4 ·
√

3
2 a], as shown in Fig.2(b) from the

paper. The analysis in this case is analogues to the analysis of the simple and
double bonds. The difference from these two previous cases is that we have to
take into account that six bond electrons participate to the triple bond instead of
four (double bond) or two (simple bond) electrons. It easy to see that the three
relations, in the case of the triple bond, become:

Eb = −6
Z2

1R∞
n2

1

− 24K1 (Z1M + 2s1,2)√
9a2 + 25σ2

+
6K1√

σ2 + 9a2
+

24K1√
4σ2 + 9a2

+
K1Z

2
nA

2σ
(S6)

Eb = − 3n1h
√

2K1Z1M

π
√

m (σ2 + a2)
3
4

(S7)

Eb = −12K1 (Z1M + 2s1,2)√
σ2 + a2

+
6K1√

3a
+

6K1

a
+

3K1

2a
+

K1Z
2
nA

2σ
(S8)

where

Z1 = ZA − 2s1,A1 − 2s1,2, Z1M = ZA − 2− 2s1,2 (S9)
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and

s1,2 =
√

2

4
√

1− σ2− 1
2
a2

σ2+a2

(S10)

S1.3. Ionic bonds in heteronuclear molecules

We consider a heteronuclear molecule composed of two fixed different nuclei, de-
noted by nA and nB, two 1s electrons in the vicinity of the nA nucleus, denoted
by eA1 and eA2, and two valence electrons which participate to the bond, denoted
by e1 and e2. In Subsection 3.2. we have shown that the curves C1 and C2 for
this molecule are represented in Fig. 3(a) from the paper. These curves are situ-
ated in the plane xy, the Cartesian coordinates of the nuclei are nA(0, 0, 0) and
nB(σ1 + σ2, 0, 0) and their order numbers are, respectvely, equal to ZA and ZB,
where ZA > ZB. The curve Ca, where a = 1 or a = 2, is composed of two quasilinear
ellipses, denoted by CaA and CaB, which surround, respectively the nuclei nA and
nB. We distinguish two phases, the phase A, when the electrons are situated on the
curves C1A and C2A, in the vicinity of the nucleus nA, and the phase B, when the
electrons are situated on the curves C1B and C2B, in the vicinity of the nucleus nB.
The average positions of the electrons in the phase A are e1 [(3/4)σ1, (3/4)a, 0] and
e2 [(3/4)σ1,−(3/4)a, 0], while in the phase B they are e1 [σ1 + (1/4)σ2, (3/4)a, 0]
and e2 [σ1 + (1/4)σ2,−(3/4)a, 0]. We note that the curves C1A and C2A, on one
hand, and the curves C1B and C2B, on the other hand, are very similar to the
curves C1 and C2 in the case of helium atom.

In the case of the heteronuclear diatomic molecules, the order number corre-
sponding to the bond electron ei is denoted by Zi(A) when ei moves in the vicinity
of the nucleus nA and by Zi(B) when ei moves in the vicinity of the nucleus nB.
The screening coefficients between the bond electrons e1 and e2, which move in
the vicinity of the nucleus nA, are denoted by s1,2(A) and s2,1(A). The screening
coefficients between the electrons eAi and ej when ej moves in the vicinity of the
nucleus nA have the same significance, as they do in the case of the homonuclear
molecules, and therefore we keep the same notations for them, namely sAi,j and
sj,Ai.

The treatment of this system is almost identical to that presented in Appendix
A from the paper, for the simple bond, with the difference that, due to asymmetry,
the order numbers are different, for the two phases, as follows

Z1(A) = ZA−2s1,A1−s1,2(A), Z1M(A) = ZA−2−s1,2(A) and ZnA = ZA−2 (S11)

Z1(B) = ZB − s1,2(B), Z1M(B) = ZB − s1,2(B) and ZnB = ZB (S12)

where

s1,2(A) =

√
σ2

1 + a2

4a
and s1,2(B) =

√
σ2

2 + a2

4a
(S13)

Because of this difference between phases, the quantum numbers associated to the
motion of the electron e1 on curves C1A and C2B, denoted, respectively, by n1(A)

and n1(B), and the corresponding periods, denoted by τA and τB, are different.
Due to the symmetry of the system, we have Z1(A) = Z2(A), Z1(B) = Z2(B),

Z1M(A) = Z2M(A), Z1M(B) = Z2M(B), n1(A) = n2(A) and n1(B) = n2(B).

Page 24 of 63

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 31, 2010 16:57 Molecular Physics TMPH-2010-0364.revised

Molecular Physics 25

The kinetic energy of one electron, corresponding to the points A1 or A2 is
denoted by Tm. Despite the fact that its value is very small, is it not neglected.
The three types of equations from the previous subsection are derived in a similar
manner, as follows.

1) The first type of relation. These relations result from the central field
approximation, using the quantization condition. The energy of the electron e1,
when the system is in the phase A, is

E1 = T1 + Ue1nA
=

Eb

2
− U0A with U0A = Ue1nB

+
1
2
UnAnB

(S14)

Since the e1 and e2 electrons are situated in the vicinity of the nucleus nA, their
interaction energy is included in Ue1nA

and Ue2nA
, by the term s1,2(A).

The quantization relation, applied for the curve C1A, is ∆C1A
S01 = n1(A)h. The

processing of these relations is identical to the processing of relations (A1), (A3)
and (A4) from paper. Thus, we approximate the quantity U0A, with its value,
denoted by U0Am, calculated when the electrons are in average positions. In this
case, the motions of the electrons reduces to that in a central field. An identical
procedure to that presented in Appendix A from the paper leads to the following
relation

Eb = −2
Z2

1(A)R∞
n2

1(A)

− 8K1

[
Z1M(B) + s1,2(B)

]
√

9a2 + (σ1 + 4σ2)
2

+
K1ZnAZnB

σ1 + σ2
(S15)

The same analysis, made for phase B, leads to the following relation

Eb = −2
Z2

1(B)R∞
n2

1(B)

− 8K1

[
Z1M(A) + s1,2(A)

]
√

9a2 + (σ2 + 4σ1)
2

+
K1ZnAZnB

σ1 + σ2
(S16)

2) The second type of relation. These relations result from the virial theorem.
We show that this theorem can be written separately for phases A and B. We take
into account the notations from Fig. 3(a) from the paper and write the following
relation for the phase A: d (mr̄ · v̄1) /dt + d (mr̄′ · v̄2) /dt = mr̄ · dv̄1/dt + mr̄′ ·
dv̄2/dt+mv2

1 +mv2
2. The integration of this relation with respect to time, over the

period τA, considering that r̄ · v̄1
∼= 0 and r̄′ · v̄2

∼= 0, respectively, at points A1 and
A2, leads to the following relation:

2T̃ = − 1
τA

∫

τA

(
r̄ · F̄1 + r̄′ · F̄2

)
dt (S17)

where F̄1 and F̄2 are the forces which act, respectively, on the electrons e1 and e2.
With the aid of their expressions [see Fig. 3(a) from the paper], and taking into
account the symmetry of the system and the fact that r̄ = −σ1ī + r̄1 = σ2ī + r̄′1
and r̄′ = −σ1ī + r̄2 = σ2ī + r̄′2, we obtain
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r̄ · F̄1 + r̄′ · F̄2 =
[
−K1Z1(A)

r3
1

r̄1 −
K1Z1M(B)

r′31
r̄′1 +

K1

|r̄1 − r̄2|3
(r̄1 − r̄2)

]
r̄ +(S18)

[
−K1Z1(A)

r3
2

r̄2 −
K1Z1M(B)

r′32
r̄′2 +

K1

|r̄2 − r̄1|3
(r̄2 − r̄1)

]
r̄′ =

2σ1

K1Z1(A)

r2
1

cosα1 + 2σ2

K1Z1M(B)

r′21
cosα2 + U − K1ZnAZnB

σ1 + σ2

where U = −2K1Z1(A)/r1−2K1Z1M(B)/r′1+K1/ |r̄1 − r̄2|+K1ZnAZnB/ (σ1 + σ2).
This is the potential energy of the system.

Introducing the above relation in (S17) and supposing that the average forces
which act on the two nuclei are zero, we obtain 2T̃ = −Ū . Since Eb = Ũ + T̃ , we
have:

Eb = −T̃ = − 1
τA

∫

τ
mv2

1dt = −∆C1A
S01

τA
= −n1(A)h

τA
(S19)

In this case τA = 2
∫ rM(A)

0 dr1/v1 = 2
∫ rM(A)

0 dr1/
√

2T1/m where T1 = Tm

for r1 = rM(A) =
√

σ2
1 + a2. Since Tm is a very small quantity, we consider

again that the domain in the vicinity of the point A1 has a big weight in the
calculation of the integral. We, thus, have Ue1nA

∼= −K1Z1M(A)/r1. The calcu-
lation of τA is performed similarly as in (A9) from paper. Using (S14) it fol-
lows that Eb/2 − U0 = T1 − K1Z1M(A)/r1 = Tm − K1Z1M(A)/rM(A), or T1 =
K1Z1M(A)/r1 −K1Z1M(A)/rM(A) + Tm and, instead of (A9) from paper, we write

τA =
√

2m

∫ rM(A)

0

dr1√
K1Z1M(A)

r1
− K1Z1M(A)

rM(A)
+ Tm

= π

√
m

2K1Z1M(A)
r

3
2

M(A)tcA (S20)

where tcA is a correction term, given by the relation

tcA =
2

πa
3/2
cA

(
arcsin

√
acA −√acA

√
1− acA

)
(S21)

with

acA = 1− Tm

√
σ2

1 + a2

K1Z1M(A)
(S22)

Since rM(A) =
√

σ2
1 + a2, from (S19) and (S20) we obtain

Eb = −n1(A)h
√

2K1Z1M(A)

π
√

m
(
σ2

1 + a2
) 3

4 tcA
(S23)

An identical analysis, corresponding to phase B, leads to the following relations:

Eb = −n1(B)h
√

2K1Z1M(B)

π
√

m
(
σ2

2 + a2
) 3

4 tcB
(S24)
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where

tcB =
2

πa
3/2
cB

(
arcsin

√
acB −√acB

√
1− acB

)
(S25)

and

acB = 1− Tm

√
σ2

2 + a2

K1Z1M(B)
(S26)

3) The third type of relation. This relation, which is the expression of the
energy Eb, when the electrons are situated, respectively, at points A1(0, a, 0) and
A2(0,−a, 0), results directly

Eb = −2K1

[
Z1M(A) + s1,2(A)

]
√

σ2
1 + a2

− 2K1

[
Z1M(B) + s1,2(B)

]
√

σ2
2 + a2

+
K1

2a
+ (S27)

K1ZnAZnB

σ1 + σ2
+ 2Tm

S1.4. Covalent bonds in heteronuclear diatomic molecules.

We consider the same heteronuclear covalent diatomic molecule as that pre-
sented in Subsection 3.2 from paper, having nA > nB, when the e1 and e2

electrons are situated in the vicinities of different nuclei, as shown in Fig. 3(b)
from paper. The average positions of the electrons are e1 [(3/4)σ1, (3/4)a, 0] and
e1 [(σ1 + (1/4)σ2) ,−(3/4)a, 0]. The curves C1 and C2 are asymmetrical, similar to
those shown in Fig. 3(a) from paper. The treatment of this system is almost identi-
cal to that from Appendix A from paper for simple bond, with the difference that
the order numbers are different. For the positions of the electrons shown in Fig.
3(b) from paper, we have

Z1(A) = ZA − 2s1,A1, Z1M(A) = ZA − 2, and ZnA = ZA − 2 (S28)

Z2(B) = ZB, Z2M(B) = ZB and ZnB = ZB (S29)

The quantum numbers associated to the electrons e1 and e2, for the positions shown
in Fig. 3(b) from paper, are respectively, n1(A) and n2(B). Taking into account
the symmetry of the curves C1 and C2, we have Z1(A) = Z2(A), Z1(B) = Z2(B),
Z1M(A) = Z2M(A), Z1M(B) = Z2M(B), n1(A) = n2(A) and n1(B) = n2(B).

Both electrons move alternatively in the fields of the two nuclei, on the curves
C1A, C1B and C2A, C2B. We assume that the kinetic energies of the bond electrons
in the points A1 and A2 are neglected, as in Appendix A from paper, and that the
motion of the electrons is periodical. The periodicity leads to the following relation

τA = τB (S30)

In the case of the ionic bond, the electrons move together on helium type trajec-
tories in the field of the same nucleus, and due to the the nonsymmetry of the
Ca trajectory, in the majority of the time, the electrons are in the vicinity of the
nucleus whose order number is smaller. Unlike the ionic bond, in the present case,
the electrons move alternatively in the fields of different nuclei, the two periods of
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motion, τA and τB, are equal and their charge is disposed in the vicinities of both
nuclei, from here resulting the covalent character of the bond.

The three types of equations from the previous subsection, result, similarly as in
Appendix A from paper, as follows.

1) The first type of relation. This relation results from the central field
approximation, using the quantization condition. In this case the expression of the
energy Eb can be written:

Eb = E1 + E2 + U01 + U02 with E1 = T1 + Ue1nA
and E2 = T2 + Ue2nB

(S31)

where

U01 = Ue1nB
+

1
2

(Ue1e2 + UnAnB
) and U02 = Ue2nA

+
1
2

(Ue1e2 + UnAnB
) (S32)

We consider that the motions of the e1 ande2 electrons are approximated by
motions in the in central fields of the nuclei na and nB. In this case E1 and E2 are
constants and the quantities U01 and U02 are calculated for the average positions of
the electrons. We apply quantization relations ∆C1A

S01 = n1(A)h and ∆C2B
S02 =

n2(B)h, respectively, for the curves C1A and C2B. We obtain E1 = −R∞Z2
1(A)/n2

1(A)

and E2 = −R∞Z2
2(B)/n2

2(B). Taking into account (S31) and (S32), we obtain:

Eb = −
R∞Z2

1(A)

n2
1(A)

−
R∞Z2

2(B)

n2
2(B)

− 4K1Z1M(B)√
9a2 + (σ1 + 4σ2)

2
− (S33)

4K1Z1M(A)√
9a2 + (σ2 + 4σ1)

2
+

4K1√
36a2 + (σ1 + σ2)

2
+

ZnAZnB

σ1 + σ2

2) The second type of relation. The virial theorem, written for the curve C1,
and taking into account the symmetry of the curves C1 and C2, is

Eb = − 1
τA

∫

τA

mv2
1

2
dt− 1

τB

∫

τB

mv2
2

2
dt = −∆S01

2τA
− ∆S02

2τB
= (S34)

−n1(A)h

2τA
− n2(B)h

2τB

which, in virtue of equation (S30), can be written:

2τAEb = 2τBEb = − [
n1(A) + n1(B)

]
h (S35)

A calculation similar to that presented in Appendix A from paper, which takes
into account (S31), leads to the following relation:

τA = τB = π

√
m

2K1Z1M(A)

(
σ2

1 + a2
) 3

4 = π

√
m

2K1Z1M(B)

(
σ2

2 + a2
) 3

4 = (S36)

−
[
n1(A) + n1(B)

]
h

2Eb

3) The third type of relation. This relation, which is the expression of the
energy EB, when the electrons are situated, respectively, at points A1(0, a, 0) and
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Figure S1. Structure of B2 molecule.

Table S1. Coordinates of average positions of particles, effective screening coefficients,

effective order numbers and solutions of the equations describing the behavior of B2

molecule.

Particle coordinates; quantum numbers Screening coefficients; order numbers
Calculated and experimental values
nA(0, 0, 0, ); nB(2σ, 0, 0, ) s1,A1 = sA3,A1 = 0.862983 [28]
e1

(
3
4
σ, 3

4
a, 0

)
; e2

(
5
4
σ,− 3

4
a, 0

)
sA1,1 = sA1,A3 = 0.00246735 [28]

eA3 (−d, 0, b); eA4 (−d, 0,−b) sA1,A2 = .25

eB3 (2σ + d, 0,−b); eB4 (2σ + d, 0, b) s1,A3 = (
√

2/4)/
√

1 + σ cos α√
σ2+a2

n1 = nA3 = nA4 = 2; nA1 = nA2 = 1 sA3,A4 = (1/4)/sin α
Eb = −3.857 Z1 = Z2 = ZA − 2s1,A1 − 2s1,A3

σ = 0.844851; a = 1.07468 Z1M = Z2M = ZA − 2− 2s1,A3

α = 630 ZA1 = ZA2 = ZA − sA1,A2 − 3sA1,1

SEiA = 49.3177 [35]; D0
0 = 0.221972 [36] ZA3 = ZA − 2s1,A1 − s1,A3 − sA3,A4

r0 = 1.7883 A; re = 1.59 A [29] ZA3 = ZA4 = ZB3 = ZB4

r = rA3 = rA4 where rA3 = 3/ZA3

d = r cos α; b = r sin α

ZnA = ZA − 2− 2(2σ)2(2σ+d)

[(2σ+d)2+b2]3/2

A2(0,−a, 0), results directly

Eb = −2K1Z1M(A)√
σ2

1 + a2
− 2K1Z1M(B)√

σ2
2 + a2

+
K1

2a
+

K1ZnAZnB

σ1 + σ2
(S37)

S2. Details of the calculations for B2, C2, LiH, BeH, BH and CH molecules.

S2.1. B2 molecule

The structure of this molecule is shown in Fig. S1. This molecule contains four
electrons, denoted by eA3, eA4, eB3 and eB4 which do not participate to the bond.
All the data necessary in calculations are given in Table S1.

The geometrical structure of the molecule results from the system (34)-(36) from
paper, while the normalized value of the total energy is calculated with the aid of
equation (41) from paper, and can be written, taking into account the symmetry
of the system (namely E1 = E2, EA3 = EA4 = EB3 = EB4, EA1 = EA2 = EB1 =
EB2, U e1nB

= U e2nA
, U eA3e2

= U eA4e2
= U eB3e1

= U eB4e1
, U eA3nB

= U eA4nB
=
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U eB3nA
= U eB4nA

, U eA3eB3
= U eA4eB4

and U eA3eB4
= U eA4eB3

), as follows:

E = 2E1 + 4EA3 + 4EA1 + U e1e2
+ 2U e1nB

+ 4U eA3e2
+ 4U eA3nB

+ (S38)

2U eA3eB3
+ 2U eA3eB4

+ UnAnB
+ 2Em1s = −2

Z2
1

n2
1

− 4
Z2

A3

n2
A3

− 4
Z2

A1

n2
A1

+

1

2
√(

1
4σ

)2 +
(

3
4a

)2
− 2 (ZA − 2)√(

5
4σ

)2 +
(

3
4a

)2
+

4√(
d + 5

4σ
)2 +

(
3
4a

)2 + b2
−

4 (ZA − 2)√
(d + 2σ)2 + b2

+
1√

(σ + d)2 + b2
+

1
σ + d

+
(ZA − 2)2

2σ
+ 2

Z
3/2
A1

8n3
A1

The angle α is a parameter. We perform the calculation for a lot of of values
of this angle and choose the value for which the total energy is minimum. This
value is given in Table S1. This value is very easy to find because the value of 2α
is close to the angle between the axes of the Ca curves for the valence electrons in
the boron atom, that is equal to 1200.

In this case and in all the cases which follow, Eexp is obtained with the aid of
equation (45) from paper, where SEiA and D0

0 are taken, respectively, from Ref. [35]
and Ref. [36]. As for the molecules analyzed in the paper, all the experimental and
calculated data are given in Table S1, excepting the comparison of the energetic
values E, EHF and Eexp, which are given in Table 1 from paper. The relative errors
corresponding to E and EHF are, respectively, equal to 0.005 and 0.007.

S2.2. C2 molecule

We analize the C2 molecule in three cases: when the bond is simple, double and
triple. We calculate the total energy and choose the case having the lowest total
energy. We consider that this case corresponds to the real C2 molecule.

1) C2 molecule with simple bond. The structure of this molecule is shown in
Fig. S2(a). This molecule contains six electrons, denoted by eA3, eA4, eA5, eB3,
eB4, and eB5 which do not participate to the bond. The coordinates of these
electrons are as follows:eA3 (−d, 0, b), eA4

(
−d,

√
3

2 b,−1
2b

)
, eA5

(
−d,−

√
3

2 b,−1
2b

)
,

eB3 (2σ + d, 0,−b), eB4

(
2σ + d,−

√
3

2 b, 1
2b

)
and eB5

(
2σ + d,

√
3

2 b, 1
2b

)
. A calcula-

tion identical to that for the B2 molecule leads to the following values: Eb =
−5.69164, σ = 0.751248, a = 0.857921, r0 = 1.59018A and E = −150.365.

2) C2 molecule with double bond. The structure of this molecule is shown in
Fig. S2(b). This molecule contains four electrons, denoted by eA3, eA4, eB3 and eB4,
which do not participate to the bond. The geometrical structure of the molecule
results from the system (S3)-(S5), which can be written in normalized form, as
follows:

Eb = −4
Z2

1

n2
1

− 16 (Z1M + s1,2)√
9a2 + 25σ2

+
8√

σ2 + 4.5a2
+

Z2
nA

2σ
(S39)

Eb = − 4n1

√
Z1M

(a2 + σ2)3/4
(S40)

Page 30 of 63

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 31, 2010 16:57 Molecular Physics TMPH-2010-0364.revised

Molecular Physics 31

A3

A4

A5

B4

B5

B3

e

e

e
e

e
e

e

e

1

2

A

A

1

2

A

B

n

n

o
o'

σ

σ

a

a

x

y

z

α

α
α

r

r

r

α

α

α

r

r

r
1

2C

C

A3

B3

A4

B4

e

e1

2

3

4e

e

e

e

e

e n

nA

B

o o'
σ

σ

α

α

α

α

a

a

a

a

y x

z

A

A

A

A

1

2

3

4

C

C

C

C

1

2

3

4

r

r

r

r

(a)

1

2

3

4

5

6

e

e

e

e

e

e

e

y

z

x

eA3

B3

B

A

n

n
o

o'σ
σ

a

a

C

CC
C

C

C

1
2

3

4
5

6

r

r

A3

B3

(b)

(c)

Figure S2. Structures of (a) simple, (b) double and (c) triple bonds in C2 molecule.

Eb = −8 (Z1M + s1,2)√
σ2 + a2

+
1
a

+
2
√

2
a

+
Z2

nA

2σ
(S41)

All the data necessary for calculations, together with the experimental data and
the results of the calculations are given in Table S2. The angle α corresponds to
the minimum value of the total energy. The normalized value of the total energy
is calculated with the aid of equation (41) from paper. Taking into account the
symmetry of the system (namely E1 = E2 = E3 = E4, EA3 = EA4 = EB3 = EB4,
EA1 = EA2 = EB1 = EB2, U e1e3

= U e1e4
= U e2e3

= U e2e4
, U e1nB

= U e2nB
=

U e3nA
= U e4nA

, U eA3e3
= U eA4e4

= U eB3e2
= U eB4e1

, U eA3e4
= U eA4e3

= U eB3e1
=

U eB4e2
, U eA3nB

= U eA4nB
= U eB3nA

= U eB4nA
, U eA3eB3

= U eA4eB4
and U eA3eB4

=
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Table S2. Coordinates of average positions of particles, effective screening coefficients, effective

order numbers and solutions of the equations describing the behavior of C2 molecule in the case

of double bond.

Particle coordinates; quantum numbers Screening coefficients; order numbers
Calculated and experimental values
nA(0, 0, 0, ); nB(2σ, 0, 0, ) s1,A1 = sA3,A1 = sA4,A1 = 0.85505 [28]
e1

(
3
4
σ, 3

4
a, 0

)
; e2

(
3
4
σ,− 3

4
a, 0

)
sA1,1 = sA1,A3 = sA1,A4 = 0.00269287 [28]

e3

(
5
4
σ, 0, 3

4
a
)
; e4

(
5
4
σ, 0,− 3

4
a
)

sA1,A2 = .25

eA3

(
−d,

√
2

2
b,
√

2
2

b
)

s1,2 =
√

σ2 + a2/(4a)

eA4

(
−d,−

√
2

2
b,−

√
2

2
b
)

s1,A3 = s2,A4 =
√

2

4

√√√√1+
σ cos α−

√
2

2 a sin α√
σ2+a2

eB3

(
2σ + d,−

√
2

2
b,−

√
2

2
b
)

s1,A4 = s2,A3 =
√

2

4

√√√√1+
σ cos α+

√
2

2 a sin α√
σ2+a2

eB4

(
2σ + d,

√
2

2
b,
√

2
2

b
)

sA3,A4 = 1/(4 sin α)

n1 = nA3 = nA4 = 2 Z1 = Z2 = ZA − 2s1,A1 − s1,2 − s1,A3 − s1,A4

nA1 = nA2 = 1 Z1M = Z2M = ZA − 2− s1,2 − s1,A3 − s1,A4

Eb = −12.1816 ZA1 = ZA2 = ZA − sA1,A2 − 4sA1,1

σ = 0.641059; a = 0.894043 ZA3 = ZA − 2s1,A1 − s1,A3 − s1,A4 − sA3,A4

α = 410 ZA3 = ZA4 = ZB3 = ZB4

SEiA = 75.7133 [35]; D0
0 = 0.45644 [36] r = 2

ZA3

(
1 + e2

2

)
where e = 0.98 [28]

r0 = 1.35694 A; re = 1.243 A [29] d = r cos α; d = r cos α

ZnA = ZA − 2− 2(2σ)2(2σ+d)

[(2σ+d)2+b2]3/2

ZnA = ZnB

U eA4eB3
), this relation can be written for C2 molecule with double bond, as follows:

E = 4E1 + 4EA3 + 4EA1 + 4U e1e3
+ 4U e1nB

+ 4U eA3nB
+ 2U eA3eB3

+ (S42)

2U eA3eB4
+ 4U eA3e3

+ 4U eA3e4
+ UnAnB

+ 2Em1s = −4
Z2

1

n2
1

− 4
Z2

A3

n2
A3

−

4
Z2

A1

n2
A1

+
4√(

1
2σ

)2 + 2
(

3
4a

)2
− 4 (ZA − 2)√(

5
4σ

)2 +
(

3
4a

)2
− 4 (ZA − 2)√

(d + 2σ)2 + b2
+

1√
(d + σ)2 + b2

+
1

d + σ
+

4√(
d + 5

4σ
)2 +

(√
2

2 b
)2

+
(

3
4a−

√
2

2 b
)2

+

4√(
d + 5

4σ
)2 +

(√
2

2 b
)2

+
(

3
4a +

√
2

2 b
)2

+
(ZA − 2)2

2σ
+ 2

Z
3/2
A1

8n3
A1

From this relation, we obtain E = −151.148.
3) C2 molecule with triple bond. The structure of this molecule is shown in

Fig. S2(c). This molecule contains two electrons, denoted by eA3 and eB3, which
do not participate to the bond. The geometrical structure of the molecule results
from the system (S6)-(S8), which can be written in normalized form, as follows:

Eb = −6
Z2

1

n2
1

− 24 (Z1M + 2s1,2)√
9a2 + 25σ2

+
6√

σ2 + 9a2
+

24√
4σ2 + 9a2

+
Z2

nA

2σ
(S43)

Eb = − 6n1

√
Z1M

(a2 + σ2)3/4
(S44)
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Table S3. Coordinates of average positions of particles, effective screening coefficients, effective

order numbers and solutions of the equations describing the behavior of C2 molecule in the case

of triple bond.

Particle coordinates; quantum numbers Screening coefficients; order numbers
Calculated and experimental values
nA(0, 0, 0, ); nB(2σ, 0, 0, ) s1,A1 = sA3,A1 = 0.85505 [28]
e1

(
3
4
σ, 3

4
a, 0

)
sA1,1 = sA1,A3 = 0.00269287 [28]

e2

(
3
4
σ,− 3

4
· 1

2
a, 3

4
·
√

3
2

a
)

sA1,A2 = .25

e3

(
3
4
σ,− 3

4
· 1

2
a,− 3

4
·
√

3
2

a
)

s1,2 = s2,3 = s1,3 =
√

2

4

√
1−σ2− 1

2 a2

σ2+a2

e4

(
5
4
σ,− 3

4
a, 0

)
s1,A3 = s2,A3 = s3,A3 =

√
2

4
√

1+
s√

σ2+a2

e5

(
5
4
σ, 3

4
· 1

2
a,− 3

4
·
√

3
2

a
)

Z1 = Z2 = Z3 = ZA − 2s1,A1 − 2s1,2 − s1,A3

e6

(
5
4
σ, 3

4
· 1

2
a, 3

4
·
√

3
2

a
)

Z1M = Z2M = Z3M = ZA − 2− 2s1,2 − s1,A3

eA3 (−rA3, 0, 0); eB3 (2σ + rA3, 0, 0) ZA1 = ZA2 = ZA − sA1,A2 − 4sA1,1

n1 = nA3 = 2; nA1 = nA2 = 1 ZA3 = ZB3 = ZA − 2s1,A1 − 3s1,A3

EB = −17.1499 rA3 = 2
ZA3

(
1 + e2

2

)
where e = 0.98 [28]

σ = 0.639379; a = 0.942817 ZnA = ZnB = ZA − 2− (2σ)2

(2σ+rA3)
2

r0 = 1.35339 A

Eb = −12 (Z1M + 2s1,2)√
σ2 + a2

+
6√
3a

+
6
a

+
3
2a

+
Z2

nA

2σ
(S45)

All the experimental and theoretical data, excepting the total energy, are given in
Table S3. Taking into account the symmetry of the system (namely E1 = E2 =
.... = E6, EA3 = EB3, EA1 = EA2 = EB1 = EB2, U e1e4

= U e2e5
= U e3e6

,
U e1e5

= U e5e3
= U e3e4

= U e4e2
= U e2e6

= U e6e1
, U eA3nB

= U eB3nA
, U einB

= U ejnA
,

U eA3ej
= U eB3ei

, where i = 1, 2, 3 and j = 3, 4, 5), the total energy results from the
following relation:

E = 6E1 + 2EA3 + 4EA1 + 3U e1e4
+ 6U e1e5

+ 6U e1nB
+ 6U eA3e4

+ (S46)

2U eA3nB
+ U eA3eB3

+ UnAnB
+ 2Em1s = −6

Z2
1

n2
1

− 2
Z2

A3

n2
A3

− 4
Z2

A1

n2
A1

+

3√(
1
2σ

)2 +
(

3
2a

)2
+

6√(
1
2σ

)2 +
(

3
4a

)2
− 6 (ZA − 2)√(

5
4σ

)2 +
(

3
4a

)2
+

6√(
rA3 + 5

4σ
)2 +

(
3
4a

)2
− 2 (ZA − 2)

rA3 + 2σ
+

1
2rA3 + 2σ

+
(ZA − 2)2

2σ
+ 2

Z
3/2
A1

8n3
A1

From this relation, we obtain E = −150.923.
If we compare the three above values of the total energy, we will see that the

energy corresponding to the double bond is minimum, resulting that the real bond
of the C2 molecule is double. This result is identical to that obtained by pure
quantum evaluations (see, for example pag. 97 of Ref. [31]). In Table 1 from paper
it is shown the value of E corresponding to the C2 molecule with double bond,
together with EHF and Eexp. The analysis of Table 1 from paper shows that the
relative errors corresponding to E and EHF are, respectively, equal to 0.005 and
0.007.

A comparison between, on one hand, the symmetry properties of the systems
composed of the C atoms and the electrons which do not participate to the bond
[see Figs. S2(a), S2(b) and S2(c)], and, on the other hand, the experimental sym-

Page 33 of 63

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 31, 2010 16:57 Molecular Physics TMPH-2010-0364.revised

34 Taylor & Francis and I.T. Consultant

metry properties of the ethane, ethylene and acetylene molecules, namely C2H6,
C2H4 and C2H2 (see Ref. [29]), shows that these properties are identical. For ex-
ample, all these structures have a center of symmetry, the configurations of C2H4

and of nA, nB, , eA3, eA4, eB3 and eB4, in the case of double bond, are plane, or
the configurations of C2H2 and of nA, nB, , eA3 and eB3, in the case of triple bond,
are linear. This explains why adding 6, 4 and, respectively, 2 hydrogen atoms to
the structures of C2 with simple, double and triple bonds leads to the formation of
the C2H6, C2H4 and, respectively, C2H2 molecules. Also, our calculations explain
the property that the length of the bond decreases with the increasing of the bond
order.

S2.3. LiH molecule

We analyze now the following molecules: LiH, BeH, BH and CH. The model of
ionic bond is in agreement with the experimental data for LiH, BeH, while the
model of covalent bond is in agreement with the experimental data only for BH
and CH. For example, if we apply the covalent model in the case of LiH, it will
lead to a symmetrical molecule, for which σ1 = σ2, which is in strong disagreement
with the fact that this molecule has a big electrical dipole moment.

The structure of the LiH molecule molecule is shown in Fig. 3(a) from paper.
This molecule contains only valence electrons that participate to the bond. The
geometrical structure of the molecule results from the system (S15), (S16), (S23),
(S24) and (S27), which can be written in normalized form as follows:

Eb = −2
Z2

1(A)

n2
1(A)

− 8
[
Z1M(B) + s1,2(B)

]
√

9a2 + (σ1 + 4σ2)
2

+
ZnAZnB

σ1 + σ2
(S47)

Eb = −2
Z2

1(B)

n2
1(B)

− 8
[
Z1M(A) + s1,2(A)

]
√

9a2 + (σ2 + 4σ1)
2

+
ZnAZnB

σ1 + σ2

(S48)

Eb = −2n1(A)

√
Z1M(A)(

σ2
1 + a2

) 3
4 tcA

(S49)

Eb = −2n1(B)

√
Z1M(B)(

σ2
2 + a2

) 3
4 tcB

(S50)

Eb = −2
[
Z1M(A) + s1,2(A)

]
√

σ2
1 + a2

− 2
[
Z1M(B) + s1,2(B)

]
√

σ2
2 + a2

+
1
2a

+
ZnAZnB

σ1 + σ2

+ 2Tm (S51)

where

tcA =
2

πa
3/2
cA

(
arcsin

√
acA −√acA

√
1− acA

)
(S52)
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Table S4. Coordinates of average positions of particles, effective screening coefficients,

effective order numbers and solutions of the equations describing the behavior of LiH

molecule.

Particle coordinates; quantum numbers Screening coefficients; order numbers
Calculated and experimental values
nA(0, 0, 0, ); nB(σ1 + σ2, 0, 0, ) s1,A1 = 0.854942 [27]
Phase A: sA1,1 = 0.0013792 [27]
e1

[
3
4
σ1, 3

4
a, 0

]
; e2

[
3
4
σ1,− 3

4
a, 0

]
sA1,A2 = 0.25

Phase B: s1,2(A) =
√

σ2
1 + a2/(4a)

e1

[
σ1 + 1

4
σ2, 3

4
a, 0

]
; e2

[
σ1 + 1

4
σ2,− 3

4
a, 0

]
s1,2(B) =

√
σ2

2 + a2/(4a)

n1(A) = n2(A) = 2; n1(B) = n2(B) = 1 Z1(A) = ZA − 2s1,A1 − s1,2(A)

nA1 = nA2 = 1 Z1M(A) = ZA − 2− s1,2(A)

Eb = −1.65659 ZA1 = ZA − sA1,A2 − 2sA1,1

σ1 = 1.47713; σ2 = 0.267425 Z1(B) = ZB − s1,2(B)

a = 1.18038; T m = 0.0284159 Z1M(B) = ZB − s1,2(B)

SEiA = 14.9563 [35]; SEiB = 1 ZnA = ZA − 2
D0

0 = 0.178511 [36] ZnB = ZB

r0 = 1.84635 A; re = 1.5957 A [29]
µe = 6.1491 D
µeHF = (4.839, 6.083) D [29]

with

acA = 1− Tm

√
σ2

1 + a2

Z1M(A)
(S53)

and

tcB =
2

πa
3/2
cB

(
arcsin

√
acB −√acB

√
1− acB

)
(S54)

with

acB = 1− Tm

√
σ2

2 + a2

Z1M(B)
(S55)

The system (S47)-(S51) has 5 equations with 5 unknowns, which are Eb, σ1, σ2, a
and Tm.

We follow again the algorithm presented in Section 4 from paper and calculate the
screening coefficients, order numbers and solve the system (S47)-(S51). All these
values are given in Table S4. The screening coefficients between the 1s electrons
and the e1 and e2 electrons, namely s1,A1 and sA1,1, when the system is in the phase
A are identical, respectively to s31e and s13e, which have been calculated in Ref.
[27] for the 1s22s state of lithium atom. The coefficients sA1,A2, s1,2(A) and s1,2(B)

are calculated with equation (9). Since 2s and 1s valence electrons participate
to the bond, respectively, in phases A and B, we have n1(A) = n1(B) = 2 and
n2(A) = n2(B) = 1.

Since in this case Eb has the significance of the total energy from which the
energies of the 1s electrons are subtracted, we have:

E = Eb + 2EA1 + Em1s = Eb − 2
Z2

A1

n2
A1

+
Z

3/2
A1

8n3
A1

(S56)

The normalized value of the total energy, together with the best two values of EHF ,
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obtained from Ref. [29], and the experimental value, Eexp, given by

Eexp = −SEiA − SEiB −D0
0 (S57)

are presented in Table 1 of the paper. The values of SEiA and SEiB, which are the
sum of the ionization energies of the two atoms, are taken from Ref. [35], while D0

0

is taken from Ref. [36]. The analysis of Table 1 from paper shows that the relative
errors corresponding to E and EHF are, respectively, equal to 0.003 and 0.010.

In this case we have

r0 = σ1 + σ2 (S58)

The values of r0 and re, which is taken from Ref. [29], are given in angstroms in
Table S4.

The electric dipole moment of the molecule is denoted by µ̄e. It is calculated
when the electrons are situated at the points A1 and A2, which are the average
positions on the molecular Ca curves taking into account the convention that the
positive sense of the vector µ̄e is from the negative charge to the positive charge.
In this case, the sign convention is the same as that from Ref. [29]. The expression
of µe in the case of the LiH molecule, when the result is given in debyes (D), is

µe = −5.08315[−2σ1 + ZB(σ1 + σ2)] (S59)

The theoretical value, calculated with equation (S59), and the experimental
value, taken from CCCBDB [29], are equal, respectively, to 6.1491 D and 5.88
D. The CCCBDB does not contain experimental values of the electric dipole mo-
ment in the cases of the molecules BeH, BH and CH. In Table S4 we compare our
theoretical values with the theoretical values of the electric dipole moment, calcu-
lated using the Hartree-Fock method, which are taken from Ref. [29]. The analysis
of the data from Ref. [29] shows that the dispersion of the theoretical values of the
electric dipole moments, in the case of a given system, is very high. For this reason,
in Table S4 we give the domain of the theoretical values of the dipole moments,
taken from Ref. [29], and computed using the Hartree-Fock method. These values
are denoted by µeHF .

S2.4. BeH molecule

The structure of this molecule is shown in Fig. S3(a). This molecule contains one
electron, denoted by eA3 which do not participate to the bond. The distance rA3

varies slightly when the bond electrons move in the phases A and B. Since the
bond electrons are in the majority of the time far from nucleus, we consider an
average value, approximately equal to that in the case of the isolated atom, which
is given by the relation r̃A3 = 3/ (ZA − 2sA3,A1). In this case the value of Eb is
slightly different in the two phases, being equal, respectively, to Eb1 and Eb2, in
the phases A and B. The system (S47)-(S51) becomes

Eb1 = −2
Z2

1(A)

n2
1(A)

− 8
[
Z1M(B) + s1,2(B)

]
√

9a2 + (σ1 + 4σ2)
2

+
ZnAZnB

σ1 + σ2
(S60)
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Figure S3. Structures of (a) BeH, (b) BH and (c) CH molecules.

Eb2 = −2
Z2

1(B)

n2
1(B)

− 8
[
Z1M(A) + s1,2(A)

]
√

9a2 + (σ2 + 4σ1)
2

+
ZnAZnB

σ1 + σ2

(S61)

Eb1 = −2n1(A)

√
Z1M(A)(

σ2
1 + a2

) 3
4 tcA

(S62)

Eb2 = −2n1(B)

√
Z1M(B)(

σ2
2 + a2

) 3
4 tcB

(S63)

1
2

(Eb1 + Eb2) = −2
[
Z1M(A) + s1,2(A)

]
√

σ2
1 + a2

−2
[
Z1M(B) + s1,2(B)

]
√

σ2
2 + a2

+
1
2a

+
ZnAZnB

σ1 + σ2

+2Tm

(S64)
where tcA and tcB are calculated, respectively, with the equations (S52) and (S54).
This system has 5 equations with 5 unknowns, which are Eb1, Eb2, σ1, σ2 and a.
The value of Tm is very small; it is chosen from the condition of minimum value of
the total energy. All the parameters and expressions which are used in calculations

Page 37 of 63

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 31, 2010 16:57 Molecular Physics TMPH-2010-0364.revised

38 Taylor & Francis and I.T. Consultant

Table S5. Coordinates of average positions of particles, effective screening coefficients, effec-

tive order numbers and solutions of the equations describing the behavior of BeH molecule.

Particle coordinates; quantum numbers Screening coefficients; order numbers
Calculated and experimental values
nA(0, 0, 0, ); nB(σ1 + σ2, 0, 0, ) s1,A1 = sA3,A1 = 0.83882 [27]
Phase A: sA1,1 = sA1,A3 = 0.00221203 [27]
e1

[
3
4
σ1, 3

4
a, 0

]
; e2

[
3
4
σ1,− 3

4
a, 0

]
sA1,A2 = 0.25

Phase B: s1,2(A) =
√

σ2
1 + a2/(4a)

e1

[
σ1 + 1

4
σ1, 3

4
a, 0

]
; e2

[
σ1 + 1

4
σ1,− 3

4
a, 0

]
s1,A3 = (

√
2/4)/

√
1 +

σ1√
σ2
1+a2

e3 (−r̃A3, 0, 0) s1,2(B) =
√

σ2
2 + a2/(4a)

n1(A) = n2(A) = 2; n1(B) = n2(B) = 1 Z1(A) = ZA − 2s1,A1 − s1,2(A) − s1,A3

nA1 = nA2 = 1; nA3 = 2 Z1M(A) = ZA − 2− s1,2(A) − s1,A3

Eb1 = −2.51578; Eb2 = 2.11007 ZA1 = ZA − sA1,A2 − 3sA1,1

σ1 = 1.34462; σ2 = 0.0149424 ZA3 = ZA − 2s1,A1 − 2s1,A3

a = 0.979054; T m = .015 Z1(B) = ZB − s1,2(B)

SEiA = 29.3377 [35]; SEiB = 1 Z1M(B) = ZB − s1,2(B)

D0
0 = 0.1495 [36] r̃A3 = 3

ZA−2sA3,A1

r0 = 1.4389 A; re = 1.3426 A [29] ZnA = ZA − 2− (σ1+σ2)
2

(σ1+σ2+r̃A3)
2

µe = 0.192613 D ZnB = ZB

µeHF = (0.232, 0.595) D

are shown in Table S5. The screening coefficients between the 1s electrons and the
e1, e2 and eA3 electrons are identical to s31e and s13e, which have been calculated
in Ref. [27] for the 1s22s2 state of beryllium atom. In the case of heteronuclear
molecules, the values of ZnA and ZnB are calculated with equation (39) from paper
in which, instead of (2σ)2, we consider the expression (σ1 + σ2)2.

The normalized value of the total energy is calculated with the aid of equation
(41) from paper, which can be written for BeH molecule, when the electrons are
situated at points A1 and A2, taking into account the symmetry of the system
(namely U e1nA

= U e2nA
and U e1nB

= U e2nB
), as follows:

E = EA3 + 2EA1 + 2U e1nA
+ 2U e1nB

+ U e1e2
+ U eA3nB

+ UnAnB
+ Em1s =(S65)

−Z2
A3

n2
A3

− 2
Z2

A1

n2
A1

− 2[Z1M(A) + s1,2(A)]√
σ2

1 + a2
− 2[Z1M(B) + s1,2(B)]√

σ2
2 + a2

+
1
2a
−

ZB

σ1 + σ2 + r̃A3

+
(ZA − 2)ZB

σ1 + σ2

+
Z

3/2
A1

8n3
A1

+ 2Tm

The values of E, EHF and Eexp are given in Table 1 of paper. The relative errors
corresponding to E and EHF are, respectively, equal to 0.002 and 0.006. The
electric dipole moment is given by the following relation:

µe = −5.08315[−2σ1 + ZB(σ1 + σ2) + r̃A3] (S66)

The values of r0, re, µe and the domain of the values of µeHF [29] are shown in
Table S5.

S2.5. BH molecule

The structure of this molecule is shown in Fig. S3(b). This molecule contains two
electrons, denoted by eA3 and eA4 which do not participate to the bond. The
geometrical structure of the molecule results from the system (S33), (S36) and
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Table S6. Coordinates of average positions of particles, effective screening coefficients,

effective order numbers and solutions of the equations describing the behavior of BH

molecule.

Particle coordinates; quantum numbers Screening coefficients; order numbers
Calculated and experimental values
nA(0, 0, 0, ); nB(σ1 + σ2, 0, 0, ) s1,A1 = sA3,A1 = 0.862983 [28]
e1

[
3
4
σ1, 3

4
a, 0

]
; e2

[
σ1 + 1

4
σ2,− 3

4
a, 0

]
sA1,1 = sA1,A3 = .00246735 [28]

eA3 (−d, 0, b); eA4 (−d, 0,−b) sA1,A2 = 0.25

n1(A) = n2(A) = 2; n1(B) = n2(B) = 1 s1,A3 = (
√

2/4)/
√

1 +
σ1 cos α√

σ2
1+a2

nA1 = nA2 = 1; nA3 = nA4 = 2 sA3,A4 = 1/(4 sin α)
Eb = −3.19537 Z1(A) = Z2(A) = ZA − 2s1,A1 − 2s1,A3

σ1 = 0.888324; σ2 = 0.261022 Z1M(A) = Z2M(A) = ZA − 2− 2s1,A3

a = 0.922599 ZA1 = ZA − sA1,A2 − 3sA1,1

α = 630 ZA3 = ZA − 2s1,A1 − s1,A3 − sA3,A4

SEiA = 49.3177 [35]; SEiB = 1 ZA4 = ZA3

D0
0 = 0.251372 [36] Z1(B) = Z2(B) = ZB

r0 = 1.21642 A; re = 1.2324 A [29] Z1M(B) = Z2M(B) = ZB

µe = −1.86638 D rA3 = 2
ZA3

(1 + e2

2
) where e = 0.97 [28]

µeHF = (−0.994,−1.814) D [29] d = rA3 cos α; b = rA3 sin α

ZnA = ZA − 2− 2(σ1+σ2)
2(σ1+σ2+d)[

(σ1+σ2+d)2+b2
]3/2

ZnB = ZB

(S37), which can be written in normalized form, as follows:

Eb = −
Z2

1(A)

n2
1(A)

−
Z2

2(B)

n2
2(B)

− 4Z1M(B)√
9a2 + (σ1 + 4σ2)

2
− 4Z1M(A)√

9a2 + (σ2 + 4σ1)
2

+ (S67)

4√
36a2 + (σ1 + σ2)

2
+

ZnAZnB

σ1 + σ2

Eb = −
[
n1(A) + n1(B)

]√
Z1M(A)(

a2 + σ2
1

)3/4
(S68)

Eb = −
[
n1(A) + n1(B)

] √
Z1M(B)(

a2 + σ2
2

)3/4
(S69)

Eb = − 2Z1M(A)√
σ2

1 + a2
− 2Z1M(B)√

σ2
2 + a2

+
1
2a

+
ZnAZnB

σ1 + σ2

(S70)

The system (S67)-(S70) has 4 equations with 4 unknowns, which are Eb, σ1, σ2

and a. The expressions of the screening coefficients, order numbers and quantum
numbers are given in Table S6. The screening coefficients between the 1s electrons
and the e1, e2, eA3 and eA4 electrons, namely s1,A1, sA1,1, sA3,A1, sA1,A3, and so
on, are identical, respectively to s31e and s13e, which have been calculated in Ref.
[28] for the boron atom. The angle α is a parameter. We perform the calculation
for a lot of values of this angle and choose the value for which the total energy is
minimum. This value is given in Table S6.

Taking into account the symmetry of the system, the total energy results from
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the following relation [see Fig. S3(b)]:

E = E1 + E2 + 2EA3 + 2EA1 + U e1e2
+ U e1nB

+ U e2nA
+ 2U eA3e2

+ (S71)

2U eA3nB
+ UnAnB

+ 2Em1s = −
Z2

1(A)

n2
1(A)

−
Z2

2(B)

n2
2(B)

− 2
Z2

A3

n2
A3

− 2
Z2

A1

n2
A1

+

1√(
1
4σ1 + 1

4σ2

)2 +
(

3
2a

)2
− ZB√(

1
4σ1 + σ2

)2 +
(

3
4a

)2
−

ZA − 2√(
1
4σ2 + σ1

)2 +
(

3
4a

)2
+

2√(
σ1 + 1

4σ2 + d
)2 +

(
3
4a

)2 + b2
−

2ZB√
(σ1 + σ2 + d)2 + b2

+
(ZA − 2)ZB

σ1 + σ2

+
Z

3/2
A1

8n3
A1

The values of E, EHF and Eexp are given in Table 1 of paper. The relative errors
corresponding to E and EHF are, respectively, equal to 0.002 and 0.006. The
electric dipole moment is given by the following relation:

µe = −5.08315[−2σ1 + ZB(σ1 + σ2) + 2d] (S72)

The values of r0, re, µe and the domain of the values of µeHF [29] are shown in
Table S6.

S2.6. CH molecule

The structure of this molecule is shown in Fig. S3(c). This molecule contains three
electrons, denoted by eA3, eA4 and eA5 which do not participate to the bond. The
geometrical structure of the molecule results from the system (S67)-(S70). All the
data necessary in calculations, together with the results of the calculations, are
given in Table S7.

The normalized value of the total energy is calculated with the aid of equation
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Table S7. Coordinates of average positions of particles, effective screening coefficients, effective

order numbers and solutions of the equations describing the behavior of CH molecule.

Particle coordinates; quantum numbers Screening coefficients; order numbers
Calculated and experimental values
nA(0, 0, 0, ); nB(σ1 + σ2, 0, 0, ) s1,A1 = 0.85505 [28]
e1

[
3
4
σ1, 3

4
a, 0

]
; e2

[
σ1 + 1

4
σ2,− 3

4
a, 0

]
sA1,1 = 0.00269287 [28]

eA3 (−d, 0, b) s1,A1 = sA3,A1 = sA4,A1 = sA5,A1

eA4

(
−d,

√
3

2
b,− 1

2
b
)

sA1,1 = sA1,A3 = sA1,A4 = sA1,A5

eA5

(
−d,−

√
3

2
b,− 1

2
b
)

sA1,A2 = 0.25

n1(A) = n2(A) = 2; n1(B) = n2(B) = 1 s1,A3 =
√

2

4
√

1+
σ1 cos α√

σ2
1+a2

nA1 = nA2 = 1; nA3 = nA4 = nA5 = 2 s1,A4 =
√

2

4

√√√√1+
σ1 cos α−

√
3

2 a sin α√
σ2
1+a2

Eb = −4.29182 s1,A5 =
√

2

4

√√√√1+
σ1 cos α+

√
3

2 a sin α√
σ2
1+a2

σ1 = 0.840475; σ2 = 0.175936 sA3,A4 = 1
2
√

3 sin α
a = 0.767725 Z1(A) = ZA − 2s1,A1 − s1,A3 − s1,A4 − s1,A5

α = 670 Z1M(A) = ZA − 2− s1,A3 − s1,A4 − s1,A5

SEiA = 75.7133 [35]; SEiB = 1 Z1(A) = Z2(A); Z1M(A) = Z2M(A)

D0
0 = 0.254679 [36] ZA1 = ZA − sA1,A2 − 4sA1,1

r0 = 1.07572 A; re = 1.1199 A [29] ZA3 = ZA − 2s1,A1 − s1,A3 − 2sA3,A4

µe = −1.91195 D ZA4 = ZA − 2s1,A1 − s1,A4 − 2sA3,A4

µeHF = (−1.069,−1.666) D [29] ZA5 = ZA − 2s1,A1 − s1,A5 − 2sA3,A4

Z1(B) = Z2(B) = ZB ; Z1M(B) = Z2M(B) = ZB

e = .98 [28]

r =
(

1
ZA3

+ 1
ZA4

+ 1
ZA5

)
2
3

(
1 + e2

2

)

d = r cos α; b = r sin α

ZnA = ZA − 2− 3(σ1+σ2)
2(σ1+σ2+d)[

(σ1+σ2+d)2+b2
]3/2

ZnB = ZB

(41), which can be written as follows:

E = E1 + E2 + EA3 + EA4 + EA5 + 2EA1 + U e1e2
+ U e1nB

+ U e2nA
+ (S73)

U eA3e2
+ U eA4e2

+ U eA5e2
+ 3U eA3nB

+ UnAnB
+ 2Em1s = −

Z2
1(A)

n2
1(A)

−

Z2
2(B)

n2
2(B)

− Z2
A3

n2
A3

− Z2
A4

n2
A3

− Z2
A5

n2
A3

− 2
Z2

A1

n2
A1

+
1√(

1
4σ1 + 1

4σ2

)2 +
(

3
2a

)2
−

ZB√(
1
4σ1 + σ2

)2 +
(

3
4a

)2
− ZA − 2√(

1
4σ2 + σ1

)2 +
(

3
4a

)2
+

1√(
σ1 + 1

4σ2 + d
)2 +

(
3
4a

)2 + b2
+

1√(
σ1 + 1

4σ2 + d
)2 +

(
3
4a +

√
3

2 b
)2

+
(

1
2b

)2

+

1√(
σ1 + 1

4σ2 + d
)2 +

(
3
4a−

√
3

2 b
)2

+
(

1
2b

)2

−

3ZB√
(σ1 + σ2 + d)2 + b2

+
(ZA − 2)ZB

σ1 + σ2

+
Z

3/2
A1

8n3
A1
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The values of E, EHF and Eexp are given in Table 1 of paper. The relative
errors corresponding to E and EHF are, respectively, equal to 0.004 and 0.005.
The electric dipole moment is given by the following relation:

µe = −5.08315[−2σ1 + ZB(σ1 + σ2) + 3d] (S74)

The values of α, corresponding to the minimum value of E, r0, re, µe and the
domain of the values of µeHF are shown in Table S7.

The analysis of the Table 1 from paper shows that the relative error of our
calculations, in the most unfavorable cases, is, as in the case of atoms [27, 28], of
the order 0.005. In Section 6 of Ref. [27] we presented a brief error analysis of our
calculation method, arriving to the conclusion that the main source of error comes
from the approximations made when calculating the correction term Em1s. This
analysis is valid also for the present paper.

S3. MATHEMATICA 7 scripts for the calculation of the Li2, Be2, B2, C2,
LiH, BeH, BH and CH molecules.

This material contains all the numerical calculations, necessary in the paper.

S3.1. Mathematica 7 script for the calculation of Li2.

The calculation algorithm is described in Section 4. We have the following equiv-
alences between the notations from paper and the symbols which are used in
program: ZA ≡ ZA, s1,A1 ≡ s1A1, sA1,1 ≡ sA11, sA1,A2 ≡ sA1A2, Z1 ≡ Z1,
Z1M ≡ Z1M , ZnA ≡ ZnA, E ≡ Etotal, Eb ≡ EB, r0 ≡ r0, D0

0 ≡ D00,
SEiA ≡ SEiA, Eexp ≡ Eexp, re ≡ re, a ≡ a, σ ≡ s.

The output data, given at the end of the script are, respectively, E, Eexp, r0 and
re.

Input data.
ZA = 3;ZA = 3;ZA = 3;
s1A1 = 0.854942;s1A1 = 0.854942;s1A1 = 0.854942;
sA11 = 0.0013792;sA11 = 0.0013792;sA11 = 0.0013792;
sA1A2 = .25;sA1A2 = .25;sA1A2 = .25;
Z1 = ZA− 2 ∗ s1A1;Z1 = ZA− 2 ∗ s1A1;Z1 = ZA− 2 ∗ s1A1;
Z1M = ZA− 2;Z1M = ZA− 2;Z1M = ZA− 2;
ZnA = ZA− 2;ZnA = ZA− 2;ZnA = ZA− 2;

Etotal = EB− 4 ∗ (ZA− sA1A2− sA11)2 + (ZA−sA1A2−sA11)
3
2

4 ;Etotal = EB− 4 ∗ (ZA− sA1A2− sA11)2 + (ZA−sA1A2−sA11)
3
2

4 ;Etotal = EB− 4 ∗ (ZA− sA1A2− sA11)2 + (ZA−sA1A2−sA11)
3
2

4 ;
r0 = 2 ∗ s ∗ 2 ∗ .529177A;r0 = 2 ∗ s ∗ 2 ∗ .529177A;r0 = 2 ∗ s ∗ 2 ∗ .529177A;

Experimental data.
D00 = 1.046

13.60535 ;D00 = 1.046
13.60535 ;D00 = 1.046
13.60535 ;

SEiA = 5.39172+75.64018+122.45429
13.60535 ;SEiA = 5.39172+75.64018+122.45429
13.60535 ;SEiA = 5.39172+75.64018+122.45429
13.60535 ;

Eexp = −2 ∗ SEiA−D00;Eexp = −2 ∗ SEiA−D00;Eexp = −2 ∗ SEiA−D00;
re = 2.673A;re = 2.673A;re = 2.673A;

System of equations
Eq1 = EB + Z12

2 + 8∗Z1M√
9∗a2+25∗s2 − 2√

9∗a2+s2 − ZnA2

2∗s ;Eq1 = EB + Z12

2 + 8∗Z1M√
9∗a2+25∗s2 − 2√

9∗a2+s2 − ZnA2

2∗s ;Eq1 = EB + Z12

2 + 8∗Z1M√
9∗a2+25∗s2 − 2√

9∗a2+s2 − ZnA2

2∗s ;

Eq2 = EB + 4
√

Z1M

(s2+a2)
3
4
;Eq2 = EB + 4

√
Z1M

(s2+a2)
3
4
;Eq2 = EB + 4

√
Z1M

(s2+a2)
3
4
;

Eq3 = EB + 4∗Z1M√
s2+a2 − ZnA2

2∗s − 1
2a ;Eq3 = EB + 4∗Z1M√

s2+a2 − ZnA2

2∗s − 1
2a ;Eq3 = EB + 4∗Z1M√

s2+a2 − ZnA2

2∗s − 1
2a ;

The solution of the system of equations
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Sol = FindRoot[{Eq1 == 0,Eq2 == 0, Eq3 == 0}, {{EB, 1}, {s, 1.2}, {a, 2.5}}]Sol = FindRoot[{Eq1 == 0, Eq2 == 0, Eq3 == 0}, {{EB, 1}, {s, 1.2}, {a, 2.5}}]Sol = FindRoot[{Eq1 == 0, Eq2 == 0,Eq3 == 0}, {{EB, 1}, {s, 1.2}, {a, 2.5}}]
{EB → −1.0115, s → 1.46474, a → 2.02683}

Verification.
N [Eq1]/.SolN [Eq1]/.SolN [Eq1]/.Sol
N [Eq2]/.SolN [Eq2]/.SolN [Eq2]/.Sol
N [Eq3]/.SolN [Eq3]/.SolN [Eq3]/.Sol
0.
2.220446049250313̀*∧-16
4.440892098500626̀*∧-16

Calculation of other quantities.
Etotal/.SolEtotal/.SolEtotal/.Sol
Eexp/.SolEexp/.SolEexp/.Sol
r0/.Solr0/.Solr0/.Sol
re/.Solre/.Solre/.Sol
−30.0919
−29.9896
3.10043A
2.673A

S3.2. Mathematica 7 script for the calculation of Be2.

We have the following equivalences between the notations from paper and the
symbols which are used in program: ZA ≡ ZA, s1,A1 ≡ s1A1, sA1,1 ≡ sA11,
s1,A3≡s1A3, sA1,A2 ≡ sA1A2, Z1 ≡ Z1, Z1M ≡ Z1M , ZA3 ≡ ZA3, ZA1 ≡ ZA1,
rA3 ≡ rA3, ZnA ≡ ZnA, E ≡ Etotal, Eb ≡ EB, r0 ≡ r0, D0

0 ≡ D00, SEiA ≡
SEiA, Eexp ≡ Eexp, re ≡ re, a ≡ a, σ ≡ s.

The output data, given at the end of the script are, respectively, E, Eexp, r0 and
re.

Input data.
ZA = 4;ZA = 4;ZA = 4;
s1A1 = 0.83882;s1A1 = 0.83882;s1A1 = 0.83882;
sA11 = .00221203;sA11 = .00221203;sA11 = .00221203;
s1A3 =

√
2

4∗√1+ s√
s2+a2

;s1A3 =
√

2
4∗√1+ s√

s2+a2

;s1A3 =
√

2
4∗√1+ s√

s2+a2

;

sA1A2 = .25;sA1A2 = .25;sA1A2 = .25;
Z1 = ZA− 2s1A1− s1A3;Z1 = ZA− 2s1A1− s1A3;Z1 = ZA− 2s1A1− s1A3;
Z1M = ZA− 2− s1A3;Z1M = ZA− 2− s1A3;Z1M = ZA− 2− s1A3;
ZA3 = Z1;ZA3 = Z1;ZA3 = Z1;
ZA1 = ZA− sA1A2− 2 ∗ sA11;ZA1 = ZA− sA1A2− 2 ∗ sA11;ZA1 = ZA− sA1A2− 2 ∗ sA11;
rA3 = 3

ZA3 ;rA3 = 3
ZA3 ;rA3 = 3
ZA3 ;

ZnA = ZA− 2− (2s)2

(2s+rA3)2 ;ZnA = ZA− 2− (2s)2

(2s+rA3)2 ;ZnA = ZA− 2− (2s)2

(2s+rA3)2 ;

Etotal = −Z12

2 − ZA32

2 − 4 ∗ ZA12 + 1

2
√

( 1
4
∗s)2

+( 3
4
∗a)2 − 2∗(ZA−2)√

( 5
4
∗s)2

+( 3
4
∗a)2 + 2√

( 5
4
∗s+rA3)2

+( 3
4
∗a)2−Etotal = −Z12

2 − ZA32

2 − 4 ∗ ZA12 + 1

2
√

( 1
4
∗s)2

+( 3
4
∗a)2 − 2∗(ZA−2)√

( 5
4
∗s)2

+( 3
4
∗a)2 + 2√

( 5
4
∗s+rA3)2

+( 3
4
∗a)2−Etotal = −Z12

2 − ZA32

2 − 4 ∗ ZA12 + 1

2
√

( 1
4
∗s)2

+( 3
4
∗a)2 − 2∗(ZA−2)√

( 5
4
∗s)2

+( 3
4
∗a)2 + 2√

( 5
4
∗s+rA3)2

+( 3
4
∗a)2−

2∗(ZA−2)
2∗s+rA3 + 1

2∗s+2∗rA3 + (ZA−2)2

2∗s + ZA1
3
2

4 ;2∗(ZA−2)
2∗s+rA3 + 1

2∗s+2∗rA3 + (ZA−2)2

2∗s + ZA1
3
2

4 ;2∗(ZA−2)
2∗s+rA3 + 1

2∗s+2∗rA3 + (ZA−2)2

2∗s + ZA1
3
2

4 ;
r0 = 2 ∗ s ∗ 2 ∗ .529177A;r0 = 2 ∗ s ∗ 2 ∗ .529177A;r0 = 2 ∗ s ∗ 2 ∗ .529177A;

Experimental data.
D00 = .1643;D00 = .1643;D00 = .1643;
SEiA = 9.3227+18.21116+153.89661+217.71865

13.60535 ;SEiA = 9.3227+18.21116+153.89661+217.71865
13.60535 ;SEiA = 9.3227+18.21116+153.89661+217.71865
13.60535 ;

Eexp = −2 ∗ SEiA−D00;Eexp = −2 ∗ SEiA−D00;Eexp = −2 ∗ SEiA−D00;
re = 2.460A;re = 2.460A;re = 2.460A;

System of equations.
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Eq1 = EB + Z12

2 + 8∗Z1M√
9∗a2+25∗s2 − 2√

9∗a2+s2 − ZnA2

2∗s ;Eq1 = EB + Z12

2 + 8∗Z1M√
9∗a2+25∗s2 − 2√

9∗a2+s2 − ZnA2

2∗s ;Eq1 = EB + Z12

2 + 8∗Z1M√
9∗a2+25∗s2 − 2√

9∗a2+s2 − ZnA2

2∗s ;

Eq2 = EB + 4
√

Z1M

(s2+a2)
3
4
;Eq2 = EB + 4

√
Z1M

(s2+a2)
3
4
;Eq2 = EB + 4

√
Z1M

(s2+a2)
3
4
;

Eq3 = EB + 4∗Z1M√
s2+a2 − ZnA2

2∗s − 1
2a ;Eq3 = EB + 4∗Z1M√

s2+a2 − ZnA2

2∗s − 1
2a ;Eq3 = EB + 4∗Z1M√

s2+a2 − ZnA2

2∗s − 1
2a ;

The solution of the system of equations.
Sol = FindRoot[{Eq1 == 0,Eq2 == 0, Eq3 == 0}, {{EB,−2}, {s, 1}, {a, 1}}]Sol = FindRoot[{Eq1 == 0, Eq2 == 0, Eq3 == 0}, {{EB,−2}, {s, 1}, {a, 1}}]Sol = FindRoot[{Eq1 == 0, Eq2 == 0,Eq3 == 0}, {{EB,−2}, {s, 1}, {a, 1}}]
{EB → −2.39104, s → 1.04502, a → 1.32709}

Verification.
N [Eq1]/.SolN [Eq1]/.SolN [Eq1]/.Sol
N [Eq2]/.SolN [Eq2]/.SolN [Eq2]/.Sol
N [Eq3]/.SolN [Eq3]/.SolN [Eq3]/.Sol
2.220446049250313̀*∧-16
−4.440892098500626̀*∧-16
−4.440892098500626̀*∧-16

Calculation of other quantities.
Etotal/.SolEtotal/.SolEtotal/.Sol
Eexp/.SolEexp/.SolEexp/.Sol
r0/.Solr0/.Solr0/.Sol
re/.Solre/.Solre/.Sol
−58.7676
−58.8396
2.212A
2.46A

S3.3. Mathematica 7 script for the calculation of B2.

The equivalences between the notations from paper and the symbols which are
used in program are ZA ≡ ZA, s1,A1 ≡ s1A1, sA1,1 ≡ sA11, sA1,A2 ≡ sA1A2,
α ≡ alpha, s1,A3≡s1A3, sA3,A4 ≡ sA3A4, Z1 ≡ Z1, Z1M ≡ Z1M , ZA3 ≡ ZA3,
ZA1 ≡ ZA1, r ≡ r, d ≡ d, b ≡ b, ZnA ≡ ZnA, E ≡ Etotal, Eb ≡ EB, r0 ≡ r0,
D0

0 ≡ D00, SEiA ≡ SEiA, Eexp ≡ Eexp, re ≡ re, a ≡ a, σ ≡ s.
The output data, given at the end of the script are, respectively, E, Eexp, r0 and

re.

Input data.
ZA = 5;ZA = 5;ZA = 5;
s1A1 = 0.862983;s1A1 = 0.862983;s1A1 = 0.862983;
sA11 = .00246735;sA11 = .00246735;sA11 = .00246735;
sA1A2 = .25;sA1A2 = .25;sA1A2 = .25;
alpha = 63;alpha = 63;alpha = 63;
al = alpha ∗ π

180 ;al = alpha ∗ π
180 ;al = alpha ∗ π
180 ;

s1A3 = 1

4∗
√

1
2
+ s∗Cos[al]

2∗
√

s2+a2

;s1A3 = 1

4∗
√

1
2
+ s∗Cos[al]

2∗
√

s2+a2

;s1A3 = 1

4∗
√

1
2
+ s∗Cos[al]

2∗
√

s2+a2

;

sA3A4 = 1
4∗Sin[al] ;sA3A4 = 1
4∗Sin[al] ;sA3A4 = 1
4∗Sin[al] ;

Z1 = ZA− 2 ∗ s1A1− 2 ∗ s1A3;Z1 = ZA− 2 ∗ s1A1− 2 ∗ s1A3;Z1 = ZA− 2 ∗ s1A1− 2 ∗ s1A3;
Z1M = ZA− 2− 2 ∗ s1A3;Z1M = ZA− 2− 2 ∗ s1A3;Z1M = ZA− 2− 2 ∗ s1A3;
ZA1 = ZA− sA1A2− 3 ∗ sA11;ZA1 = ZA− sA1A2− 3 ∗ sA11;ZA1 = ZA− sA1A2− 3 ∗ sA11;
ZA3 = ZA− 2 ∗ s1A1− s1A3− sA3A4;ZA3 = ZA− 2 ∗ s1A1− s1A3− sA3A4;ZA3 = ZA− 2 ∗ s1A1− s1A3− sA3A4;
r = 3

ZA3 ;r = 3
ZA3 ;r = 3
ZA3 ;

d = r ∗ Cos[al];d = r ∗ Cos[al];d = r ∗ Cos[al];
b = r ∗ Sin[al];b = r ∗ Sin[al];b = r ∗ Sin[al];
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ZnA = ZA− 2− 2∗(2s)2∗(2∗s+d)

((2∗s+d)2+b2)
3
2
;ZnA = ZA− 2− 2∗(2s)2∗(2∗s+d)

((2∗s+d)2+b2)
3
2
;ZnA = ZA− 2− 2∗(2s)2∗(2∗s+d)

((2∗s+d)2+b2)
3
2
;

Etotal = −Z12

2 − ZA32 − 4 ∗ ZA12 + 1

2∗
√

( 1
4
∗s)2

+( 3
4
∗a)2 − 2∗(ZA−2)√

( 5
4
∗s)2

+( 3
4
∗a)2 +Etotal = −Z12

2 − ZA32 − 4 ∗ ZA12 + 1

2∗
√

( 1
4
∗s)2

+( 3
4
∗a)2 − 2∗(ZA−2)√

( 5
4
∗s)2

+( 3
4
∗a)2 +Etotal = −Z12

2 − ZA32 − 4 ∗ ZA12 + 1

2∗
√

( 1
4
∗s)2

+( 3
4
∗a)2 − 2∗(ZA−2)√

( 5
4
∗s)2

+( 3
4
∗a)2 +

4√
( 5

4
∗s+d)2

+( 3
4
∗a)2

+b2
− 4∗(ZA−2)√

(d+2∗s)2+b2
+ 1√

(s+d)2+b2
+ 1

s+d + (ZA−2)2

2∗s + ZA1
3
2

4 ;4√
( 5

4
∗s+d)2

+( 3
4
∗a)2

+b2
− 4∗(ZA−2)√

(d+2∗s)2+b2
+ 1√

(s+d)2+b2
+ 1

s+d + (ZA−2)2

2∗s + ZA1
3
2

4 ;4√
( 5

4
∗s+d)2

+( 3
4
∗a)2

+b2
− 4∗(ZA−2)√

(d+2∗s)2+b2
+ 1√

(s+d)2+b2
+ 1

s+d + (ZA−2)2

2∗s + ZA1
3
2

4 ;

r0 = 2 ∗ s ∗ 2 ∗ .529177A;r0 = 2 ∗ s ∗ 2 ∗ .529177A;r0 = 2 ∗ s ∗ 2 ∗ .529177A;
Experimental data.

D00 = 3.02
13.60535 ;D00 = 3.02
13.60535 ;D00 = 3.02
13.60535 ;

SEiA = 8.29803+25.15484+37.93064+259.37521+340.22580
13.60535 ;SEiA = 8.29803+25.15484+37.93064+259.37521+340.22580
13.60535 ;SEiA = 8.29803+25.15484+37.93064+259.37521+340.22580
13.60535 ;

Eexp = −2 ∗ SEiA−D00;Eexp = −2 ∗ SEiA−D00;Eexp = −2 ∗ SEiA−D00;
re = 1.5900A;re = 1.5900A;re = 1.5900A;

System of equations.
Eq1 = EB + Z12

2 + 8∗Z1M√
9∗a2+25∗s2 − 2√

9∗a2+s2 − ZnA2

2∗s ;Eq1 = EB + Z12

2 + 8∗Z1M√
9∗a2+25∗s2 − 2√

9∗a2+s2 − ZnA2

2∗s ;Eq1 = EB + Z12

2 + 8∗Z1M√
9∗a2+25∗s2 − 2√

9∗a2+s2 − ZnA2

2∗s ;

Eq2 = EB + 4
√

Z1M

(s2+a2)
3
4
;Eq2 = EB + 4

√
Z1M

(s2+a2)
3
4
;Eq2 = EB + 4

√
Z1M

(s2+a2)
3
4
;

Eq3 = EB + 4∗Z1M√
s2+a2 − ZnA2

2∗s − 1
2a ;Eq3 = EB + 4∗Z1M√

s2+a2 − ZnA2

2∗s − 1
2a ;Eq3 = EB + 4∗Z1M√

s2+a2 − ZnA2

2∗s − 1
2a ;

The solution of the system of equations.
Sol = FindRoot[{Eq1 == 0,Eq2 == 0, Eq3 == 0}, {{EB, 1}, {s, 1}, {a, 1}}]Sol = FindRoot[{Eq1 == 0, Eq2 == 0, Eq3 == 0}, {{EB, 1}, {s, 1}, {a, 1}}]Sol = FindRoot[{Eq1 == 0, Eq2 == 0,Eq3 == 0}, {{EB, 1}, {s, 1}, {a, 1}}]
{EB → −3.857, s → 0.844851, a → 1.07468}

Verification.
N [Eq1]/.SolN [Eq1]/.SolN [Eq1]/.Sol
N [Eq2]/.SolN [Eq2]/.SolN [Eq2]/.Sol
N [Eq3]/.SolN [Eq3]/.SolN [Eq3]/.Sol
1.3322676295501878̀*∧-15
4.440892098500626̀*∧-16
0.

Calculation of other quantities.
Etotal/.SolEtotal/.SolEtotal/.Sol
Eexp/.SolEexp/.SolEexp/.Sol
r0/.Solr0/.Solr0/.Sol
re/.Solre/.Solre/.Sol
−98.3341
−98.8574
1.7883A
1.59A

S3.4. Mathematica 7 script for the calculation of C2 with double bond.

The equivalences between the notations from paper and the symbols which are used
in program are ZA ≡ ZA, s1,A1 ≡ s1A1, sA1,1 ≡ sA11, sA1,A2 ≡ sA1A2, α ≡ alpha,
s1,2 ≡ s12, s1,A3≡s1A3, s1,A4≡s1A4, sA3,A4 ≡ sA3A4, Z1 ≡ Z1, Z1M ≡ Z1M ,
ZA1 ≡ ZA1, ZA3 ≡ ZA3, ZA4 ≡ ZA4, e ≡ excen, r ≡ r, d ≡ d, b ≡ b, ZnA ≡ ZnA,
E ≡ Etotal, Eb ≡ EB, r0 ≡ r0, D0

0 ≡ D00, SEiA ≡ SEiA, Eexp ≡ Eexp, re ≡ re,
a ≡ a, σ ≡ s.

The output data, given at the end of the script are, respectively, E, Eexp, r0 and
re.

Input data.
ZA = 6;ZA = 6;ZA = 6;
s1A1 = 0.85505;s1A1 = 0.85505;s1A1 = 0.85505;
sA11 = .00269287;sA11 = .00269287;sA11 = .00269287;
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sA1A2 = .25;sA1A2 = .25;sA1A2 = .25;
alpha = 41;alpha = 41;alpha = 41;
al = alpha ∗ π

180 ;al = alpha ∗ π
180 ;al = alpha ∗ π
180 ;

s12 =
√

s2+a2

4∗a ;s12 =
√

s2+a2

4∗a ;s12 =
√

s2+a2

4∗a ;

s1A3 =
√

2

4∗
√

1+
s∗Cos[al]−

√
2

2 ∗a∗Sin[al]√
s2+a2

;s1A3 =
√

2

4∗
√

1+
s∗Cos[al]−

√
2

2 ∗a∗Sin[al]√
s2+a2

;s1A3 =
√

2

4∗
√

1+
s∗Cos[al]−

√
2

2 ∗a∗Sin[al]√
s2+a2

;

s1A4 =
√

2

4∗
√

1+
s∗Cos[al]+

√
2

2 ∗a∗Sin[al]√
s2+a2

;s1A4 =
√

2

4∗
√

1+
s∗Cos[al]+

√
2

2 ∗a∗Sin[al]√
s2+a2

;s1A4 =
√

2

4∗
√

1+
s∗Cos[al]+

√
2

2 ∗a∗Sin[al]√
s2+a2

;

sA3A4 = 1
4∗Sin[al] ;sA3A4 = 1
4∗Sin[al] ;sA3A4 = 1
4∗Sin[al] ;

Z1 = ZA− 2 ∗ s1A1− s12− s1A3− s1A4;Z1 = ZA− 2 ∗ s1A1− s12− s1A3− s1A4;Z1 = ZA− 2 ∗ s1A1− s12− s1A3− s1A4;
Z1M = ZA− 2− s12− s1A3− s1A4;Z1M = ZA− 2− s12− s1A3− s1A4;Z1M = ZA− 2− s12− s1A3− s1A4;
ZA1 = ZA− sA1A2− 4 ∗ sA11;ZA1 = ZA− sA1A2− 4 ∗ sA11;ZA1 = ZA− sA1A2− 4 ∗ sA11;
ZA3 = ZA− 2 ∗ s1A1− sA3A4− s1A3− s1A4;ZA3 = ZA− 2 ∗ s1A1− sA3A4− s1A3− s1A4;ZA3 = ZA− 2 ∗ s1A1− sA3A4− s1A3− s1A4;
ZA4 = ZA3;ZA4 = ZA3;ZA4 = ZA3;
excen = .98;excen = .98;excen = .98;
r = 2

ZA3 ∗
(
1 + excen2

2

)
;r = 2

ZA3 ∗
(
1 + excen2

2

)
;r = 2

ZA3 ∗
(
1 + excen2

2

)
;

d = r ∗ Cos[al];d = r ∗ Cos[al];d = r ∗ Cos[al];
b = r ∗ Sin[al];b = r ∗ Sin[al];b = r ∗ Sin[al];
ZnA = ZA− 2− 2∗(2∗s)2∗(2∗s+d)

((2∗s+d)2+b2)
3
2

;ZnA = ZA− 2− 2∗(2∗s)2∗(2∗s+d)

((2∗s+d)2+b2)
3
2

;ZnA = ZA− 2− 2∗(2∗s)2∗(2∗s+d)

((2∗s+d)2+b2)
3
2

;

Etotal = −Z12 − ZA32 − 4 ∗ ZA12 + 4√
( s

2)
2
+2∗( 3∗a

4 )2 − 4∗(ZA−2)√
( 5

4
∗s)2

+( 3
4
∗a)2 +Etotal = −Z12 − ZA32 − 4 ∗ ZA12 + 4√

( s

2)
2
+2∗( 3∗a

4 )2 − 4∗(ZA−2)√
( 5

4
∗s)2

+( 3
4
∗a)2 +Etotal = −Z12 − ZA32 − 4 ∗ ZA12 + 4√

( s

2)
2
+2∗( 3∗a

4 )2 − 4∗(ZA−2)√
( 5

4
∗s)2

+( 3
4
∗a)2 +

4√
( 5∗s

4
+d)2

+(
√

2
2
∗b)2

+( 3∗a

4
−
√

2
2
∗b)2 + 4√

( 5∗s

4
+d)2

+(
√

2
2
∗b)2

+( 3∗a

4
+
√

2
2
∗b)2−4√

( 5∗s

4
+d)2

+(
√

2
2
∗b)2

+( 3∗a

4
−
√

2
2
∗b)2 + 4√

( 5∗s

4
+d)2

+(
√

2
2
∗b)2

+( 3∗a

4
+
√

2
2
∗b)2−4√

( 5∗s

4
+d)2

+(
√

2
2
∗b)2

+( 3∗a

4
−
√

2
2
∗b)2 + 4√

( 5∗s

4
+d)2

+(
√

2
2
∗b)2

+( 3∗a

4
+
√

2
2
∗b)2−

4∗(ZA−2)√
(2∗s+d)2+b2

+ 1√
(s+d)2+b2

+ 1
s+d + (ZA−2)2

2∗s + ZA1
3
2

4 ;4∗(ZA−2)√
(2∗s+d)2+b2

+ 1√
(s+d)2+b2

+ 1
s+d + (ZA−2)2

2∗s + ZA1
3
2

4 ;4∗(ZA−2)√
(2∗s+d)2+b2

+ 1√
(s+d)2+b2

+ 1
s+d + (ZA−2)2

2∗s + ZA1
3
2

4 ;

r0 = 2 ∗ s ∗ 2 ∗ .52918A;r0 = 2 ∗ s ∗ 2 ∗ .52918A;r0 = 2 ∗ s ∗ 2 ∗ .52918A;
Experimental data

D00 = 6.21
13.60535 ;D00 = 6.21
13.60535 ;D00 = 6.21
13.60535 ;

SEiA = 11.2603+24.38332+47.8878+64.4939+392.087+489.99334
13.60535 ;SEiA = 11.2603+24.38332+47.8878+64.4939+392.087+489.99334
13.60535 ;SEiA = 11.2603+24.38332+47.8878+64.4939+392.087+489.99334
13.60535 ;

Eexp = −2 ∗ SEiA−D00;Eexp = −2 ∗ SEiA−D00;Eexp = −2 ∗ SEiA−D00;
re = 1.243A;re = 1.243A;re = 1.243A;

System of equations.
Eq1 = EB + Z12 + 16∗(Z1M+s12)√

25s2+9a2 − 8√
s2+4.5∗a2 − ZnA2

2∗s ;Eq1 = EB + Z12 + 16∗(Z1M+s12)√
25s2+9a2 − 8√

s2+4.5∗a2 − ZnA2

2∗s ;Eq1 = EB + Z12 + 16∗(Z1M+s12)√
25s2+9a2 − 8√

s2+4.5∗a2 − ZnA2

2∗s ;

Eq2 = EB + 8∗√Z1M
(s2+a2)3/4 ;Eq2 = EB + 8∗√Z1M
(s2+a2)3/4 ;Eq2 = EB + 8∗√Z1M
(s2+a2)3/4 ;

Eq3 = EB + 8∗(Z1M+s12)√
s2+a2 − 1

a − 2∗√2
a − ZnA2

2∗s ;Eq3 = EB + 8∗(Z1M+s12)√
s2+a2 − 1

a − 2∗√2
a − ZnA2

2∗s ;Eq3 = EB + 8∗(Z1M+s12)√
s2+a2 − 1

a − 2∗√2
a − ZnA2

2∗s ;
The solution of the system of equations.

Sol = FindRoot[{Eq1 == 0,Eq2 == 0, Eq3 == 0}, {{EB,−12}, {s, .6}, {a, .9}}]Sol = FindRoot[{Eq1 == 0, Eq2 == 0, Eq3 == 0}, {{EB,−12}, {s, .6}, {a, .9}}]Sol = FindRoot[{Eq1 == 0, Eq2 == 0,Eq3 == 0}, {{EB,−12}, {s, .6}, {a, .9}}]
{EB → −12.1816, s → 0.641059, a → 0.894043}

Verification.
N [Eq1]/.SolN [Eq1]/.SolN [Eq1]/.Sol
N [Eq2]/.SolN [Eq2]/.SolN [Eq2]/.Sol
N [Eq3]/.SolN [Eq3]/.SolN [Eq3]/.Sol
0.
3.552713678800501̀*∧-15
5.329070518200751̀*∧-15

Calculation of other quantities.
Etotal/.SolEtotal/.SolEtotal/.Sol
Eexp/.SolEexp/.SolEexp/.Sol
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r0/.Solr0/.Solr0/.Sol
re/.Solre/.Solre/.Sol
−151.148
−151.883
1.35694A
1.243A

S3.5. Mathematica 7 script for the calculation of C2 with triple bond.

The equivalences between the notations from paper and the symbols which are
used in program are ZA ≡ ZA, s1,A1 ≡ s1A1, sA1,1 ≡ sA11, sA1,A2 ≡ sA1A2,
s1,2 ≡ s12, s1,A3≡s1A3, Z1 ≡ Z1, Z1M ≡ Z1M , ZA1 ≡ ZA1, ZA3 ≡ ZA3, e ≡
excen, rA3 ≡ rA3, ZnA ≡ ZnA, E ≡ Etotal, Eb ≡ EB, r0 ≡ r0, D0

0 ≡ D00,
SEiA ≡ SEiA, Eexp ≡ Eexp, re ≡ re, a ≡ a, σ ≡ s.

The output data, given at the end of the script are, respectively, E, Eexp, r0 and
re.

Input data.
ZA = 6;ZA = 6;ZA = 6;
s1A1 = 0.85505;s1A1 = 0.85505;s1A1 = 0.85505;
sA11 = .00269287;sA11 = .00269287;sA11 = .00269287;
sA1A2 = .25;sA1A2 = .25;sA1A2 = .25;

s12 =
√

2
4 /

√
1− s2− 1

2
∗a2

s2+a2 ;s12 =
√

2
4 /

√
1− s2− 1

2
∗a2

s2+a2 ;s12 =
√

2
4 /

√
1− s2− 1

2
∗a2

s2+a2 ;

s1A3 =
√

2
4 /

√
1 + s√

s2+a2 ;s1A3 =
√

2
4 /

√
1 + s√

s2+a2 ;s1A3 =
√

2
4 /

√
1 + s√

s2+a2 ;

Z1 = ZA− 2 ∗ s1A1− 2 ∗ s12− s1A3;Z1 = ZA− 2 ∗ s1A1− 2 ∗ s12− s1A3;Z1 = ZA− 2 ∗ s1A1− 2 ∗ s12− s1A3;
Z1M = ZA− 2− 2 ∗ s12− s1A3;Z1M = ZA− 2− 2 ∗ s12− s1A3;Z1M = ZA− 2− 2 ∗ s12− s1A3;
ZA1 = ZA− sA1A2− 4 ∗ sA11;ZA1 = ZA− sA1A2− 4 ∗ sA11;ZA1 = ZA− sA1A2− 4 ∗ sA11;
ZA3 = ZA− 2 ∗ s1A1− 3 ∗ s1A3;ZA3 = ZA− 2 ∗ s1A1− 3 ∗ s1A3;ZA3 = ZA− 2 ∗ s1A1− 3 ∗ s1A3;
excen = .98;excen = .98;excen = .98;
rA3 = 2

ZA3 ∗
(
1 + excen2

2

)
;rA3 = 2

ZA3 ∗
(
1 + excen2

2

)
;rA3 = 2

ZA3 ∗
(
1 + excen2

2

)
;

ZnA = ZA− 2− (2∗s)2
(2∗s+rA3)2 ;ZnA = ZA− 2− (2∗s)2
(2∗s+rA3)2 ;ZnA = ZA− 2− (2∗s)2
(2∗s+rA3)2 ;

Etotal = −6 ∗ Z12

4 − 2 ∗ ZA32

4 − 4 ∗ ZA12 + 3√
( 1

2
∗s)2

+( 3
2
∗a)2 +Etotal = −6 ∗ Z12

4 − 2 ∗ ZA32

4 − 4 ∗ ZA12 + 3√
( 1

2
∗s)2

+( 3
2
∗a)2 +Etotal = −6 ∗ Z12

4 − 2 ∗ ZA32

4 − 4 ∗ ZA12 + 3√
( 1

2
∗s)2

+( 3
2
∗a)2 +

6√
( 1

2
∗s)2

+( 3
4
∗a)2 − 6∗(ZA−2)√

( 5
4
∗s)2

+( 3
4
∗a)2 + 6√

( 5∗s

4
+rA3)2

+( 3∗a

4 )2−6√
( 1

2
∗s)2

+( 3
4
∗a)2 − 6∗(ZA−2)√

( 5
4
∗s)2

+( 3
4
∗a)2 + 6√

( 5∗s

4
+rA3)2

+( 3∗a

4 )2−6√
( 1

2
∗s)2

+( 3
4
∗a)2 − 6∗(ZA−2)√

( 5
4
∗s)2

+( 3
4
∗a)2 + 6√

( 5∗s

4
+rA3)2

+( 3∗a

4 )2−
2∗(ZA−2)
2∗s+rA3 + 1

2∗s+2∗rA3 + (ZA−2)2

2∗s + ZA1
3
2

4 ;2∗(ZA−2)
2∗s+rA3 + 1

2∗s+2∗rA3 + (ZA−2)2

2∗s + ZA1
3
2

4 ;2∗(ZA−2)
2∗s+rA3 + 1

2∗s+2∗rA3 + (ZA−2)2

2∗s + ZA1
3
2

4 ;
r0 = 2 ∗ s ∗ 2 ∗ .52918A;r0 = 2 ∗ s ∗ 2 ∗ .52918A;r0 = 2 ∗ s ∗ 2 ∗ .52918A;

Experimental data
D00 = 6.21

13.60535 ;D00 = 6.21
13.60535 ;D00 = 6.21
13.60535 ;

SEiA = 11.2603+24.38332+47.8878+64.4939+392.087+489.99334
13.60535 ;SEiA = 11.2603+24.38332+47.8878+64.4939+392.087+489.99334
13.60535 ;SEiA = 11.2603+24.38332+47.8878+64.4939+392.087+489.99334
13.60535 ;

Eexp = −2 ∗ SEiA−D00;Eexp = −2 ∗ SEiA−D00;Eexp = −2 ∗ SEiA−D00;
re = 1.243A;re = 1.243A;re = 1.243A;

System of equations.
Eq1 = EB + 6 ∗ Z12

4 + 24∗(Z1M+2∗s12)√
9∗a2+25∗s2 − 6√

s2+9∗a2 − 24√
4∗s2+9∗a2 − ZnA2

2∗s ;Eq1 = EB + 6 ∗ Z12

4 + 24∗(Z1M+2∗s12)√
9∗a2+25∗s2 − 6√

s2+9∗a2 − 24√
4∗s2+9∗a2 − ZnA2

2∗s ;Eq1 = EB + 6 ∗ Z12

4 + 24∗(Z1M+2∗s12)√
9∗a2+25∗s2 − 6√

s2+9∗a2 − 24√
4∗s2+9∗a2 − ZnA2

2∗s ;

Eq2 = EB + 12∗√Z1M
(s2+a2)3/4 ;Eq2 = EB + 12∗√Z1M
(s2+a2)3/4 ;Eq2 = EB + 12∗√Z1M
(s2+a2)3/4 ;

Eq3 = EB + 12∗(Z1M+2∗s12)√
s2+a2 − 6

a∗√3
− 6

a − 3
2∗a − ZnA2

2∗s ;Eq3 = EB + 12∗(Z1M+2∗s12)√
s2+a2 − 6

a∗√3
− 6

a − 3
2∗a − ZnA2

2∗s ;Eq3 = EB + 12∗(Z1M+2∗s12)√
s2+a2 − 6

a∗√3
− 6

a − 3
2∗a − ZnA2

2∗s ;
The solution of the system of equations.

Sol = FindRoot[{Eq1 == 0,Eq2 == 0, Eq3 == 0}, {{EB, 12}, {s, .6}, {a, .9}}]Sol = FindRoot[{Eq1 == 0, Eq2 == 0, Eq3 == 0}, {{EB, 12}, {s, .6}, {a, .9}}]Sol = FindRoot[{Eq1 == 0, Eq2 == 0,Eq3 == 0}, {{EB, 12}, {s, .6}, {a, .9}}]
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{EB → −17.1499, s → 0.639379, a → 0.942817}
Verification.

N [Eq1]/.SolN [Eq1]/.SolN [Eq1]/.Sol
N [Eq2]/.SolN [Eq2]/.SolN [Eq2]/.Sol
N [Eq3]/.SolN [Eq3]/.SolN [Eq3]/.Sol
−3.552713678800501̀*∧-15
0.
1.7763568394002505̀*∧-14

Calculation of other quantities.
Etotal/.SolEtotal/.SolEtotal/.Sol
Eexp/.SolEexp/.SolEexp/.Sol
r0/.Solr0/.Solr0/.Sol
re/.Solre/.Solre/.Sol
−150.923
−151.883
1.35339A
1.243A

S3.6. Mathematica 7 script for the calculation of LiH.

The equivalences between the notations from paper and the symbols which are used
in program are ZA ≡ ZA, ZB ≡ ZB, s1,A1 ≡ s1A1, sA1,1 ≡ sA11, sA1,A2 ≡ sA1A2,
s1,2(A) ≡ s12A, s1,2(B) ≡ s12B, Z1(A) ≡ Z1A, Z1M(A) ≡ Z1MA, ZA1 ≡ ZA1,
Z1(B) ≡ Z1B, Z1M(B) ≡ Z1MB, ZnA ≡ ZnA, ZnB ≡ ZnB, acA ≡ acA, acB ≡
acB, IA ≡ IA, IB ≡ IB, tcA ≡ tcA, tcB ≡ tcB, E ≡ Etotal, r0 ≡ r0, µe ≡ µe,
D0

0 ≡ D00, SEiA ≡ SEiA, SEiB ≡ SEiB, Eexp ≡ Eexp, re ≡ re, Eb ≡ EB, a ≡ a,
σ1 ≡ s1, σ2 ≡ s2.

The output data, given at the end of the script are, respectively, E, Eexp, µe, r0

and re.

Input data.
ZA = 3;ZA = 3;ZA = 3;
ZB = 1;ZB = 1;ZB = 1;
s1A1 = 0.854942;s1A1 = 0.854942;s1A1 = 0.854942;
sA11 = .0013792;sA11 = .0013792;sA11 = .0013792;
sA1A2 = .25;sA1A2 = .25;sA1A2 = .25;
s12A =

√
s12+a2

4a ;s12A =
√

s12+a2

4a ;s12A =
√

s12+a2

4a ;

s12B =
√

s22+a2

4a ;s12B =
√

s22+a2

4a ;s12B =
√

s22+a2

4a ;
Z1A = ZA− 2 ∗ s1A1− s12A;Z1A = ZA− 2 ∗ s1A1− s12A;Z1A = ZA− 2 ∗ s1A1− s12A;
Z1MA = ZA− 2− s12A;Z1MA = ZA− 2− s12A;Z1MA = ZA− 2− s12A;
ZA1 = ZA− sA1A2− 2 ∗ sA11;ZA1 = ZA− sA1A2− 2 ∗ sA11;ZA1 = ZA− sA1A2− 2 ∗ sA11;
Z1B = ZB− s12B;Z1B = ZB− s12B;Z1B = ZB− s12B;
Z1MB = ZB− s12B;Z1MB = ZB− s12B;Z1MB = ZB− s12B;
ZnA = 1;ZnA = 1;ZnA = 1;
ZnB = 1;ZnB = 1;ZnB = 1;
acA = 1− T

√
s12+a2

Z1MA ;acA = 1− T
√

s12+a2

Z1MA ;acA = 1− T
√

s12+a2

Z1MA ;

acB = 1− T
√

s22+a2

Z1MB ;acB = 1− T
√

s22+a2

Z1MB ;acB = 1− T
√

s22+a2

Z1MB ;

IA = ArcSin
[√

acA
]
−√acA

√
1− acA;IA = ArcSin

[√
acA

]
−√acA

√
1− acA;IA = ArcSin

[√
acA

]
−√acA

√
1− acA;

IB = ArcSin
[√

acB
]
−√acB

√
1− acB;IB = ArcSin

[√
acB

]
−√acB

√
1− acB;IB = ArcSin

[√
acB

]
−√acB

√
1− acB;

tcA = 2IA

πacA
3
2
;tcA = 2IA

πacA
3
2
;tcA = 2IA

πacA
3
2
;
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tcB = 2IB

πacB
3
2
;tcB = 2IB

πacB
3
2
;tcB = 2IB

πacB
3
2
;

Etotal = EB− 2 ∗ ZA12 + ZA1
3
2

8 ;Etotal = EB− 2 ∗ ZA12 + ZA1
3
2

8 ;Etotal = EB− 2 ∗ ZA12 + ZA1
3
2

8 ;
r0 = (s1 + s2) ∗ .529177 ∗ 2A;r0 = (s1 + s2) ∗ .529177 ∗ 2A;r0 = (s1 + s2) ∗ .529177 ∗ 2A;
µe = −5.08315 ∗ (−2 ∗ s1 + ZB ∗ (s1 + s2))D;µe = −5.08315 ∗ (−2 ∗ s1 + ZB ∗ (s1 + s2))D;µe = −5.08315 ∗ (−2 ∗ s1 + ZB ∗ (s1 + s2))D;

Experimental data.
D00 = 2.42871

13.60535 ;D00 = 2.42871
13.60535 ;D00 = 2.42871
13.60535 ;

SEiA = 5.39172+75.64018+122.45429
13.60535 ;SEiA = 5.39172+75.64018+122.45429
13.60535 ;SEiA = 5.39172+75.64018+122.45429
13.60535 ;

SEiB = 1;SEiB = 1;SEiB = 1;
Eexp = −SEiA− SEiB−D00;Eexp = −SEiA− SEiB−D00;Eexp = −SEiA− SEiB−D00;
re = 1.5957A;re = 1.5957A;re = 1.5957A;

System of equations.
Eq1 = EB + Z1A2

2 + 2(Z1MB+s12B)√
( 3

4
a)2

+( s1
4

+s2)2 − ZnAZnB
s1+s2 ;Eq1 = EB + Z1A2

2 + 2(Z1MB+s12B)√
( 3

4
a)2

+( s1
4

+s2)2 − ZnAZnB
s1+s2 ;Eq1 = EB + Z1A2

2 + 2(Z1MB+s12B)√
( 3

4
a)2

+( s1
4

+s2)2 − ZnAZnB
s1+s2 ;

Eq2 = EB + 2Z1B2 + 2(Z1MA+s12A)√
( 3

4
a)2

+( s2
4

+s1)2 − ZnAZnB
s1+s2 ;Eq2 = EB + 2Z1B2 + 2(Z1MA+s12A)√

( 3
4
a)2

+( s2
4

+s1)2 − ZnAZnB
s1+s2 ;Eq2 = EB + 2Z1B2 + 2(Z1MA+s12A)√

( 3
4
a)2

+( s2
4

+s1)2 − ZnAZnB
s1+s2 ;

Eq3 = EB + 4
√

Z1MA

tcA(s12+a2)
3
4
;Eq3 = EB + 4

√
Z1MA

tcA(s12+a2)
3
4
;Eq3 = EB + 4

√
Z1MA

tcA(s12+a2)
3
4
;

Eq4 = EB + 2
√

Z1MB

tcB(s22+a2)
3
4
;Eq4 = EB + 2

√
Z1MB

tcB(s22+a2)
3
4
;Eq4 = EB + 2

√
Z1MB

tcB(s22+a2)
3
4
;

Eq5 = EB + 2(Z1MA+s12A)√
s12+a2 + 2(Z1MB+s12B)√

s22+a2 − 1
2a − ZnAZnB

s1+s2 − 2T ;Eq5 = EB + 2(Z1MA+s12A)√
s12+a2 + 2(Z1MB+s12B)√

s22+a2 − 1
2a − ZnAZnB

s1+s2 − 2T ;Eq5 = EB + 2(Z1MA+s12A)√
s12+a2 + 2(Z1MB+s12B)√

s22+a2 − 1
2a − ZnAZnB

s1+s2 − 2T ;
The solution of the system of equations.

Sol = FindRoot[{Eq1 == 0,Eq2 == 0, Eq3 == 0,Eq4==0, Eq5==0},Sol = FindRoot[{Eq1 == 0, Eq2 == 0, Eq3 == 0, Eq4==0,Eq5==0},Sol = FindRoot[{Eq1 == 0, Eq2 == 0,Eq3 == 0, Eq4==0, Eq5==0},
{{EB, 1.6}, {s1, 1.5}, {s2, .25}, {a, 1.2}, {T, .04}}]{{EB, 1.6}, {s1, 1.5}, {s2, .25}, {a, 1.2}, {T, .04}}]{{EB, 1.6}, {s1, 1.5}, {s2, .25}, {a, 1.2}, {T, .04}}]
{EB → −1.65659, s1 → 1.47713, s2 → 0.267425, a → 1.18038, T → 0.0284159}

Verification.
N [Eq1]/.SolN [Eq1]/.SolN [Eq1]/.Sol
N [Eq2]/.SolN [Eq2]/.SolN [Eq2]/.Sol
N [Eq3]/.SolN [Eq3]/.SolN [Eq3]/.Sol
N [Eq4]/.SolN [Eq4]/.SolN [Eq4]/.Sol
N [Eq5]/.SolN [Eq5]/.SolN [Eq5]/.Sol
0.
−1.1102230246251565̀*∧-16
−6.661338147750939̀*∧-16
−2.220446049250313̀*∧-16
−4.440892098500626̀*∧-16

Calculation of other quantities.
Etotal/.SolEtotal/.SolEtotal/.Sol
Eexp/.SolEexp/.SolEexp/.Sol
µe/.Solµe/.Solµe/.Sol
r0/.Solr0/.Solr0/.Sol
re/.Solre/.Solre/.Sol
−16.1821
−16.1348
6.1491D
1.84635A
1.5957A

S3.7. Mathematica 7 script for the calculation of BeH.

The equivalences between the notations from paper and the symbols which are
used in program are ZA ≡ ZA, ZB ≡ ZB, Tm ≡ T , s1,A1 ≡ s1A1, sA1,1 ≡ sA11,
sA1,A2 ≡ sA1A2, s1,2(A) ≡ s12A, s1,2(B) ≡ s12B, s1,A3 ≡ s1A3, Z1(A) ≡ Z1A,
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Z1M(A) ≡ Z1MA, ZA1 ≡ ZA1, ZA3 ≡ ZA3, Z1(B) ≡ Z1B, Z1M(B) ≡ Z1MB,
r̃A3 ≡ rA3, ZnA ≡ ZnA, ZnB ≡ ZnB, acA ≡ acA, acB ≡ acB, IA ≡ IA, IB ≡ IB,
tcA ≡ tcA, tcB ≡ tcB, E ≡ Etotal, r0 ≡ r0, µe ≡ µe, D0

0 ≡ D00, SEiA ≡ SEiA,
SEiB ≡ SEiB, Eexp ≡ Eexp, re ≡ re, Eb1 ≡ EB1, Eb2 ≡ EB2, a ≡ a, σ1 ≡ s1,
σ2 ≡ s2.

The output data, given at the end of the script are, respectively, E, Eexp, µe, r0

and re.

Input data.
ZA = 4;ZA = 4;ZA = 4;
ZB = 1;ZB = 1;ZB = 1;
T = .015;T = .015;T = .015;
s1A1 = 0.83882;s1A1 = 0.83882;s1A1 = 0.83882;
sA11 = .00221203;sA11 = .00221203;sA11 = .00221203;
sA1A2 = .25;sA1A2 = .25;sA1A2 = .25;
s12A =

√
s12+a2

4a ;s12A =
√

s12+a2

4a ;s12A =
√

s12+a2

4a ;

s12B =
√

s22+a2

4a ;s12B =
√

s22+a2

4a ;s12B =
√

s22+a2

4a ;

s1A3 =
√

2

4∗
√

1+ s1√
s12+a2

;s1A3 =
√

2

4∗
√

1+ s1√
s12+a2

;s1A3 =
√

2

4∗
√

1+ s1√
s12+a2

;

Z1A = ZA− 2 ∗ s1A1− s12A− s1A3;Z1A = ZA− 2 ∗ s1A1− s12A− s1A3;Z1A = ZA− 2 ∗ s1A1− s12A− s1A3;
Z1MA = ZA− 2− s12A− s1A3;Z1MA = ZA− 2− s12A− s1A3;Z1MA = ZA− 2− s12A− s1A3;
ZA1 = ZA− sA1A2− 3 ∗ sA11;ZA1 = ZA− sA1A2− 3 ∗ sA11;ZA1 = ZA− sA1A2− 3 ∗ sA11;
ZA3 = ZA− 2 ∗ s1A1− 2 ∗ s1A3;ZA3 = ZA− 2 ∗ s1A1− 2 ∗ s1A3;ZA3 = ZA− 2 ∗ s1A1− 2 ∗ s1A3;
Z1B = ZB− s12B;Z1B = ZB− s12B;Z1B = ZB− s12B;
Z1MB = ZB− s12B;Z1MB = ZB− s12B;Z1MB = ZB− s12B;
rA3 = 3

ZA−2∗s1A1 ;rA3 = 3
ZA−2∗s1A1 ;rA3 = 3
ZA−2∗s1A1 ;

ZnA = ZA− 2− (s1+s2)2

(s1+s2+rA3)2 ;ZnA = ZA− 2− (s1+s2)2

(s1+s2+rA3)2 ;ZnA = ZA− 2− (s1+s2)2

(s1+s2+rA3)2 ;
ZnB = 1;ZnB = 1;ZnB = 1;
acA = 1− T

√
s12+a2

Z1MA ;acA = 1− T
√

s12+a2

Z1MA ;acA = 1− T
√

s12+a2

Z1MA ;

acB = 1− T
√

s22+a2

Z1MB ;acB = 1− T
√

s22+a2

Z1MB ;acB = 1− T
√

s22+a2

Z1MB ;

IA = ArcSin
[√

acA
]
−√acA

√
1− acA;IA = ArcSin

[√
acA

]
−√acA

√
1− acA;IA = ArcSin

[√
acA

]
−√acA

√
1− acA;

IB = ArcSin
[√

acB
]
−√acB

√
1− acB;IB = ArcSin

[√
acB

]
−√acB

√
1− acB;IB = ArcSin

[√
acB

]
−√acB

√
1− acB;

tcA = 2IA

πacA
3
2
;tcA = 2IA

πacA
3
2
;tcA = 2IA

πacA
3
2
;

tcB = 2IB

πacB
3
2
;tcB = 2IB

πacB
3
2
;tcB = 2IB

πacB
3
2
;

Etotal = −ZA32

4 − 2 ∗ ZA12 − 2∗(Z1MA+s12A)√
s12+a2 − 2∗(Z1MB+s12B)√

s22+a2 + 1
2∗a−Etotal = −ZA32

4 − 2 ∗ ZA12 − 2∗(Z1MA+s12A)√
s12+a2 − 2∗(Z1MB+s12B)√

s22+a2 + 1
2∗a−Etotal = −ZA32

4 − 2 ∗ ZA12 − 2∗(Z1MA+s12A)√
s12+a2 − 2∗(Z1MB+s12B)√

s22+a2 + 1
2∗a−

1
rA3+s1+s2 + (ZA−2)∗ZB

s1+s2 + ZA1
3
2

8 + 2 ∗ T ;1
rA3+s1+s2 + (ZA−2)∗ZB

s1+s2 + ZA1
3
2

8 + 2 ∗ T ;1
rA3+s1+s2 + (ZA−2)∗ZB

s1+s2 + ZA1
3
2

8 + 2 ∗ T ;
r0 = (s1 + s2) ∗ .529177 ∗ 2A;r0 = (s1 + s2) ∗ .529177 ∗ 2A;r0 = (s1 + s2) ∗ .529177 ∗ 2A;
µe = −5.08315 ∗ (−2 ∗ s1 + ZB ∗ (s1 + s2) + rA3)D;µe = −5.08315 ∗ (−2 ∗ s1 + ZB ∗ (s1 + s2) + rA3)D;µe = −5.08315 ∗ (−2 ∗ s1 + ZB ∗ (s1 + s2) + rA3)D;

Experimental data.
D00 = 2.034

13.60535 ;D00 = 2.034
13.60535 ;D00 = 2.034
13.60535 ;

SEiA = 9.3227+18.21116+153.89661+217.71865
13.60535 ;SEiA = 9.3227+18.21116+153.89661+217.71865
13.60535 ;SEiA = 9.3227+18.21116+153.89661+217.71865
13.60535 ;

SEiB = 1;SEiB = 1;SEiB = 1;
Eexp = −SEiA− SEiB−D00;Eexp = −SEiA− SEiB−D00;Eexp = −SEiA− SEiB−D00;
re = 1.3426A;re = 1.3426A;re = 1.3426A;

System of equations.
Eq1 = EB1 + Z1A2

2 + 2(Z1MB+s12B)√
( 3

4
a)2

+( s1
4

+s2)2 − ZnAZnB
s1+s2 ;Eq1 = EB1 + Z1A2

2 + 2(Z1MB+s12B)√
( 3

4
a)2

+( s1
4

+s2)2 − ZnAZnB
s1+s2 ;Eq1 = EB1 + Z1A2

2 + 2(Z1MB+s12B)√
( 3

4
a)2

+( s1
4

+s2)2 − ZnAZnB
s1+s2 ;
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Eq2 = EB2 + 2Z1B2 + 2(Z1MA+s12A)√
( 3

4
a)2

+( s2
4

+s1)2 − ZnAZnB
s1+s2 ;Eq2 = EB2 + 2Z1B2 + 2(Z1MA+s12A)√

( 3
4
a)2

+( s2
4

+s1)2 − ZnAZnB
s1+s2 ;Eq2 = EB2 + 2Z1B2 + 2(Z1MA+s12A)√

( 3
4
a)2

+( s2
4

+s1)2 − ZnAZnB
s1+s2 ;

Eq3 = EB1 + 4
√

Z1MA

tcA(s12+a2)
3
4
;Eq3 = EB1 + 4

√
Z1MA

tcA(s12+a2)
3
4
;Eq3 = EB1 + 4

√
Z1MA

tcA(s12+a2)
3
4
;

Eq4 = EB2 + 2
√

Z1MB

tcB(s22+a2)
3
4
;Eq4 = EB2 + 2

√
Z1MB

tcB(s22+a2)
3
4
;Eq4 = EB2 + 2

√
Z1MB

tcB(s22+a2)
3
4
;

Eq5 = 0.5 ∗ (EB1 + EB2) + 2(Z1MA+s12A)√
s12+a2 + 2(Z1MB+s12B)√

s22+a2 − 1
2a − ZnAZnB

s1+s2 − 2T ;Eq5 = 0.5 ∗ (EB1 + EB2) + 2(Z1MA+s12A)√
s12+a2 + 2(Z1MB+s12B)√

s22+a2 − 1
2a − ZnAZnB

s1+s2 − 2T ;Eq5 = 0.5 ∗ (EB1 + EB2) + 2(Z1MA+s12A)√
s12+a2 + 2(Z1MB+s12B)√

s22+a2 − 1
2a − ZnAZnB

s1+s2 − 2T ;
The solution of the system of equations.

Sol = FindRoot[{Eq1 == 0,Eq2 == 0, Eq3 == 0,Eq4==0, Eq5==0},Sol = FindRoot[{Eq1 == 0, Eq2 == 0, Eq3 == 0, Eq4==0,Eq5==0},Sol = FindRoot[{Eq1 == 0, Eq2 == 0,Eq3 == 0, Eq4==0, Eq5==0},
{{EB1,−2.3}, {EB2,−2}, {s1, 1.35}, {s2, .01}, {a, 1}}]{{EB1,−2.3}, {EB2,−2}, {s1, 1.35}, {s2, .01}, {a, 1}}]{{EB1,−2.3}, {EB2,−2}, {s1, 1.35}, {s2, .01}, {a, 1}}]
{EB1 → −2.51578, EB2 → −2.11007, s1 → 1.34462, s2 → 0.0149424, a →
0.979054}

Verification.
N [Eq1]/.SolN [Eq1]/.SolN [Eq1]/.Sol
N [Eq2]/.SolN [Eq2]/.SolN [Eq2]/.Sol
N [Eq3]/.SolN [Eq3]/.SolN [Eq3]/.Sol
N [Eq4]/.SolN [Eq4]/.SolN [Eq4]/.Sol
N [Eq5]/.SolN [Eq5]/.SolN [Eq5]/.Sol
1.1102230246251565̀*∧-15
−2.220446049250313̀*∧-16
0.
1.3322676295501878̀*∧-15
0.

Calculation of other quantities.
Etotal/.SolEtotal/.SolEtotal/.Sol
Eexp/.SolEexp/.SolEexp/.Sol
µe/.Solµe/.Solµe/.Sol
r0/.Solr0/.Solr0/.Sol
re/.Solre/.Solre/.Sol
−30.4238
−30.4872
0.192613D
1.4389A
1.3426A

S3.8. Mathematica 7 script for the calculation of BH.

The equivalences between the notations from paper and the symbols which are
used in program are ZA ≡ ZA, ZB ≡ ZB, s1,A1 ≡ s1A1, sA1,1 ≡ sA11, sA1,A2 ≡
sA1A2, α ≡ alpha, s1,A3≡s1A3, sA3,A4 ≡ sA3A4, Z1(A) ≡ Z1A, Z1M(A) ≡ Z1MA,
ZA1 ≡ ZA1, ZA3 ≡ ZA3, ZA4 ≡ ZA4, Z2(B) ≡ Z2B, Z2M(B) ≡ Z2MB, e ≡ excen
r ≡ r, d ≡ d, b ≡ b, ZnA ≡ ZnA, ZnB ≡ ZnB, E ≡ Etotal, Eb ≡ EB, r0 ≡ r0,
µe ≡ µe, D0

0 ≡ D00, SEiA ≡ SEiA, SEiB ≡ SEiB, Eexp ≡ Eexp, re ≡ re, a ≡ a,
σ1 ≡ s1, σ2 ≡ s2.

The output data, given at the end of the script are, respectively, E, Eexp, µe, r0

and re.

Input data.
ZA = 5;ZA = 5;ZA = 5;
ZB = 1;ZB = 1;ZB = 1;
s1A1 = 0.862983;s1A1 = 0.862983;s1A1 = 0.862983;
sA11 = .00246735;sA11 = .00246735;sA11 = .00246735;
sA1A2 = .25;sA1A2 = .25;sA1A2 = .25;
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alpha = 63;alpha = 63;alpha = 63;
al = alpha ∗ π

180 ;al = alpha ∗ π
180 ;al = alpha ∗ π
180 ;

s1A3 = 1

4∗
√

1
2
+ s1∗Cos[al]

2∗
√

s12+a2

;s1A3 = 1

4∗
√

1
2
+ s1∗Cos[al]

2∗
√

s12+a2

;s1A3 = 1

4∗
√

1
2
+ s1∗Cos[al]

2∗
√

s12+a2

;

sA3A4 = 1
4∗Sin[al] ;sA3A4 = 1
4∗Sin[al] ;sA3A4 = 1
4∗Sin[al] ;

Z1A = ZA− 2 ∗ s1A1− 2 ∗ s1A3;Z1A = ZA− 2 ∗ s1A1− 2 ∗ s1A3;Z1A = ZA− 2 ∗ s1A1− 2 ∗ s1A3;
Z1MA = ZA− 2− 2 ∗ s1A3;Z1MA = ZA− 2− 2 ∗ s1A3;Z1MA = ZA− 2− 2 ∗ s1A3;
Z1MB = 1;Z1MB = 1;Z1MB = 1;
ZA1 = ZA− sA1A2− 3 ∗ sA11;ZA1 = ZA− sA1A2− 3 ∗ sA11;ZA1 = ZA− sA1A2− 3 ∗ sA11;
ZA3 = ZA− 2 ∗ s1A1− s1A3− sA3A4;ZA3 = ZA− 2 ∗ s1A1− s1A3− sA3A4;ZA3 = ZA− 2 ∗ s1A1− s1A3− sA3A4;
ZA4 = ZA3;ZA4 = ZA3;ZA4 = ZA3;
Z2B = ZB;Z2B = ZB;Z2B = ZB;
Z2MB = ZB;Z2MB = ZB;Z2MB = ZB;
excen = .97;excen = .97;excen = .97;
r = 2

ZA3 ∗
(
1 + excen2

2

)
;r = 2

ZA3 ∗
(
1 + excen2

2

)
;r = 2

ZA3 ∗
(
1 + excen2

2

)
;

d = r ∗ Cos[al];d = r ∗ Cos[al];d = r ∗ Cos[al];
b = r ∗ Sin[al];b = r ∗ Sin[al];b = r ∗ Sin[al];
ZnA = ZA− 2− 2∗(s1+s2)2∗(s1+s2+d)

((s1+s2+d)2+b2)
3
2

;ZnA = ZA− 2− 2∗(s1+s2)2∗(s1+s2+d)

((s1+s2+d)2+b2)
3
2

;ZnA = ZA− 2− 2∗(s1+s2)2∗(s1+s2+d)

((s1+s2+d)2+b2)
3
2

;

ZnB = 1;ZnB = 1;ZnB = 1;
Etotal = −Z1A2

4 − 1− ZA32

2 − 2 ∗ ZA12 + 1√
( s1

4
+ s2

4 )2
+( 3

2
∗a)2 − 1√

( s1
4

+s2)2
+( 3

4
a)2−Etotal = −Z1A2

4 − 1− ZA32

2 − 2 ∗ ZA12 + 1√
( s1

4
+ s2

4 )2
+( 3

2
∗a)2 − 1√

( s1
4

+s2)2
+( 3

4
a)2−Etotal = −Z1A2

4 − 1− ZA32

2 − 2 ∗ ZA12 + 1√
( s1

4
+ s2

4 )2
+( 3

2
∗a)2 − 1√

( s1
4

+s2)2
+( 3

4
a)2−

ZA−2√
( s2

4
+s1)2

+( 3
4
a)2 + 2√

( s2
4

+s1+d)2
+( 3

4
a)2

+b2
− 2√

(s1+s2+d)2+b2
+ ZA−2

s1+s2 + ZA1
3
2

8 ;ZA−2√
( s2

4
+s1)2

+( 3
4
a)2 + 2√

( s2
4

+s1+d)2
+( 3

4
a)2

+b2
− 2√

(s1+s2+d)2+b2
+ ZA−2

s1+s2 + ZA1
3
2

8 ;ZA−2√
( s2

4
+s1)2

+( 3
4
a)2 + 2√

( s2
4

+s1+d)2
+( 3

4
a)2

+b2
− 2√

(s1+s2+d)2+b2
+ ZA−2

s1+s2 + ZA1
3
2

8 ;

r0 = (s1 + s2) ∗ .529177 ∗ 2A;r0 = (s1 + s2) ∗ .529177 ∗ 2A;r0 = (s1 + s2) ∗ .529177 ∗ 2A;
µe = −5.08315 ∗ (−2 ∗ s1 + ZB ∗ (s1 + s2) + 2 ∗ d)D;µe = −5.08315 ∗ (−2 ∗ s1 + ZB ∗ (s1 + s2) + 2 ∗ d)D;µe = −5.08315 ∗ (−2 ∗ s1 + ZB ∗ (s1 + s2) + 2 ∗ d)D;

Experimental data
D00 = 3.42

13.60535 ;D00 = 3.42
13.60535 ;D00 = 3.42
13.60535 ;

SEiA = 8.29803+25.15484+37.93064+259.37521+340.22580
13.60535 ;SEiA = 8.29803+25.15484+37.93064+259.37521+340.22580
13.60535 ;SEiA = 8.29803+25.15484+37.93064+259.37521+340.22580
13.60535 ;

SEiB = 1;SEiB = 1;SEiB = 1;
Eexp = −SEiA− SEiB−D00;Eexp = −SEiA− SEiB−D00;Eexp = −SEiA− SEiB−D00;
re = 1.2324A;re = 1.2324A;re = 1.2324A;

System of equations.
Eq1 = EB + Z1A2

4 + Z2B2 + Z1MB√
( 3

4
a)2

+( s1
4

+s2)2 + Z1MA√
( 3

4
a)2

+( s2
4

+s1)2−Eq1 = EB + Z1A2

4 + Z2B2 + Z1MB√
( 3

4
a)2

+( s1
4

+s2)2 + Z1MA√
( 3

4
a)2

+( s2
4

+s1)2−Eq1 = EB + Z1A2

4 + Z2B2 + Z1MB√
( 3

4
a)2

+( s1
4

+s2)2 + Z1MA√
( 3

4
a)2

+( s2
4

+s1)2−
1√

(2∗ 3
4
a)2

+( s1
4

+ s2
4 )2 − ZnAZnB

s1+s2 ;1√
(2∗ 3

4
a)2

+( s1
4

+ s2
4 )2 − ZnAZnB

s1+s2 ;1√
(2∗ 3

4
a)2

+( s1
4

+ s2
4 )2 − ZnAZnB

s1+s2 ;

Eq2 = EB + 3
√

Z1MA

(s12+a2)
3
4
;Eq2 = EB + 3

√
Z1MA

(s12+a2)
3
4
;Eq2 = EB + 3

√
Z1MA

(s12+a2)
3
4
;

Eq3 = EB + 3
√

Z1MB

(s22+a2)
3
4
;Eq3 = EB + 3

√
Z1MB

(s22+a2)
3
4
;Eq3 = EB + 3

√
Z1MB

(s22+a2)
3
4
;

Eq4 = EB + 2∗Z1MA√
s12+a2 + 2∗Z1MB√

s22+a2 − 1
2a − ZnAZnB

s1+s2 ;Eq4 = EB + 2∗Z1MA√
s12+a2 + 2∗Z1MB√

s22+a2 − 1
2a − ZnAZnB

s1+s2 ;Eq4 = EB + 2∗Z1MA√
s12+a2 + 2∗Z1MB√

s22+a2 − 1
2a − ZnAZnB

s1+s2 ;
The solution of the system of equations.

Sol = FindRoot[{Eq1 == 0,Eq2 == 0, Eq3 == 0,Eq4==0}, {{EB, 3.25},Sol = FindRoot[{Eq1 == 0, Eq2 == 0, Eq3 == 0, Eq4==0}, {{EB, 3.25},Sol = FindRoot[{Eq1 == 0, Eq2 == 0,Eq3 == 0, Eq4==0}, {{EB, 3.25},
{s1, .876}, {s2, .254}, {a, .911}}]{s1, .876}, {s2, .254}, {a, .911}}]{s1, .876}, {s2, .254}, {a, .911}}]
{EB → −3.19537, s1 → 0.888324, s2 → 0.261022, a → 0.922599}

Verification.
N [Eq1]/.SolN [Eq1]/.SolN [Eq1]/.Sol
N [Eq2]/.SolN [Eq2]/.SolN [Eq2]/.Sol
N [Eq3]/.SolN [Eq3]/.SolN [Eq3]/.Sol
N [Eq4]/.SolN [Eq4]/.SolN [Eq4]/.Sol
6.661338147750939̀*∧-16
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4.440892098500626̀*∧-16
−8.881784197001252̀*∧-16
4.440892098500626̀*∧-16

Calculation of other quantities.
Etotal/.SolEtotal/.SolEtotal/.Sol
EexpEexpEexp
µe/.Solµe/.Solµe/.Sol
r0/.Solr0/.Solr0/.Sol
re/.Solre/.Solre/.Sol
−50.4587
−50.5691
−1.86638D
1.21642A
1.2324A

S3.9. Mathematica 7 script for the calculation of CH.

The equivalences between the notations from paper and the symbols which are used
in program are ZA ≡ ZA, ZB ≡ ZB, s1,A1 ≡ s1A1, sA1,1 ≡ sA11, sA1,A2 ≡ sA1A2,
α ≡ alpha, s1,A3≡s1A3, s1,A4≡s1A4, s1,A5≡s1A5, sA3,A4 ≡ sA3A4, Z1(A) ≡ Z1A,
Z1M(A) ≡ Z1MA, ZA1 ≡ ZA1, ZA3 ≡ ZA3, ZA4 ≡ ZA4, ZA5 ≡ ZA5, Z2(B) ≡
Z2B, Z2M(B) ≡ Z2MB, e ≡ excen r ≡ r, d ≡ d, b ≡ b, ZnA ≡ ZnA, ZnB ≡ ZnB,
E ≡ Etotal, Eb ≡ EB, r0 ≡ r0, µe ≡ µe, D0

0 ≡ D00, SEiA ≡ SEiA, SEiB ≡ SEiB,
Eexp ≡ Eexp, re ≡ re, a ≡ A, σ1 ≡ s1, σ2 ≡ s2.

The output data, given at the end of the script are, respectively, E, Eexp, µe, r0

and re.

Input data.
ZA = 6;ZA = 6;ZA = 6;
ZB = 1;ZB = 1;ZB = 1;
s1A1 = 0.85505;s1A1 = 0.85505;s1A1 = 0.85505;
sA11 = .00269287;sA11 = .00269287;sA11 = .00269287;
sA1A2 = .25;sA1A2 = .25;sA1A2 = .25;
alpha = 67;alpha = 67;alpha = 67;
al = alpha ∗ π

180 ;al = alpha ∗ π
180 ;al = alpha ∗ π
180 ;

s1A3 = 1

4∗
√

1
2
+ s1∗Cos[al]

2∗
√

s12+a2

;s1A3 = 1

4∗
√

1
2
+ s1∗Cos[al]

2∗
√

s12+a2

;s1A3 = 1

4∗
√

1
2
+ s1∗Cos[al]

2∗
√

s12+a2

;

s1A4 =
√

2

4∗
√

1+
s1∗Cos[al]−

√
3

2 ∗a∗Sin[al]√
s12+a2

;s1A4 =
√

2

4∗
√

1+
s1∗Cos[al]−

√
3

2 ∗a∗Sin[al]√
s12+a2

;s1A4 =
√

2

4∗
√

1+
s1∗Cos[al]−

√
3

2 ∗a∗Sin[al]√
s12+a2

;

s1A5 =
√

2

4∗
√

1+
s1∗Cos[al]+

√
3

2 ∗a∗Sin[al]√
s12+a2

;s1A5 =
√

2

4∗
√

1+
s1∗Cos[al]+

√
3

2 ∗a∗Sin[al]√
s12+a2

;s1A5 =
√

2

4∗
√

1+
s1∗Cos[al]+

√
3

2 ∗a∗Sin[al]√
s12+a2

;

sA3A4 = 1
2∗√3∗Sin[al]

;sA3A4 = 1
2∗√3∗Sin[al]

;sA3A4 = 1
2∗√3∗Sin[al]

;
Z1A = ZA− 2s1A1− s1A3− s1A4− s1A5;Z1A = ZA− 2s1A1− s1A3− s1A4− s1A5;Z1A = ZA− 2s1A1− s1A3− s1A4− s1A5;
Z1MA = ZA− 2− s1A3− s1A4− s1A5;Z1MA = ZA− 2− s1A3− s1A4− s1A5;Z1MA = ZA− 2− s1A3− s1A4− s1A5;
Z1MB = 1;Z1MB = 1;Z1MB = 1;
ZA1 = ZA− sA1A2− 4 ∗ sA11;ZA1 = ZA− sA1A2− 4 ∗ sA11;ZA1 = ZA− sA1A2− 4 ∗ sA11;
ZA3 = ZA− 2 ∗ s1A1− 2 ∗ sA3A4− s1A3;ZA3 = ZA− 2 ∗ s1A1− 2 ∗ sA3A4− s1A3;ZA3 = ZA− 2 ∗ s1A1− 2 ∗ sA3A4− s1A3;
ZA4 = ZA− 2 ∗ s1A1− 2 ∗ sA3A4− s1A4;ZA4 = ZA− 2 ∗ s1A1− 2 ∗ sA3A4− s1A4;ZA4 = ZA− 2 ∗ s1A1− 2 ∗ sA3A4− s1A4;
ZA5 = ZA− 2 ∗ s1A1− 2 ∗ sA3A4− s1A5;ZA5 = ZA− 2 ∗ s1A1− 2 ∗ sA3A4− s1A5;ZA5 = ZA− 2 ∗ s1A1− 2 ∗ sA3A4− s1A5;
Z2B = ZB;Z2B = ZB;Z2B = ZB;
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Z2MB = ZB;Z2MB = ZB;Z2MB = ZB;
excen = .98;excen = .98;excen = .98;
r =

(
1

ZA3 + 1
ZA4 + 1

ZA5

) ∗ 2
3 ∗

(
1 + excen2

2

)
;r =

(
1

ZA3 + 1
ZA4 + 1

ZA5

) ∗ 2
3 ∗

(
1 + excen2

2

)
;r =

(
1

ZA3 + 1
ZA4 + 1

ZA5

) ∗ 2
3 ∗

(
1 + excen2

2

)
;

d = r ∗ Cos[al];d = r ∗ Cos[al];d = r ∗ Cos[al];
b = r ∗ Sin[al];b = r ∗ Sin[al];b = r ∗ Sin[al];
ZnA = ZA− 2− 3∗(s1+s2)2∗(s1+s2+d)

((s1+s2+d)2+b2)
3
2

;ZnA = ZA− 2− 3∗(s1+s2)2∗(s1+s2+d)

((s1+s2+d)2+b2)
3
2

;ZnA = ZA− 2− 3∗(s1+s2)2∗(s1+s2+d)

((s1+s2+d)2+b2)
3
2

;

ZnB = 1;ZnB = 1;ZnB = 1;
Etotal = −Z1A2

4 − ZA32

4 − ZA42

4 − ZA52

4 − 1− 2 ∗ ZA12 + 1√
( s1

4
+ s2

4 )2
+( 3

2
∗a)2−Etotal = −Z1A2

4 − ZA32

4 − ZA42

4 − ZA52

4 − 1− 2 ∗ ZA12 + 1√
( s1

4
+ s2

4 )2
+( 3

2
∗a)2−Etotal = −Z1A2

4 − ZA32

4 − ZA42

4 − ZA52

4 − 1− 2 ∗ ZA12 + 1√
( s1

4
+ s2

4 )2
+( 3

2
∗a)2−

1√
( s1

4
+s2)2

+( 3
4
a)2 − ZA−2√

( s2
4

+s1)2
+( 3

4
a)2 + 1√

( 3
4
∗a)2

+b2+( s2
4

+s1+d)2 +
1√

( s1
4

+s2)2
+( 3

4
a)2 − ZA−2√

( s2
4

+s1)2
+( 3

4
a)2 + 1√

( 3
4
∗a)2

+b2+( s2
4

+s1+d)2 +
1√

( s1
4

+s2)2
+( 3

4
a)2 − ZA−2√

( s2
4

+s1)2
+( 3

4
a)2 + 1√

( 3
4
∗a)2

+b2+( s2
4

+s1+d)2 +

1√
( 3

4
∗a−

√
3

2
∗b)2

+( b

2)
2
+( s2

4
+s1+d)2

+ 1√
( 3

4
∗a+

√
3

2
∗b)2

+( b

2)
2
+( s2

4
+s1+d)2

−1√
( 3

4
∗a−

√
3

2
∗b)2

+( b

2)
2
+( s2

4
+s1+d)2

+ 1√
( 3

4
∗a+

√
3

2
∗b)2

+( b

2)
2
+( s2

4
+s1+d)2

−1√
( 3

4
∗a−

√
3

2
∗b)2

+( b

2)
2
+( s2

4
+s1+d)2

+ 1√
( 3

4
∗a+

√
3

2
∗b)2

+( b

2)
2
+( s2

4
+s1+d)2

−
3√

b2+(s1+s2+d)2
+ (ZA−2)∗ZB

s1+s2 + ZA1
3
2

8 ;3√
b2+(s1+s2+d)2

+ (ZA−2)∗ZB
s1+s2 + ZA1

3
2

8 ;3√
b2+(s1+s2+d)2

+ (ZA−2)∗ZB
s1+s2 + ZA1

3
2

8 ;

r0 = (s1 + s2) ∗ .529177 ∗ 2A;r0 = (s1 + s2) ∗ .529177 ∗ 2A;r0 = (s1 + s2) ∗ .529177 ∗ 2A;
µe = −5.08315 ∗ (−2 ∗ s1 + ZB ∗ (s1 + s2) + 3 ∗ d)D;µe = −5.08315 ∗ (−2 ∗ s1 + ZB ∗ (s1 + s2) + 3 ∗ d)D;µe = −5.08315 ∗ (−2 ∗ s1 + ZB ∗ (s1 + s2) + 3 ∗ d)D;

Experimental data.
D00 = 3.465

13.60535 ;D00 = 3.465
13.60535 ;D00 = 3.465
13.60535 ;

SEiA = 11.26030+24.38332+47.8878+64.4939+392.087+489.99334
13.60535 ;SEiA = 11.26030+24.38332+47.8878+64.4939+392.087+489.99334
13.60535 ;SEiA = 11.26030+24.38332+47.8878+64.4939+392.087+489.99334
13.60535 ;

SEiB = 1;SEiB = 1;SEiB = 1;
Eexp = −SEiA− SEiB−D00;Eexp = −SEiA− SEiB−D00;Eexp = −SEiA− SEiB−D00;
re = 1.1199A;re = 1.1199A;re = 1.1199A;

System of equations.
Eq1 = EB + Z1A2

4 + Z2B2 + Z1MB√
( 3

4
a)2

+( s1
4

+s2)2 + Z1MA√
( 3

4
a)2

+( s2
4

+s1)2−Eq1 = EB + Z1A2

4 + Z2B2 + Z1MB√
( 3

4
a)2

+( s1
4

+s2)2 + Z1MA√
( 3

4
a)2

+( s2
4

+s1)2−Eq1 = EB + Z1A2

4 + Z2B2 + Z1MB√
( 3

4
a)2

+( s1
4

+s2)2 + Z1MA√
( 3

4
a)2

+( s2
4

+s1)2−
1√

(2∗ 3
4
a)2

+( s1
4

+ s2
4 )2 − ZnAZnB

s1+s2 ;1√
(2∗ 3

4
a)2

+( s1
4

+ s2
4 )2 − ZnAZnB

s1+s2 ;1√
(2∗ 3

4
a)2

+( s1
4

+ s2
4 )2 − ZnAZnB

s1+s2 ;

Eq2 = EB + 3
√

Z1MA

(s12+a2)
3
4
;Eq2 = EB + 3

√
Z1MA

(s12+a2)
3
4
;Eq2 = EB + 3

√
Z1MA

(s12+a2)
3
4
;

Eq3 = EB + 3
√

Z2MB

(s22+a2)
3
4
;Eq3 = EB + 3

√
Z2MB

(s22+a2)
3
4
;Eq3 = EB + 3

√
Z2MB

(s22+a2)
3
4
;

Eq4 = EB + 2∗Z1MA√
s12+a2 + 2∗Z1MB√

s22+a2 − 1
2a − ZnAZnB

s1+s2 ;Eq4 = EB + 2∗Z1MA√
s12+a2 + 2∗Z1MB√

s22+a2 − 1
2a − ZnAZnB

s1+s2 ;Eq4 = EB + 2∗Z1MA√
s12+a2 + 2∗Z1MB√

s22+a2 − 1
2a − ZnAZnB

s1+s2 ;
Solutia sistemului de ecuatii

Sol = FindRoot[{Eq1 == 0,Eq2 == 0, Eq3 == 0,Eq4==0},Sol = FindRoot[{Eq1 == 0, Eq2 == 0, Eq3 == 0, Eq4==0},Sol = FindRoot[{Eq1 == 0, Eq2 == 0,Eq3 == 0, Eq4==0},
{{EB, 4.3}, {s1, .796}, {s2, .190}, {a, .808}}]{{EB, 4.3}, {s1, .796}, {s2, .190}, {a, .808}}]{{EB, 4.3}, {s1, .796}, {s2, .190}, {a, .808}}]
{EB → −4.29182, s1 → 0.840475, s2 → 0.175936, a → 0.767725}

Verification.
N [Eq1]/.SolN [Eq1]/.SolN [Eq1]/.Sol
N [Eq2]/.SolN [Eq2]/.SolN [Eq2]/.Sol
N [Eq3]/.SolN [Eq3]/.SolN [Eq3]/.Sol
N [Eq4]/.SolN [Eq4]/.SolN [Eq4]/.Sol
4.440892098500626̀*∧-16
0.
−8.881784197001252̀*∧-16
8.881784197001252̀*∧-16

Calculation of other quantities.
Etotal/.SolEtotal/.SolEtotal/.Sol
EexpEexpEexp
µe/.Solµe/.Solµe/.Sol
r0/.Solr0/.Solr0/.Sol
re/.Solre/.Solre/.Sol
−76.6349
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−76.968
−1.91195D
1.07572A
1.1199A

Page 55 of 63

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 1 

Dear Professor Head-Gordon, 

      Please receive the revised form of my manuscript TMPH-2010-0364, entitled 

“Unconventional semiclassical method for calculating the energetic values of diatomic 

molecules.” 

       Below is the cover letter containing the response to the referee comments and the 

changes I have made in the revised manuscript. 

      Thank you very much, 

Alexandru Popa 

 

 

Cover letter containing the response to the referee comments and the changes in the 

revised manuscript of manuscript TMPH-2010-0364, entitled “Unconventional 

semiclassical method for calculating the energetic values of diatomic molecules,” 

author Alexandru Popa 

 

I would like to thank the referee for the analysis of my paper and for the suggestions and 

issues raised, which are very useful in order to improve the clarity of my presentation. 

 

      Below is my response to the issues raised by the referee, together with the changes I 

have made in the revised manuscript.  

 

a) On the comment which refers to the central field method. 

 

Since the behavior of stationary systems is described by the Schrodinger equation, the 

method to calculate the systems’ energetic values presented in this paper is based on the 

general wave properties, which are synthesized in our paper [26]. The main property of 

these systems is that the geometric elements of the wave described by the Schrodinger 

equation in the space R
3N

 of the electron coordinates, namely the Σ wave surfaces and 

their C normal curves, are solutions of the Hamilton-Jacobi equation written for the same 

system. The motion of the Σ surfaces is periodical and the C curves are closed. A. Luis 

proved the same property in a completely different way [32], by showing that the 

discontinuities of the second derivatives of the wave function propagate on trajectories 

that result from the Hamilton-Jacobi equation, written for the same system. On the other 

hand, according to the theory of differential equations, these discontinuities occur across 

characteristic surfaces of the wave equation, which are the wave surfaces of the system. It 

results the perfect equivalence between the properties which have been proven in [26] 

and [32].   

      From here it follows the idea of our approach: instead of finding the wave function ψ, 

we use the properties of the curve C, in order to calculate the energetic values, because ψ 

and C belong to the same physical system. To accomplish this, we calculate exactly the 

projections of the C curve from the space R
3N

 of the electron coordinates to the 

tridimensional spaces of the coordinates of the electrons of the systems, denoted by Ca in 

the cases of simple systems. For complex systems, a very good approximation of the Ca 

curves results using the central field approximation. More simply, we have to calculate or 

to approximate the classical periodic solutions of the system.    
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 2 

      The main mathematical problem, which is the calculation of the electrostatic energy 

between two electrons that move in the field of the same nucleus, is strongly simplified 

by the symmetry property of the system, which makes possible the calculation of the 

reciprocal screening coefficients between electrons. The expression of this electrostatic 

energy is given by relation (10). In this case, the motions of the electrons are separated, 

and each electron moves in the central field of the nucleus, having an effective order 

number, in the averaged field of the other electrons. These last two properties are the 

attributes of the central field method. At this point, the parallelism between the central 

field method in the case of the quantum calculation and in the case of semiclassical 

calculation is perfect. 

      This parallelism remains valid in the case of molecules because we proved that the C1 

curve corresponding to a molecular bond is composed of two atomic curves, which are 

denoted by C1A and C1B. In this case, in virtue of relation (A3), the motion of the e1 bond 

electron on the curve C1A is reduced to that in a central field, and e1 moves in the 

averaged field of the electron e2 and of the nucleus nB.  Similar properties are valid when 

the electron moves on the C1B curve. 

 

Revision: In Section 2, I introduced the following paragraph after Eq. (11): 

 

“The model represented by equations (3)-(10) has two properties which are both 

attributes of a central field type solution. The first is that the motion of an arbitrary 

electron is similar to that in a hydrogenoid system, and it takes place in the averaged field 

of the other electrons. The effect of the interaction with these electrons is included in the 

effective order number of the nucleus. The second property, which is useful in 

applications, is that adding a supplementary electron to the system leads only to the 

modification of the effective order numbers corresponding to the other electrons, while 

their equations remain unchanged.”  

 

A second revision, which refers to the central field method applied in the case of the 

calculation of the Ca curves of the bond electrons is made in the paragraph which has 

been introduced at the end of the Section 3, which refers also to the modeling of the lone 

pair electrons. See the revisions made at the point d). 

 

b) On the comment which refers to the calculation of the bond length.  

 

Our calculations take into account all the components of the total energy of the system, 

with one exception, which results from the hypothesis (h5), namely kinetic energies of 

the nuclei are zero. On the other hand, the potential energy of the interaction between 

nuclei is taken into account in our calculations. It follows that the distance between 

nuclei, which is denoted by r0 in the manuscript, corresponds to values of the nuclei 

velocities of zero. The experimental value of the distance between nuclei, which is 

denoted by re in [34], corresponds to the minimum of the Morse curve, which stands for 

the maximum velocities of the nuclei. This explains the differences between the values of 

r0 and re: the former corresponds to zero velocities of the nuclei, while the latter 

corresponds to maximum velocities of the nuclei. 

 

Page 57 of 63

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 3 

Revisions: 

- In the revised manuscript we introduced Table 3 which contains a comparison 

between the values of r0 and re, which is taken from [29]. The table contains also 

the domains of the values of the distances between nuclei, calculated by the 

Hartree-Fock method, which are taken from [29] as well. 

  

- The paragraphs before and after Eq. (44) in Section 4 are changed as follows: 

 

“In virtue of hypothesis (h5), the kinetic energy of the nuclei is zero. It follows that the 

distance between nuclei, denoted by r0 and calculated with the relation 

 

……..                                            (44) 

 

corresponds to values of the nuclei velocities of zero. On the other hand, the experimental 

value of the distance between nuclei, denoted by re, corresponds to the minimum of the 

Morse curve [34]. The theory of the harmonic oscillation of the nuclei shows that this 

minimum corresponds to maximum velocities of the nuclei. It follows that r0 is different 

from re because the first corresponds to zero velocities of the nuclei, while the last 

corresponds to the maximum velocities of the nuclei.” 

 

- In Section 5, I changed the paragraph following Eq. (46). It now reads: 

 

“The values of r0, calculated from (44), and the experimental value of the distance 

between nuclei, denoted by re and taken from Ref. [29], are given in angstroms in Table 

3. Table 3 also gives the range of values for the distances between nuclei, denoted by 

reHF, calculated with the Hartree-Fock method and taken from [29].”  

 

 

c) On the comment which refers to the shape of the curve C1A from Fig. 1. 

 

The Ca curves for s states and those resulting from the exact solutions in the cases of 

boron or carbon atoms [28] are elliptic quasilinear curves (sometimes called pendular 

curves). These ellipses have b>>a, where b and a are the ellipse semiaxes. Consequently, 

the upper and lower parts of each ellipse are very close, and, for simplicity the ellipse is 

drawn as a straight line. This is why the curve C1a in Fig. 1 is drawn as a straight line in 

the vicinity of the nucleus na. However, we have to imagine it as a very thin ellipse which 

surrounds the nucleus.  

 

Revision: The second paragraph after Eqs. (16) and (17), in Section 3, is modified to read 

as follows 

 

“………. For this reason, in this paper we restrict ourselves to the case in which the 

molecular C1 curve is composed of two atomic curves, denoted by C1A and C1B  which 

are ellipses with eccentricities very close to unity, as shown in Fig. 1. At the scale of the 

figure, these ellipses are drawn as straight lines in the vicinities of the nuclei, in spite of 
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the fact that the curve C1A surrounds the nucleus nA while the curve C1B surrounds the 

nucleus nB. The curves C1 and C2 depend on three parameters: ……...” 

 

 

d) On the comment which refers to the lone pair electrons.  

 

The interaction between the electrons that move in the field of the same nucleus, in the 

case of the central field approach, is reflected by the reciprocal screening coefficient that 

enters in the expression of the effective order number of the nucleus. A general property 

results: the addition of a new electron to the system modifies only the expression of the 

effective order number of the nucleus, but leaves unchanged the equations of motion of 

the electrons. 

      In view of this property, the calculation of the Ca curves of the bond electrons is done 

in an identical manner regardless of whether there are valence electrons that do not 

participate in the bond or there are no such valence electrons. More specifically, in 

Section 3.1 we analyzed the case of no non-bonding electrons as a general recipe that 

allows the calculation of Ca curves. Subsequently, we showed that, adding a non-bonding 

valence electron does not change the system of equations that leads to the curve Ca. 

Instead the only modification is in the expression of the effective order number. 

 

Revision: At the end of the Section 3 we have introduced the following paragraph in 

order to explain these points better: 

 

“In this section we have calculated the Ca curves when the bond electrons move in the 

fields of two nuclei and the system contains only valence electrons which participate to 

the bond. In Appendix we proved that the motion of a bond electron in the case of 

homonuclear molecules with simple bond is similar to that in a central field. An example 

of such an electron is e1 which moves on curves C1A and C1B. This property results from 

relation (A3). Identical properties are proved in the Supplementary Online Material for 

other types of bonds. It follows from Section 2 that, in virtue of the second property of 

motion in the central field, adding a supplementary electron that does not participate to 

the bond in the field of the nucleus nA does not change the equation of motion of the 

electron e1. The only change is the fact that the expression of Z1 contains a supplementary 

screening coefficient corresponding to the interaction between e1 and the supplementary 

electron. In the next section we will see that for the general case of the molecules which 

contains electrons which do not participate to the bond, the relations from Appendix 

remain valid, with the only difference that the expressions of the order numbers are 

changed.”  

 

 

e) On the comment referring to the sigma and pi nature of the double bond.  

 

The parallelism between the central field approaches in quantum and classical 

calculations goes far in the cases of the hybrid solutions which appear when the number 

of the electrons is increased. The hybrid solutions are imposed by the symmetry 

properties of the system. For example, in the case of the carbon atom, the wave function 
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of the valence electrons is invariant under the symmetry operations of the regular 

tetrahedron (RTH) configuration [33], and leads to symmetrical orbitals, having identical 

shapes. We have shown that this property results rigorously from the classical equations 

[28], because the Ca curves have a tetrahedron configuration in the case of the carbon 

atom. These curves are hybrid ones, of sp type, because they have identical shapes and 

their angular momentum is between a negligible value and h2 , which correspond, 

respectively, to the 2s and 2p curves [28].   

      As we have shown in Section 3, the molecular curves corresponding to the simple, 

double and triple bonds are combinations of the sp hybrid atomic curves. As a 

consequence, the Ca curves of the double bond have a sigma and pi nature, because they 

are combinations of sp  atomic curves. The hybrid character of these curves is reflected, 

as in the case of the atomic curves, by the fact that they are symmetrical and their shapes 

are identical. 

 

f) On the comment which refers to the references.  

 

Answer and revisions: In response to the refree’s comment I introduced 16 new 

references. In addition I have modified the first paragraph of the Introduction, as follows: 

 

“Over the last few years, a large number of semiclassical approaches were published in 

the field of atomic and molecular systems [1]-[5]. The semiclassical methods lead to 

solutions which are relatively easy to calculate, using the information obtained from the 

study of classical trajectories. In numerous papers the semiclassical eigenvalues of the 

bond states are related to the periodic trajectories [6]-[12], in others they are related to the 

phase manifolds generated by quasiperiodic trajectories [13]-[15]. In this family of topics 

we can consider also the study of the semiclassical trajectories with the aid of the 

propagator functions [16]-[20] or the application of a generalized semiclassical theory to 

multidimensional dynamical systems [21]. In this paper we present a multidimensional 

semiclassical analysis which applies to a wide class of atoms and molecules.” 

 

Thank you very much, 

Alexandru Popa 
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