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Finite alphabet iterative decoders for LDPC
codes surpassing floating-point iterative
decoders

S.K. Planjery, D. Declercq, L. Danjean and B. Vasic

Introduced is a new type of message-passing (MP) decoders for low-
density parity-check (LDPC) codes over the binary symmetric
channel. Unlike traditional belief propagation (BP) based MP algo-
rithms which propagate probabilities or log-likelihoods, the new MP
decoders propagate messages requiring only a finite number of bits
for their representation in such a way that good performance in the
error floor region is ensured. Additionally, these messages are not
quantised probabilities or log-likelihoods. As examples, MP decoders
are provided that require only three bits for message representation,
but surpass the floating-point BP (which requires a large number of
bits for representation) in the error-floor region.

Introduction: Traditional message-passing (MP) algorithms for decod-
ing low-density parity-check (LDPC) codes are based on an iterative
decoding algorithm known as belief propagation (BP). The design of
quantised BP decoders and other low-complexity variants has gained
importance for practical realisations (see [1] for references). The quan-
tised decoders are typically chosen to have the best possible asymptotic
decoding thresholds via density evolution [2]. However, their perform-
ance is not guaranteed to be good on codes of practical length in the high
signal-to-noise (SNR) region where the problem of error floor typically
occurs.

In this Letter, we present a new type of finite precision MP decoders
termed as finite alphabet iterative decoders (FAIDs) for LDPC codes.
These were first introduced in [1] and can surpass floating-point BP in
the error floor with a fraction of its complexity. The messages belong
to a finite alphabet and the update functions are simple maps designed
to improve the guaranteed error-correction capability of the code.
Additionally in this Letter, we provide an alternate representation for
FAIDs in the form of symmetric plane partitions in order to enumerate
the number of possible decoders. We then provide good 3-bit precision
MP decoders different from the ones presented in [1] that were designed
specifically for a practical quasicyclic code. We also show that decoders
designed solely based on density evolution are not the best FAIDs for
this code.

Framework: Let G denote the Tanner graph of an (N, M) binary LDPC
code which has N variable nodes and M check nodes. Let V ¼ {v1, . . .,
vN} be the set of variable nodes. A multilevel FAID F is a 4-tuple given
by F ¼ (M, Y, Fv, Fc) [1]. The messages are levels confined to an
alphabet M which is defined as M = {0,+Li : 1 ≤ i ≤ s} where
Li [ R+ and Li . Lj for any i . j. The set Y denotes the set of possible
channel values. For the case of BSC, Y is defined as Y = {+C}, and for
each variable node vi in G where ri is the received bit, the channel yi

value is determined as yi = (−1)ri C. Let m1, . . . ,ml−1 denote the
incoming messages to a node with degree l that are used to calculate
the extrinsic message.

Fc: Mdc21 � M is the update function used at a check node with
degree dc defined as

Fc(m1, . . . ,mdc−1) =
∏dc−1

j=1
sgn(mj) min

j[{1,...,dc−1}
(|mj|)

where sgn is the standard signum function.
Fv : Y × Mdv21 � M is a symmetric update function used at a vari-

able node with degree dv and is defined as

Fv(yi,m1, . . . ,mdv−1 = Q
∑dv−1

j=1
mj + vc × yi

( )

Q is a function defined based on a threshold set
T = {Ti : 1 ≤ i ≤ s + 1}, where Ti [ R+, Ti . Tj if i . j, and
Ts+1 ¼ 1. Q is defined as Q(x) ¼ sgn(x)Li if Ti ≤ |x| , Ti+1, and
Q(x) ¼ 0 otherwise. The weight vc is computed using a symmetric func-
tion V : Mdv21 � {0, 1}. Based on this, Fv can be described as a linear-
threshold (LT) or nonlinear-threshold (NLT) function. If V ¼ constant,
then it is an LT function, else it is an NLT function. Note that due to
possible nonlinearity in V, these decoders are different from existing
quantised decoders. Fv can also be represented simply as a map.
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For this Letter, we restrict ourselves to codes with dv = 3. Let
|M| = Ns. In this case, the map Fv of for yi = −C is given by an
array [li,j]1≤i,j≤Ns

, where each li,j [ M specifies the output of Fv.
Tables 1 and 2 show examples of the maps for Ns ¼ 5 and Ns ¼ 7. A
particular choice of [li,j]1≤i,j≤Ns

gives rise to a particular map for Fv.
For a given value of Ns, since there could be a very large number of
Ns-level FAIDs that can potentially be used for a given code, we restrict
the decoder selection to a set of valid Ns-level FAIDs, which is obtained
by placing constraints on the choice of li,j. We specify this as a lexico-
graphic ordering on the possible outputs of Fv as given below:

|Fv(|m1|, |m2|,−C)| ≥ Fv(|m′
1|, |m′

2|,−C)|

∀|m1| ≥ |m′
1|, |m2| ≥ |m′

2|. A map Fv satisfying this is considered to be
a valid map. We found this ordering to be a reasonable constraint that
still allows good decoders.

Table 1: Map for 5-level FAID with yi ¼ 2C

m1\m2 2L2 2L1 0 +L1 +L2

2L2 2L2 2L2 2L2 2L2 0

2L1 2L2 2L2 2L2 2L1 0

0 2L2 2L2 2L1 0 +L1

+L1 2L2 2L1 0 0 +L1

+L2 0 0 +L1 +L1 +L2

Table 2: Map for 7-level FAID with yi ¼ 2C

m1\m2 2L3 2L2 2L1 0 +L1 +L2 +L3

2L3 2L3 2L3 2L3 2L3 2L3 2L3 2L1

2L2 2L3 2L3 2L3 2L3 2L2 2L1 +L1

2L1 2L3 2L3 2L2 2L2 2L1 2L1 +L1

0 2L3 2L3 2L2 2L1 0 0 +L1

+L1 2L3 2L2 2L1 0 0 +L1 +L2

+L2 2L3 2L1 2L1 0 +L1 +L1 +L3

+L3 2L1 +L1 +L1 +L1 +L2 +L3 +L3

Symmetric plane partitions: A symmetric plane partition p is an array
of nonnegative integers (pi,j){i≥1,j≥1} such that pi,j ≥ pi+1,j, pi,j ≥
pi,j+1∀i, j ≥ 1, and pi,j ¼ pj,i. If pi,j ¼ 0 ∀i . r, j . s, and if pi,j ≥ t
∀i, j, then the plane partition is said to be contained in a box with
side lengths (r, s, t). The value pi,j is represented as a box of height
pi,j positioned at (i, j ) co-ordinate on a horizontal plane. Due to the
imposition of the lexicographic ordering and symmetry of Fv, there
exists a bijection between the array [li,j]1≤i,j ≤ Ns

and a symmetric
plane partition contained in a (Ns × Ns × Ns − 1) box, where each pi,j

is determined based on li,j. Fig. 1 shows an example.
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Fig. 1 Visualisation of plane partition as stacked boxes for 5-level FAID
shown in Table 1

The total number of symmetric plane partitions contained in the
(Ns × Ns × Ns − 1) box corresponds to the total number of valid
maps for Fv. In [3], Kuperberg gave an elegant formula for their enu-
meration. Using this formula, the number of Ns-level FAIDs is given by:

H2(3Ns)H1(Ns)H2(Ns − 1)
H2(2Ns + 1)H1(2Ns − 1)

where Hk (n) = (n − k)!(n − 2k)! . . . is called the staggered hyperfactor-
ial function. The total number of valid maps for Ns ¼ 5 and Ns ¼ 7 is
28,314 and 530,803,988, respectively.
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Results: Given a set of valid Ns-level FAIDs, a FAID for a given code is
now selected based on its guaranteed error-correction capability rather
than its asymptotic decoding threshold. By doing so, a superior perform-
ance in the error-floor region is ensured.

To validate this, we make performance comparisons on a rate 0.75
(2388,597) quasicyclic LDPC code over the binary symmetric channel
(BSC). This code has been designed for good BP performance using
the methodology in [4] and serves as a good test code since structured
codes with similar lengths are typically used in practice. Density evol-
ution was performed on the set of valid 5-level and 7-level FAIDs in
order to determine the decoders with the best (highest) decoding
threshold a∗ [2].

Fig. 2 shows the frame error rate (FER) against a results for different
decoders (maximum 100 iterations) with a being the cross-over prob-
ability of the BSC. The 5-level and 7-level FAIDs designed for this
code are specified by Tables 1 and 2, which have thresholds of a∗ ¼
0.022546 and a∗ ¼ 0.023242, respectively. They clearly outperform
BP in the error-floor region. Note that Fv for these FAIDs can only
be described by NLT functions, and hence they are different from quan-
tised BP decoders. For instance, Fv for the 5-level FAID can be
described by setting L2 = L1 + C,C = 1.5L1, T1 = L1, T2 = L2,

V(m1,m2) = 1 − (sign(m1) ⊕ (sign(m2)) × d(|m1| + |m2| − 2L2)
where sign(x) = 1 if x , 0, and sign(x) = 0 otherwise .
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Fig. 2 Frame error rate performance comparison on rate 0.75 (2388,597)
quasicyclic code
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Also included are the results for 5-level and 7-level FAIDs with best
decoding thresholds of a∗ ¼ 0.025134 and a∗ ¼ 0.025244, respect-
ively. It is clearly evident that these are not the best decoders for this
code. In fact the 5-level FAID with best a∗ has a high error floor.

Conclusion: We have introduced a new framework of finite precision
decoders termed as FAID which, when chosen appropriately, can
surpass floating-point BP in the error-floor region. Since the 5-level
and 7-level FAIDs are 3-bit precision MP decoders, they have only a
fraction of the complexity of floating-point BP (32-bit precision was
used for simulation).
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