
HAL Id: hal-00670722
https://hal.science/hal-00670722

Submitted on 16 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Weight Distributions of Non-binary LDPC Codes
Kenta Kasai, Charly Poulliat, David Declercq, Kohichi Sakaniwa

To cite this version:
Kenta Kasai, Charly Poulliat, David Declercq, Kohichi Sakaniwa. Weight Distributions of Non-binary
LDPC Codes. IEICE Trans. on Fundamentals, 2011, E94-A (4). �hal-00670722�

https://hal.science/hal-00670722
https://hal.archives-ouvertes.fr

1106
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.4 APRIL 2011

PAPER

Weight Distributions of Non-binary LDPC Codes

Kenta KASAI†a), Member, Charly POULLIAT††b), David DECLERCQ††c), Nonmembers,
and Kohichi SAKANIWA†d), Fellow

SUMMARY In this paper, we study the average symbol and bit-weight
distributions for ensembles of non-binary low-density parity-check codes
defined on GF(2p). Moreover, we derive the asymptotic exponential growth
rate of the weight distributions in the limit of large codelength. Interest-
ingly, we show that the normalized typical minimum distance does not
monotonically increase with the size of the field.
key words: non-binary low-density parity-check code, weight distribution,
Galois fields

1. Introduction

In 1963, Gallager invented low-density parity-check
(LDPC) codes [1]. Due to the sparseness of the code rep-
resentation, LDPC codes are efficiently decoded by sum-
product decoders [2] or belief propagation (BP) decoders
[3]. Using a powerful analytical method called density
evolution [3] that was proposed by Richardson and Ur-
banke, messages of BP decoding are statistically evaluated
and codes can be optimized for best decoding thresholds.
The optimized LDPC codes [4] exhibit the decoding perfor-
mance at a rate very close to the Shannon capacity.

Non-binary LDPC codes were invented by Gallager
[1]. Davey and MacKay [5] found that non-binary LDPC
codes can outperform binary LDPC codes. Non-binary
LDPC codes have captured much attention recently due to
their decoding performance [6]–[10]. The (2, dc)-regular
non-binary LDPC codes defined on GF(2p) are empirically
known as the best codes for 2p ≥ 64, especially for short
codelength. Poulliat et al. optimized (2, dc)-regular non-
binary LDPC codes by considering binary images of GF(2p)
symbols. However, the main shortcoming of non-binary
LDPC codes is their decoding complexity and requirements
of large memories. Reduced complexity algorithms for de-
coding non-binary LDPC codes have recently been pro-
posed [11]. Recently, the decoder for non-binary LDPC
codes was implemented on general-purpose computing on

Manuscript received April 30, 2010.
Manuscript revised November 14, 2010.
†The authors are with the Dept. of Communications and Inte-

grated Systems, Tokyo Institute of Technology, Tokyo, 152-8552
Japan.
††The authors are with ETIS ENSEA/University of Cergy-

Pontoise/CNRS, F-95000, Cergy-Pontoise, Cergy, France.
a) E-mail: kenta@comm.ss.titech.ac.jp
b) E-mail: poulliat@ensea.fr
c) E-mail: declercq@ensea.fr
d) E-mail: sakaniwa@comm.ss.titech.ac.jp

DOI: 10.1587/transfun.E94.A.1106

graphics processing units (GPGPUs) [12], which runs much
faster than those implemented on CPUs.

The weight distributions of linear codes play very
important roles in analysis of the decoding performance.
Specifically, for LDPC codes, the bound of the thresholds
for the ML decoding [1], [13], and the error floors [14], [15]
for BP decoding were studied using the weight distributions.

Studies on weight distributions for binary LDPC codes
date back to Gallager’s landmark PhD thesis [1]. Gallager
derived the average weight distributions of LDPC code en-
sembles and empirically showed that the typical minimum
distance [1], for fixed rates, grows with the weight of rows
and and columns of the parity-check matrices. In [16], the
weight distributions of various classes of regular LDPC code
ensembles were derived. In [17], the weight distributions of
irregular LDPC code ensembles were derived. In [14] and
[15], the exponential growth rate of the weight distribution
of the standard irregular code ensembles [18] were derived.
Recently, in [19], the authors investigated the weight distri-
butions of multi-edge type LDPC code ensembles.

Studies on weight distributions for non-binary LDPC
codes also date back to [1]. Gallager derived symbol-weight
distribution of Gallager code ensembles defined on Z/qZ
and showed that the minimum distance grows linearly with
codelength when the variable node degree is greater than 2.
Hu [20] derived the asymptotic bit-weight distributions for
random parity-check code ensembles.

For the transmission over the binary input channels,
we restrict ourselves to considering non-binary LDPC codes
over GF(q) with q = 2p. Once the primitive element of
GF(2p) is fixed, each symbol in GF(2p) can be represented
as a binary sequence of length p. With this binary repre-
sentation, the weight distributions of the non-binary LDPC
codes can be considered not only in terms of the symbol-
weight but also in terms of the bit-weight. In this paper, we
derive the average weight distributions of the symbol and
bit-weight for non-binary LDPC code ensembles defined on
GF(2p). We derive the asymptotic growth rate and the con-
dition for the exponentially few average number of code-
words of small linear weight.

The rest of this paper is organized as follows. In Sect. 2,
we define non-binary LDPC codes and their ensembles.
Section 3 derives the average symbol and bit-weight distri-
butions. Section 4 investigates the asymptotic exponential
growth rate of the average symbol and bit-weight distribu-
tions. Section 5 illustrates the numerical examples of the

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

KASAI et al.: WEIGHT DISTRIBUTIONS OF NON-BINARY LDPC CODES
1107

asymptotic growth rate of the average symbol and bit-weight
distributions. Section 6 concludes this paper.

2. Non-binary LDPC Code Ensemble

Binary and non-binary LDPC codes are defined by bipartite
graphs which are also referred to as Tanner graphs [18]. For
a bipartite graph with N variable nodes and M check nodes,
with some abuse of notation, we denote the v-th variable
node and c-th check node by v and c, respectively.

The Tanner graph is said to have a degree distribution
pair

⎛⎜⎜⎜⎜⎜⎜⎝λ(x) =
dv∑

i=2

λix
i−1, ρ(x) =

dc∑
j=2

ρ j x
j−1

⎞⎟⎟⎟⎟⎟⎟⎠
if the fraction of edges incident to variable nodes of degree
i is λi for i = 2, . . . , dv and the fraction of edges incident to
check nodes of degree j is ρ j for j = 2, . . . , dc. Each edge
= (c, v) is labeled h(c,v) ∈ GF(2p)\{0}. For a given Tanner
graph, we consider all GF(2p)-valued maps on each variable
node v such that

x : v �→ xv ∈ GF(2p).

A map x is said to be a codeword if the values of x satisfies
all the check constraints. To be precise,∑

v∈Vc

h(c,v)xv = 0 for c = 1, . . . ,M,

where Vc is the set of variable nodes adjacent to the check
node c. The symbol-weight w(x) of x is defined by the num-
ber of non-zero values of xv. To be precise

w(x) = |{v ∈ {1, . . . ,N} | xv � 0}|.
The parameters N,M, ρ(x) and λ(x) are constrained to en-
sure that the number of edges on variable node and check
node sides is consistent.

N
/ ∫ 1

0
λ(x)dx = M

/ ∫ 1

0
ρ(x)dx =: E, (1)

where we denote the number of edges by E. The set of edges
is denoted by E.

Assume we are given the following parameters for the
code construction. The codelength N, a degree distribution
pair (λ(x), ρ(x)), and the Galois field GF(2p) of size q = 2p.
With these parameters, we define the non-binary irregular
LDPC code ensemble as an equiprobable set of the codes
defined by the Tanner graphs which have N variable nodes,
the degree distribution pair (λ(x), ρ(x)) and edges with la-
bels uniformly and randomly chosen from GF(2p)\{0}. The
non-binary irregular LDPC code ensemble is denoted by
G(N, λ(x), ρ(x), 2p).

We consider the standard Tanner graph modeled with
sockets [18]. Each variable (resp. check) node has i sock-
ets, where i is the degree of the variable (resp. check) node.

The sockets are aligned in arbitrary but fixed order. Vari-
able and check nodes are connected via their sockets. Thus
graph connection is specified by a permutation π on [1, E]
such that i-th variable socket connects to the π(i)-th check
sockets. There are E! possible ways of the edge connection
consistent with (λ(x), ρ(x)). There are (q−1)E possible ways
of choosing non-zero entries {h(c,v)}(c,v)∈E.

Consequently, the number of codes in the ensemble
G(N, λ(x), ρ(x), 2p) is given by

|G(N, λ(x), ρ(x), 2p)| = E!(q − 1)E . (2)

Furthermore, we define the design rate r as follows.

r := (N − M)/N = 1 −
∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

.

3. Weight Distribution of Non-binary LDPC Codes

In this section, we derive the average bit-weight and symbol-
weight distribution of the non-binary irregular LDPC code
ensemble G(N, λ(x), ρ(x), 2p).

In order to transmit the codewords over the binary-
input channels, we consider the binary-image of non-binary
symbols. Once a primitive element α of GF(2p) is fixed,
each symbol is given a p-bit representation [21, pp.110].
For example, with a primitive element α ∈ GF(23) such that
α3 + α + 1 = 0, each symbol is represented as 0 = (0, 0, 0),
1 = (1, 0, 0), α = (0, 1, 0), α2 = (0, 0, 1), α3 = (1, 1, 0),
α4 = (0, 1, 1), α5 = (1, 1, 1) and α6 = (1, 0, 1).

For a given Tanner graph G, we denote the number
of codewords of symbol-weight and bit-weight � in G by
AG(�) and AG

b (�), respectively. For the non-binary irregular
LDPC code ensembleG(N, λ(x), ρ(x), 2p), let A(�) and Ab(�)
be the average number of codewords of symbol-weight and
bit-weight �, respectively. Since each code in the ensem-
ble G = G(N, λ(x), ρ(x), 2p) is given uniform probabilities,
it follows that

A(�) =
∑
G∈G

AG(�)
/|G|,

Ab(�) =
∑
G∈G

AG
b (�)

/|G|.

3.1 Symbol-Weight Distribution for Non-binary LDPC
Codes

We will derive the average symbol-weight distribu-
tion of the non-binary irregular LDPC code ensemble
G(N, λ(x), ρ(x), 2p). For readers who are unfamiliar with
the enumeration technique developed for the weight distri-
butions of LDPC code ensembles so far, we refer the readers
to [1], [14], [16], [17].

Theorem 1: The average number of codewords A(�) of
symbol-weight � for the non-binary irregular LDPC code
ensemble G = G(N, λ(x), ρ(x), 2p) is given by

1108
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.4 APRIL 2011

A(�) =
∑
k≥0

coef
(
(Q(s, t)P(u))N , t�skuk

)
(

E
k

)
(q − 1)E−k

,

Q(s, t) :=
dv∏

i=2

(1 + tsi)Li , P(u) :=
dc∏
j=2

f j(u)Rj ,

f j(u) :=
1
q

(
(1 + (q − 1)u) j + (q − 1)(1 − u) j

)
,

where coef(g(s, t, u), sit juk) is the coefficient of a term sit juk

in a polynomial g(s, t, u). NLi and NRj are the number of
variable and check nodes of degree i and j, respectively i.e.,

Li =
λi

i
∫ 1

0
λ(x)dx

,Rj =
ρ j(1 − r)

j
∫ 1

0
ρ(x)dx

=
ρ j

j
∫ 1

0
λ(x)dx

.

Note that
∑dc

j=2 Rj = 1 − r and
∑dc

j=2 RjN = M.

Proof: We say an edge is active if the edge is incident to a
variable node v such that xv � 0. Each edge (c, v) can be
viewed as a conveyer of the value y(c,v) := h(c,v)xv from the
incident variable node v to the incident check node. The
check node c determines whether it is satisfied or not only
by the values y(c,v) which are conveyed along the connecting
edges (c, v) for v ∈ Vc. To be precise, c is satisfied if

∑
v∈Vc

y(c,v) = 0 ∈ GF(2p).

The assignment of values {y(c,v)}(c,v)∈E that the edges convey
is referred to as the edge constellation. We will count all the
codewords of weight � in all graphs in the ensemble G with
k active edges, and sum them up for all k ≥ 0.

Counting all these codewords involves the following 3
parts:

(i) Count the edge constellations satisfying all the parity-
check constraints for k active edges.

(ii) Count the edge constellations which stem from code-
words of symbol-weight � and k active edges. In other
words, such constellations have k active edges which
incident to � variable nodes.

(iii) Count the edge permutations among k active edges and
E − k non-active edges.

Before we start counting the edge constellations of (i),
first, let us count the active edge constellations satisfying a
single parity-check constraint. Consider a check node c of
degree j. The check node c is satisfied if the j values that
the connecting edges convey sum to 0, i.e.,

∑
v∈Vc
y(c,v) = 0.

Each symbol y(c,v) is in GF(2p). Let mj(�) be the number
of edge constellations that satisfy the single parity-check
constraint. Equivalently, mj(�) is the number of sequences
(x1, . . . , x j) ∈ GF(2p) j such that

x1 + · · · + x j = 0 and |{i | xi � 0}| = �.

It is obvious that mj(0) = 1,mj(1) = 0 and mj(2) =
(

j
2

)
(q−1).

It is shown in [1, Eq. (5.3)] that

mj(�) =
(−1)�(q − 1) + (q − 1)�

q

(
j
�

)
.

The generating function of mj(�) is simply written as fol-
lows.

f j(u) : =
j∑
�=0

mj(�)u
�

=
1
q

(
(1 + (q − 1)u) j + (q − 1)(1 − u) j

)
.

Next, count the edge constellations of (i). Since there are
RjN check nodes of degree j, the number of the edge con-
stellations that satisfy all the M parity-check constraints
with given k active edges is given by

coef

⎛⎜⎜⎜⎜⎜⎜⎝
dc∏
j=2

f j(u)RjN , uk

⎞⎟⎟⎟⎟⎟⎟⎠ . (3)

Secondly, we will count the constellations of (ii), i.e., k
active edges which stem from codewords of symbol-weight
�. Consider a variable node of degree i. Let a(�, k) be the
number of the constellations of k active edges which stem
from a variable node v with a map xv � 0 if � = 1 and
xv = 0 otherwise. From the definition of the active edges, it
is easily checked that

a(�, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (� = 0, k = 0),
1 (� = 1, k = i),
0 otherwise.

The generating function of a(�, k) is given as follows.∑
�≥0,k≥0

a(�, k)t�sk = 1 + tsi.

Since there are LiN variable nodes of degree i, the con-
stellations of k active edges which stem from codewords of
symbol-weight � is given as

coef

⎛⎜⎜⎜⎜⎜⎜⎝
dv∏

i=2

(1 + tsi)LiN , t�sk

⎞⎟⎟⎟⎟⎟⎟⎠ . (4)

Finally, we will count (iii), the edge permutations
among k active edges and E − k non-active edges. The
number of possible ways of permuting active and non-active
edges and assigning the values of active edges is given as

k!(E − k)!(q − 1)k (5)

Let A(�, k) be the average number of graphs which have
codewords of symbol-weight � for given k active edges. By
multiplying Eqs. (3), (4) and (5), and dividing by the number
of codes in the ensemble given in Eq. (2), we obtain

A(�, k) = coef

⎛⎜⎜⎜⎜⎜⎜⎝
dc∏
j=2

f j(u)Rj N , uk

⎞⎟⎟⎟⎟⎟⎟⎠

coef

⎛⎜⎜⎜⎜⎜⎜⎝
dv∏

i=2

(1 + tsi)LiN , t�sk

⎞⎟⎟⎟⎟⎟⎟⎠
/(E

k

)
(q − 1)E−k.

KASAI et al.: WEIGHT DISTRIBUTIONS OF NON-BINARY LDPC CODES
1109

The average number of codewords of symbol-weight � for
the ensemble is obtained by summing up A(�, k) over the all
possible active edge numbers.

A(�) =
E∑

k=0

A(�, k) (6)

This concludes the proof. �

3.2 Bit-Weight Distribution for Non-binary LDPC Codes

In a similar way, we will derive the average bit-weight dis-
tribution of the non-binary irregular LDPC code ensemble
G(N, λ(x), ρ(x), 2p). First, consider a variable node of de-
gree i. Let ab(�, k) be the number of the constellations of k
active edges which stem from a variable node v which has
� = 1 in the binary representation of xv. From the definition
of the active edges, it is obvious that

ab(�, k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 (� = 0, k = 0),(
p
�

)
(� ≥ 1, k = i),

0 otherwise.

The generating function of ab(�, k) is given as follows.
∑
�≥0,k≥0

a(�, k)t�sk = 1 + ((1 + t)p − 1)si.

Since there are LiN variable nodes of degree i, the number of
constellations of k active edges which stem from codewords
of bit-weight � is given as

coef

⎛⎜⎜⎜⎜⎜⎜⎝
dv∏

i=2

(
1 + ((1 + t)p − 1)si)LiN , t�sk

⎞⎟⎟⎟⎟⎟⎟⎠ .
Using this, in a similar way as done for the symbol-weight
distributions, the average number Ab(�) of codewords of bit-
weight � is given as follows.

Theorem 2: Let n := pN be the bit-codelength. The
average number Ab(�) of codewords of bit-weight � for
the non-binary irregular LDPC code ensemble G(N =

n/p, λ(x), ρ(x), 2p) is given by

Ab(�) =
E∑

k=0

Ab(�, k), (7)

Ab(�, k) :=
coef

(
(Qb(s, t)Pb(u))n , t�skuk

)
(

E
k

)
(q − 1)E−k

,

Qb(s, t) :=
dv∏

i=2

(1 + ((1 + t)p − 1)si)Li/p,

Pb(u) :=
dc∏
j=2

f j(u)Rj/p,

f j(u) :=
1
q

(
(1 + (q − 1)u) j + (q − 1)(1 − u) j

)
.

4. Asymptotic Analysis

In this section, we investigate the asymptotic behavior of
the average weight distributions of non-binary LDPC code
ensemble in the limit of large codelength. The number of
codewords of fixed weight usually exponentially grows or
decreases with codelength. We are interested in the rate of
the exponential growth. We define

γ(ω) := lim
N→∞

1
N

logq A(ωN),

γb(ω) := lim
n→∞

1
n

log Ab(ωn),

and refer to them as the exponential growth rate or simply
growth rate of the average number of codewords in terms of
symbol-weight and bit-weight, respectively. We use, unless
otherwise specified, log(·) = log2(·).

With these growth rates, we can roughly estimate the
number of codewords of symbol and bit-weight respectively
by

A(ωN) ∼ qγ(ω)N and Ab(ωn) ∼ 2γb(ω)n,

where we denote aN ∼ bN if and only if limN→∞ 1
N logq

aN

bN
=

0. For a fixed q, it can be seen that an ∼ bn if and only if
limn→∞ 1

n log an
bn
= 0, since n = qN.

We will investigate γ and γb. Since the techniques for
deriving the growth rates of γ and γb are similar, we shall
only provide the derivation for γb.

The number of terms in Eq. (7) is equal to E + 1, where
E is defined in Eq. (1). Therefore, from Eq. (6) we have

max
k≥0

Ab(�, k) ≤ Ab(�) ≤ (E + 1) max
k≥0

Ab(�, k). (8)

Therefore it follows that the largest term alone contributes
the growth rate of Ab(�) as follows.

1
n

log Ab(�) =
1
n

log max
k≥0

Ab(�, k) + o(1). (9)

Rewrite Ab(�, k) as

Ab(ωn, βn) =
coef((Qb(s, t)Pb(u))n , (tωsβuβ)n)(

εn
βn

)
(q − 1)(ε−β)n ,

with

n = N p, β = k/n, ω = �/n and ε = E/n.

We will calculate limn→∞ 1
n log Ab(ωn, βn). In order to do

this, we first introduce the following lemma.

Lemma 1 ([17], III.2): For an m-variable polynomial g(x1,
. . . , xm) with non-negative coefficients, it holds that

lim
n→∞

1
n

log coef(g(x1, . . . , xm)n, xα1n
1 · · · xαmn

m)

= inf
x1,...,xm>0

log
g(x1, . . . , xm)

xα1
1 · · · xαm

m
.

1110
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.4 APRIL 2011

The point (x1, . . . , xm) that takes the minimum of

g(x1, . . . , xm)
xα1

1 · · · xαm
m

is given by a solution of the following equations.

xi

g(x1, . . . , xm)
∂g(x1, . . . , xm)

∂xi
= αi (i = 1, 2, . . . ,m)

Using Lemma 1 with (9), we obtain the following the-
orem.

Theorem 3: The growth rate γb(ω) of the average number
of codewords of normalized bit-weight ω for the non-binary
irregular LDPC code ensemble G(N, λ(x), ρ(x), 2p) is given
by

γb(ω) = sup
β>0

inf
t>0,s>,u>0

[
log Qb(s, t) + log Pb(u)

− β log(u) − β log(s) − ω log(t)

− εh (β/ε) − (ε − β) log(q − 1)
]

= : sup
β>0
γb(ω, β), (10)

where h(x) := −x log(x) − (1 − x) log(1 − x). A point (u, s, t)
that takes inft,s,u is given as a solution of the following equa-
tions.

ω = t
∂Qb

∂t

Qb
=

dv∑
i=2

Lit(1 + t)p−1si

1 + ((1 + t)p − 1)si
, (11)

β = u
∂Pb

∂u

Pb
= u

dc∑
j=2

Rj

p

∂ f j(u)
∂u

f j(u)
, (12)

= u
dc∑
j=2

j(q − 1)
Rj

p
(1 + (q − 1)u) j−1 − (1 − u) j−1

(1 + (q − 1)u) j + (q − 1)(1 − u) j
,

β = s
∂Qb

∂s

Qb
=

dv∑
i=2

Li

p
i((1 + t)p − 1)si

1 + ((1 + t)p − 1)si
. (13)

A point β which gives the maximum of γb(ω, β) needs to
satisfy the stationary condition

− log u − log s − log
ε − β
β
+ log(q − 1) = 0. (14)

In a similar way, the growth rate γ(ω) of the average number
of codewords of normalized symbol-weight ω is derived.

Note that, once the normalized weigh ω is fixed, the in-
termediate variables u, s, t and β can be viewed as functions
of ω. Hereafter, we fix ω and denote u, s, t and β instead of
u(ω), s(ω), t(ω) and β(ω).

In Theorem 3, the growth rate γb(ω) seems too com-
plicated to investigate the behavior of γb(ω). Interestingly,
the derivative of γb(ω) in terms of ω can be expressed in the
following simple form.

Lemma 2: For β and t such that t � 0 and Eqs. (11), (12)

and (13) hold, we have

d
dω
γb(ω) = − log(t(ω)).

Proof: Let x′ denote the derivation of x with respect to ω.
Differentiating γb(ω) defined in Eq. (10), we have

d
dω
γb(ω)=

Q′b
Qb
+

P′b
Pb
−w t′

t
−β′ log

ε−β
β
+β′ log(q−1)

− log t − (β′ log u + β
u′

u
+ β′ log s + β

s′

s
), (15)

where s is given by Eqs. (11), (12) and (13). Combining (12)
and P′b =

∂Pb
∂u u′, we have

P′b
Pb
− βu′

u
= 0 (16)

From (11), (13) and Q′b =
∂Qb

∂t t′ + ∂Qb

∂s s′, we have

Q′b
Qb
− w t′

t
+ β

s′

s
= 0

Thus, substituting (14), we conclude the proof since the re-
maining term in the right hand side of (15) is − log t. �

4.1 Analysis of Small Weight Codeword

In this section, we investigate how the number of code-
words of small weight are changed by degree distribution
pairs (λ(x), ρ(x)) and q. To this end, we analyze the growth
rate γb(ω) and γ(ω) for small normalized weight ω. From
the linearity of LDPC codes, it follows that Ab(0) = 1 and
γb(0) = 0. From (10) and Lemma 2, it holds that for ω→ 0,

γb(ω) = γ′b(0)ω + o(ω) (17)

= − log(t)ω + o(ω), (18)

where t is a t which satisfies (11), (12), (13) and (14) for
ω → 0. From (11), for ω → 0, it holds that t j si → 0 for
i such that Li � 0 and j = 1, . . . , p. Using this, we see
that β → 0 from (13). From Eq. (12), it is consequent that
u→ 0. Moreover, from (12) it follows that as u→ 0,

β =

dc∑
j=2

j(j − 1)(q − 1)
Rj

p
u2 + o(u2).

Substituting this to (14), we have

s =
1
ε

dc∑
j=2

j(j − 1)
Rj

p
u + o(u)

= ρ′(1)u + o(u). (19)

As s→ 0, from (13) we have

β = 2
L2

p
((1 + t)p − 1)s2 + o(s).

KASAI et al.: WEIGHT DISTRIBUTIONS OF NON-BINARY LDPC CODES
1111

Substituting this to (14), we obtain the following.

u =
2L2

εp(q − 1)
((1 + t)p − 1)s + o(s)

=
λ′(0)
q − 1

((1 + t)p − 1)s + o(s). (20)

From (19) and (20)

lim
ω→0

λ′(0)ρ′(1)
q − 1

((1 + t(ω))p − 1) = 1.

Therefore we have

lim
ω→0

t(ω) =

⎛⎜⎜⎜⎜⎜⎜⎝
(

q − 1
λ′(0)ρ′(1)

+ 1

) 1
p

− 1

⎞⎟⎟⎟⎟⎟⎟⎠ .
In summary, we obtain the following theorem.

Theorem 4: For the non-binary irregular LDPC code en-
semble G(N, λ(x), ρ(x), 2p) with λ′(0) > 0, the growth rate
γb(ω) of the average number Ab(ωn) of codewords of bit-
weight ωn, in the limit of bit-codelength n = pN for small
ω, is given by

γb(ω) = − log

⎛⎜⎜⎜⎜⎜⎜⎝
(

q − 1
λ′(0)ρ′(1)

+ 1

) 1
p

− 1

⎞⎟⎟⎟⎟⎟⎟⎠ω + O(ω2).

In a similar way, we have the following theorem.

Theorem 5: For the non-binary irregular LDPC code en-
semble G(N, λ(x), ρ(x), 2p) with λ′(0) > 0, the growth rate
of the average number A(ωN) of codewords of symbol-
weight ωN, in the limit of symbol-codelength N for small
ω, is given by

γ(ω) = −logq
(
λ′(0)ρ′(1)

)
ω + O(ω2).

The number of codewords of weight ωn is approxi-
mated by Ab(ωn) ∼ 2γb(ω)n. Therefore, if γb(ω) < 0 for small
ω, there are exponentially few codewords of bit-weight ωn.
It is important to know whether there are exponentially few
or many codewords of small weight, since decoding errors
in the large SNR region are due to the codewords of small
weight. It can be seen from Theorem 4 that γ′(0) < 0 if and
only if λ′(0)ρ′(1) < 1, which does not depend on the field
size q. Furthermore, it can be seen from Theorem 5 that
γ′b(0) < 1 if and only if λ′(0)ρ′(1) < 1. It makes sense that
these conditions coincide.

In summary, we have the following corollary.

Corollary 1: For the non-binary irregular LDPC code
ensemble G(N, λ(x), ρ(x), 2p) and sufficiently large N, if
λ′(0)ρ′(1) < 1, there exists δ > 0 such that there are, in
average, exponentially few codewords of bit-weight ωn for
ω < δ.

We present some more facts on the growth rates.

Theorem 6: For the non-binary irregular LDPC code en-
semble G(N, λ(x), ρ(x), 2p), the growth rates for the full

weight codewords, i.e., codewords of symbol-weight N and
bit-weight n are given as follows.

γ(1) =
dc∑
j=2

Rj logq

(
(q − 1) j + (−1) j(q − 1)

)
(21)

− (1−r)−(pε−1) logq (q − 1)=r (q→ ∞)

γb(1) =
dc∑
j=2

Rj

p
log

(
(q − 1) j + (−1) j(q − 1)

)
(22)

− (1 − r) − ε log (q − 1) = r − 1 (q→ ∞).

Codewords of symbol-weight 1 − 1/q and bit-weight 1/2
alone consist of most of the code,

γ(1 − 1/q) = r,

γb(1/2) = r. (23)

In other words, A((1 − 1/q)N) ∼ qrN and Ab(n/2) ∼ 2rn.

Proof: Since the proofs are almost the same for the growth
rate for both symbol and bit-weight, we focus on the proofs
for Eqs. (22) and (23). Substitute � = n in Eq. (7) we have

Ab(n) =

∏dc

j=2

(
(q − 1) j + (−1) j(q − 1)

)Rjn/p

q(1−r)n/p(q − 1)εn
, (24)

which concludes Eq. (22). It can be seen that

(ω, β, s, t, u) =

(
1
2
, ε

q − 1
q
, 1, 1, 1

)

satisfies Eqs. (11), (12), (13), (14). Substituting this to
Eq. (10), we have Eq. (23). �

5. Numerical Examples

In this section, we demonstrate Theorem 3. We choose the
degree distribution pair as (λ(x) = 1

7 x+ 6
7 x2, ρ(x) = x3) with

λ′(0)ρ′(1) = 3/7 and design rate r = 0.3.
Figures 1 and 2 show the growth rate for the average

symbol-weight distributions of the irregular LDPC code en-
sembles defined over GF(q = 2p) for p = 1, 2, . . . , 9. As ex-
pected in Eq. (21), γb(1) for p = 1, . . . , 9 converge to r = 0.3
and attain r = 0.3 at ω = 1 − 1/q.

Figures 3 and 4 show the growth rate for the average
bit-weight distributions of the ensembles. As expected in
Eq. (22), γb(1) rapidly converges to r − 1 = −0.7. Indeed
γb(1) = 0.0000, −0.6816, −0.6990, and −0.6999 for p =1,
2, 3 and 4, respectively. Moreover, it can be seen that the
curves at ω > 1/2 rapidly converge to the growth rate of the
binary random code ensemble of rate r.

Each curve for bit and symbol-weight takes nega-
tive values for small normalized bit-weight (resp. symbol-
weight) ω. We call the minimum normalized bit-weight
(resp. symbol-weight) crossing with 0 as normalized typical
minimum distance τ, since there are exponentially few code-
words of bit-weight ωn (resp. resp. symbol-weight ωN) for

1112
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.4 APRIL 2011

Fig. 1 The growth rate of the average symbol-weight distributions of a (λ(x) = 1
7 x+ 6

7 x2, ρ(x) = x3)-
irregular LDPC code ensemble defined over GF(q), The rate is r = 0.3. The endpoints at ω = 1 are
plotted with circles.

Fig. 2 The growth rate of the average symbol-weight distributions of a (λ(x) = 1
7 x+ 6

7 x2, ρ(x) = x3)-
irregular LDPC code ensemble defined over GF(q), The rate is r = 0.3.

KASAI et al.: WEIGHT DISTRIBUTIONS OF NON-BINARY LDPC CODES
1113

Fig. 3 The growth rate of the average bit-weight distributions of a (λ(x) = 1
7 x + 6

7 x2, ρ(x) = x3)-
irregular LDPC code ensemble defined over GF(q), The rate is r = 0.3.

Fig. 4 The growth rate of the average bit-weight distributions of a (λ(x) = 1
7 x + 6

7 x2, ρ(x) = x3)-
irregular LDPC code ensemble defined over GF(q), The rate is r = 0.3.

1114
IEICE TRANS. FUNDAMENTALS, VOL.E94–A, NO.4 APRIL 2011

ω < τ.
Interestingly, the normalized typical minimum distance

does not monotonically grow with q. It grows monotoni-
cally for small q and then starts decreasing for large q. In
other words, there exists a field size which locally maxi-
mizes the normalized typical minimum distance. The local
maximum size is attained at q = 25 for symbol-weight and
q = 24 for bit-weight.

6. Conclusion

In this paper, we derived the weight distributions of non-
binary LDPC codes. The analysis of the exponential growth
rate of the weight distributions revealed that the number of
codewords of small normalized weight grows (reps. van-
ishes) exponentially with the codelength iff λ′(0)ρ′(1) is
greater (resp. less) than 1. Moreover, we observed the non-
monotonicity of the field size for the normalized typical
minimum distance.

Another non-monotonicity of the field size was ob-
served for the thresholds of BP decoding. Rathi showed
that the threshold is not monotonic with the field size [22,
Table 1]. The field sizes for the local optimal typical min-
imum distance and threshold do not coincide. We expect
some relation between these two monotonousness.

References

[1] R.G. Gallager, Low Density Parity Check Codes, in Research Mono-
graph series, MIT Press, Cambridge, 1963.

[2] F. Kschischang, B. Frey, and H.A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol.47, no.2,
pp.498–519, Feb. 2001.

[3] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf.
Theory, vol.47, no.2, pp.599–618, Feb. 2001.

[4] T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke, “Design
of capacity-approaching irregular low-density parity-check codes,”
IEEE Trans. Inf. Theory, vol.47, no.2, pp.619–637, Feb. 2001.

[5] M. Davey and D. MacKay, “Low-density parity check codes over
GF(q),” IEEE Commun. Lett., vol.2, no.6, pp.165–167, June 1998.

[6] W. Chang and J. Cruz, “Nonbinary LDPC codes for 4-kB sectors,”
IEEE Trans. Magn., vol.44, no.11, pp.3781–3784, Nov. 2008.

[7] I. Djordjevic and B. Vasic, “Nonbinary LDPC codes for optical com-
munication systems,” IEEE Photonics Technol. Lett., vol.17, no.10,
pp.2224–2226, Oct. 2005.

[8] B. Zhou, J. Kang, S. Song, S. Lin, K. Abdel-Ghaffar, and M. Xu,
“Construction of non-binary quasi-cyclic LDPC codes by arrays and
array dispersions,” IEEE Trans. Commun., vol.57, no.6, pp.1652–
1662, June 2009.

[9] M. Arabaci, I. Djordjevic, R. Saunders, and R. Marcoccia, “High-
rate nonbinary regular quasi-cyclic LDPC codes for optical com-
munications,” J. Lightwave Technol., vol.27, no.23, pp.5261–5267,
Dec. 2009.

[10] B. Zhou, J. Kang, Y. Tai, S. Lin, and Z. Ding, “High perfor-
mance non-binary quasi-cyclic LDPC codes on euclidean geome-
tries LDPC codes on euclidean geometries,” IEEE Trans. Commun.,
vol.57, no.5, pp.1298–1311, May 2009.

[11] D. Declercq and M. Fossorier, “Decoding algorithms for nonbi-
nary LDPC codes over GF(q),” IEEE Trans. Commun., vol.55, no.4,
pp.633–643, April 2007.

[12] K. Kasai, Y. Fujisaka, and M. Onsjö, “FFT-based parallel decoder

of non-binary LDPC codes on GPU: KFO NBLDPC GPU,” 2009.
[13] G. Miller and D. Burshtein, “Bounds on the maximum-likelihood

decoding error probability of low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol.47, no.7, pp.2696–2710, Nov. 2001.

[14] C. Di, T. Richardson, and R. Urbanke, “Weight distribution of low-
density parity-check codes,” IEEE Trans. Inf. Theory, vol.52, no.11,
pp.4839–4855, Nov. 2006.

[15] A. Orlitsky, K. Viswanathan, and J. Zhang, “Stopping set distribu-
tion of LDPC code ensembles,” IEEE Trans. Inf. Theory, vol.51,
no.3, pp.929–953, March 2005.

[16] S. Litsyn and V. Shevelev, “On ensembles of low-density parity-
check codes: Asymptotic distance distributions,” IEEE Trans. Inf.
Theory, vol.48, no.4, pp.887–908, April 2002.

[17] D. Burshtein and G. Miller, “Asymptotic enumeration methods for
analyzing LDPC codes,” IEEE Trans. Inf. Theory, vol.50, no.6,
pp.1115–1131, June 2004.

[18] T. Richardson and R. Urbanke, Modern Coding Theory, Cambridge
University Press, 2008.

[19] K. Kasai, T. Awano, C. Poulliat, D. Declercq, and K. Sakaniwa,
“Weight distributions of multi-edge type LDPC codes,” IEICE
Trans. Fundamentals, vol.E93-A, no.11, pp.1942–1948, Nov. 2010.

[20] X.Y. Hu, Low-delay low-complexity error-correcting codes on
sparse graphs, Ph.D. Thesis, Ecole Polytechnique Federale de Lau-
sanne (EPFL), 2003.

[21] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-
Correcting Codes, Elsevier, Amsterdam, 1977.

[22] V. Rathi and R. Urbanke, “Density evolution, threshold and the sta-
bility condition for non-binary LDPC codes,” IEE Proc. Commun.,
vol.152, no.6, pp.1069–1074, 2005.

Kenta Kasai received B.E., M.E. and Ph.D.
degrees from Tokyo Institute of Technology in
2001, 2003 and 2006, respectively. Since April
2006, he has been an assistant professor in the
Department of Communications and Integrated
Systems, Graduate School of Science and Engi-
neering, Tokyo Institute of Technology. His cur-
rent research interests include codes on graphs
and iterative decoding algorithms.

Charly Poulliat received the E.E. de-
gree from the Ecole Nationale Supérieure de I’
Electronique et de ses Applications (ENSEA),
Cergy-Pontoise, France, and the M.S. degree in
Image and Signal Processing from the Univer-
sity of Cergy-Pontoise, France, both in 2001,
and his Ph.D. degree in Electrical and Com-
puter Engineering from the University of Cergy-
Pontoise, France, in 2004. From November
2004 to October 2005, he was a post-doctoral
researcher at UH coding group supervised by Pr.

Marc Fossorier, University of Hawaii at Manoa, HI, USA. He is currently
an assistant professor at the ENSEA, and teaches digital signal process-
ing and communication theory. He is a member of the ETIS-CNRS Lab-
oratory in Cergy-Pontoise, France. His research interests include channel
coding and information theory, iterative system design and optimization,
unequal error protection techniques (UEP), joint source and channel cod-
ing/decoding, signal processing for digital communications.

KASAI et al.: WEIGHT DISTRIBUTIONS OF NON-BINARY LDPC CODES
1115

David Declercq received his Ph.D. degree
in electrical and computer engineering in 1998
from the university of Cergy-Pontoise, France.
He was a visiting junior researcher in 1999 in
the university of Minneapolis, USA. In 2000,
he joined the “Ecole Normale Supérieure de
I’ Electronique et de ses Applications” (EN-
SEA), a graduate school in electrical and com-
puter engineering, where he is now a full pro-
fessor. He is associated with the ETIS EN-
SEA/univ. Cergy-Pontoise/CNRS UMR8051

Laboratory in Cergy-Pontoise, France, and led the signal processing re-
search group from 2003 to 2006. He was head of the research depart-
ment at the ENSEA from 2007 to 2009. He is since 2006 scientific di-
rector of the French research network CNRS-GdR-ISIS, and secretary of
the image/signal processing GRETSI association. His research interests
are mainly statistical model estimation and coding theory for digital com-
munication. In particular, he is interested in the design of efficient binary
and non-binary LDPC codes and in decoder complexity reduction. He par-
ticipated in the FP6-STREP M-PIPE project, the FP6/FP7 NewCom Net-
work of Excellence, and was leader of the FP7-STREP DaVinci project. He
was awarded the Junior Position of the “Institut Universitaire de France” in
2009.

Kohichi Sakaniwa received B.E., M.E., and
Ph.D. degrees all in electronic engineering from
the Tokyo Institute of Technology, Tokyo Japan,
in 1972, 1974 and 1977, respectively. He joined
the Tokyo Institute of Technology in 1977 as
a research associate and served as an associate
professor from 1983 to 1991. Since 1991 he has
been a professor in the Department of Electri-
cal and Electronic Engineering, and since 2000
in the Department of Communication and Inte-
grated Systems, Graduate School of Science and

Engineering, both in the Tokyo Inst. of Tech. From November 1987 to July
1988, he stayed at the University of Southwestern Louisiana as a Visiting
Professor. He received the Excellent Paper Award from the IEICE of Japan
in 1982, 1990, 1992 and 1994. His research area includes Communication
Theory, Error Correcting Coding, (Adaptive) Digital Signal Processing and
so on. Dr. Sakaniwa is a member of IEEE, Information Processing Society
of Japan, Institute of Image Information and Television Engineers of Japan,
and Society of Information Theory and its Applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

