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The multi-edge type LDPC codes, introduced by Richardson and Urbanke, present the general class of structured LDPC codes. In this paper, we derive the average weight distributions of the multi-edge type LDPC code ensembles. Furthermore, we investigate the asymptotic exponential growth rate of the average weight distributions and investigate the connection to the stability condition of the density evolution.

Introduction

In 1963, Gallager invented low-density parity-check (LDPC) codes [START_REF] Gallager | Low Density Parity Check Codes[END_REF]. Due to the sparseness of the representation of the codes, LDPC codes are efficiently decoded by the sum-product (SP) decoders [START_REF] Kschischang | Factor graphs and the sum-product algorithm[END_REF] or Log-SP decoders [START_REF] Richardson | The capacity of lowdensity parity-check codes under message-passing decoding[END_REF]. The Log-SP decoding is also known as the belief propagation. By the powerful method density evolution [START_REF] Richardson | The capacity of lowdensity parity-check codes under message-passing decoding[END_REF], invented by Richardson and Urbanke, the messages of the Log-SP decoding are statistically evaluated. The optimized LDPC codes can realize the reliable transmissions at rate close to the Shannon limit [START_REF] Richardson | Design of capacity-approaching irregular low-density paritycheck codes[END_REF].

Recently, many structured LDPC codes have been proposed: accumulate repeat accumulate codes [START_REF] Abbasfar | Accumulate-repeataccumulate codes[END_REF], irregular repeat accumulate codes [START_REF] Jin | Irregular repeat-accumulate codes[END_REF], MacKay-Neal codes [START_REF] Mackay | Good error-correcting codes based on very sparse matrices[END_REF], protograph codes [START_REF] Thorpe | Low-density parity-check (LDPC) codes constructed from protographs[END_REF], raptor codes [START_REF] Shokrollahi | Raptor codes[END_REF], lowdensity generator-matrix codes [START_REF] Cheng | Some high-rate near capacity codecs for the gaussian channel[END_REF] and so on. These structured codes are usually designed for exploiting the structure to realize an excellent decoding performance, efficient encoding, a fast decoding algorithm, a parallel implementation and so on. Above all, the multiedge type LDPC (MET-LDPC) codes [START_REF] Richardson | Multi-edge type LDPC codes[END_REF] give a general framework that unifies all those structured LDPC codes.

The average weight distribution of codewords, which is simply referred to as the average weight distribution, helps the analysis of the average performance of the maximum likelihood (ML) decoding [START_REF] Burshtein | Asymptotic enumeration methods for analyzing LDPC codes[END_REF] and the typical minimum distance [START_REF] Gallager | Low Density Parity Check Codes[END_REF]. The decoding errors for the high SNR regions are mainly brought by codewords of small weight. Constructing LDPC codes without small weight codewords helps to lower the error floors.

For the average weight distribution of the standard irregular LDPC codes are studied in [START_REF] Burshtein | Asymptotic enumeration methods for analyzing LDPC codes[END_REF]- [START_REF] Richardson | Modern Coding Theory[END_REF] and those of structured codes are studied in [START_REF] Wadayama | Average coset weight distribution of combined LDPC matrix ensembles[END_REF]- [START_REF] Ikegaya | Weight and stopping set distributions of two-edge type LDPC code ensembles[END_REF]. Specifically for the standard irregular LDPC codes, the average weight distribution is derived in [START_REF] Orlitsky | Stopping set distribution of LDPC code ensembles[END_REF] as the coefficients of some polynomial. And many useful properties [START_REF] Di | Weight distribution of low-density parity-check codes[END_REF], [START_REF] Richardson | Modern Coding Theory[END_REF] are derived from the coefficient expression.

In [START_REF] Kasai | Average coset weight distribution of multi-edge type LDPC code ensembles[END_REF], we have already derived the average weight distributions for the MET-LDPC code ensembles. However, the derived equation [START_REF] Kasai | Average coset weight distribution of multi-edge type LDPC code ensembles[END_REF] is not as simple as that of the standard irregular LDPC codes [START_REF] Orlitsky | Stopping set distribution of LDPC code ensembles[END_REF] and is hard to investigate further properties. Indeed the derived equation in [START_REF] Kasai | Average coset weight distribution of multi-edge type LDPC code ensembles[END_REF] is not written in a closed form but given as a recursive form which concatenates the weight distributions of constituent codes of the MET code ensembles. In this paper, we derive the average weight distributions of the MET-LDPC code ensembles in a simple closed form. Furthermore, we investigate the asymptotic exponential growth rate of the average weight distributions and investigate the connection to the stability condition of the density evolution.

The rest of this paper is organized as follows. Section 2 gives the definition of the MET-LDPC code ensemble. Section 3 gives the simple expression for the average weight distributions of the MET-LDPC code ensemble. In Section 4 we derive the asymptotic exponential growth rate of the average weight distributions and investigate it for the codeword of small weight in Section 5. Furthermore, in Section 6, we show that the connection between the the asymptotic exponential growth rate of the codeword of small weight and the stability condition of the density evolution [START_REF] Richardson | Design of capacity-approaching irregular low-density paritycheck codes[END_REF].

Multi-Edge type LDPC Codes

Before we give the general definition of the ME-LDPC codes, we show a specific example of MET-LDPC code for a better understanding. The Tanner graph of an example of MET-LDPC code is shown in Fig. 1. We NT ( 0, 0, 0, 0, 1) NT ( 0, 0, 0, 3, 1) NT ( 0, 3, 0, 0, 0) NT ( 2, 0, 0, 0, 0)

NT ( 2, 2, 1, 0, 0) NT ( 2, 1, 2, 0, 0) ET 5 ET 4 ET 2 ET 3 ET 1
NT( 0, 0, 3, 3, 0)

Fig. 1 The Tanner graph of a Multi-Edge type LDPC code. NT and ET stand for variable node-type, check node-type and edge-type, respectively.

use the terms, a "code" and its "Tanner graph" interchangeably. The edges in the graphs are divided into 5 types of edges labeled from "ET 1" to "ET 5". Note that there are two types of edges in the third row of edges. With this classification, each edge is said to have edge-type i for i = 1, . . . , 5. Furthermore variable and check nodes are classified into types according to the number of each edge-type they have. The types are called variable and check node-types, respectively. For example, the check nodes labeled "NT(2,2,1,0,0)" are said to have node-type (2,2,1,0,0) since these check nodes have two edges of edge-type 1, two edges of edgetype 2 and 1 edge of edge-type 3. And the variable nodes labeled "NT(0,0,0,0,1)" are said to have nodetype (0,0,0,0,1) since these variable nodes have 1 edge of edge-type 5.

The original definition of MET-LDPC [START_REF] Richardson | Multi-edge type LDPC codes[END_REF] codes involves the transmissions over the n r types of parallel channels. Since our interest in this paper is limited to the average weight distributions, we restrict ourselves to the transmissions over a single channel, i.e. n r = 1.

For simplicity of notation, we define 1 = (1, . . . , 1) and 0 = (0, . . . , 0). And define that x ≥ 0 means that x i ≥ 0 for i = 1, . . . , n. Moreover, we use the notation

x y := n i=1 x yi i for two vectors x = (x 1 , . . . , x n ), y = (y 1 , . . . , y n ) of size n.
Now, we give the definition of an MET-LDPC code ensemble. Analogously to the degree distribution pair (λ(x), ρ(x)) [START_REF] Richardson | Modern Coding Theory[END_REF] for the standard irregular LDPC code ensemble, an MET-LDPC code ensemble is specified by a multivariate polynomial pair (ν(r, x), µ(x)) which is also referred to as the degree distribution pair.

ν(r, x) := b,d≥0 ν b,d r b x d , µ(x) := d≥0 µ d x d , b := (b 0 , b 1 , . . . , b nr ), d := (d 1 , . . . , d ne ), r := (r 0 , r 1 , . . . , r nr ), x := (x 1 , . . . , x ne )
where n r is the number of channel-types and n e is the number of edge-types.

For a given degree distribution pair (ν(r, x), µ(x)) and code length n, we define an equi-probable ensemble of LDPC codes with graphs G that satisfy the followings.

1. G has n variable nodes of channel-type b = (0, 1), i.e. G has n un-punctured transmitted bits. We denote this code ensemble by C(n, ν(r, x), µ(x)).

It is easy to see that the number of edges of edgetype i incident to variable and check nodes of node-type d are respectively given as b≥0

d i nν b,d = d i nν (1,0),d + d i nν (0,1),d , d≥0 d i nµ d .
It follows that the number of edges of edge-type i incident to variable nodes and check nodes are respectively given as

nν i (1, 1) := n ∂ ∂x i ν(r, x) r=1 x=1 = n b,d≥0 d i ν b,d , nµ i (1) := n ∂ ∂x i µ(x) x=1 = n d≥0 d i µ d ,
for i = 1, . . . , n e , where 1 := (1, . . . , 1). They are constrained to be identical, and we denote this number by E i , i.e. for i = 1, . . . , n e

E i := nν i (1, 1) = nµ i (1).
Being permuted the connection among E i edges of edge-type i in a graph, the resulting Tanner graph has the same degree distribution pair. The number of graphs in the MET-LDPC ensemble is given as follows.

#C(n, ν(r, x), µ(x)) = ne i=1 E i !. ( 1 
)
In this setting, we can see that the graph shown in Fig. 1 is an MET-LDPC code in the MET-LDPC code ensemble C(n = 40, ν(r, x), µ(x)), where

ν(r, x) = 0.5r 1 x 2 1 + 0.3r 1 x 3 2 + 0.2r 0 x 3 3 x 3 4 + 0.2r 1 x 5 , µ(x) = 0.4x 2 1 x 2 2 x 3 + 0.1x 2 1 x 2 x 2 3 + 0.2x 3 4 x 5 .

Weight Distribution of Multi-Edge type Codes

In this section, we derive the average weight distribution of the MET-LDPC code ensemble C(n, ν(r, x), µ(x)). For readers who are unfamiliar with the enumeration technique of the weight distributions in LDPC code ensembles, we refer the readers to [START_REF] Gallager | Low Density Parity Check Codes[END_REF], [START_REF] Burshtein | Asymptotic enumeration methods for analyzing LDPC codes[END_REF]. We consider all the 2 N maps from each variable node to {0, 1},

x : v → x v ∈ {0, 1}.
We say a map x is a codeword of a code G if v∈Vc x v is an even number for every check node c in G, where V c is the set of variable nodes adjacent to the check node c in G. The weight w(x) of a map x is defined as the number of un-punctured variable nodes v such that x v = 1. Let A G (ℓ) be the number of codewords of weight ℓ in a code G. Let A(ℓ) be the average number of codewords of weight ℓ for the MET-LDPC code ensemble C(n, ν(r, x), µ(x)) defined as follows.

A(ℓ) = G∈C(n,ν(r,x),µ(x)) A G (ℓ) #C(n, ν(r, x), µ(x)).
Theorem 1: For a given MET-LDPC code ensemble C(n, ν(r, x), µ(x)), the average number of codewords of weight ℓ is given as follows.

A(ℓ) = e≥0 coef((Q(t, s)P (u)) n , t ℓ s e u e ) i Ei ei , (2) 
Q(t, s) = b,d≥0 (1 + t b1 s d ) ν b,d , P (u) = d≥0 (1 + u) d + (1 -u) d 2 µ d
, where e = (e 1 , . . . , e ne ), u = (u 1 , . . . , u ne ), s = (s 1 , . . . , s ne ).

And coef(g(x), x d ) is the coefficient of a term x d in a multivariate polynomial g(x).

Proof : An edge is said to be active, if the edge is incident to a variable node v such that x v = 1. We will count all the codewords of weight ℓ in all graphs in the ensemble C(n, ν(r, x), µ(x)) with e i active edge of edge-type i for i = 1, . . . , n e , and sum them up for all e = (e 1 , . . . , e ne ) ≥ 0. Counting all the codewords involves the following 3 parts:

1. Count the active edge constellations satisfying all the parity-check constraints. 2. Count the active edge constellations which stem from maps of weight ℓ.

Count the edge permutations among active edges

and non-active edges.

Before we start counting the active edge constellations satisfying all the parity-check constraints, first, let us count the active edge constellations satisfying a single parity-check constraint. Consider a check node c of node-type d. In other words, the check node c has d i edges of edge-type i for i = 1, . . . , n e . The check node c is satisfied if the total number of active edges is even, i.e. We can simply describe f d (u) as

f d (u) = ne i=1 (1 + u i ) di + ne i=1 (1 -u i ) di 2 = (1 + u) d + (1 -u) d 2 .
Next, count the active edge constellations satisfying all the nµ(1) parity-check constraints with given e i active edges of edge-type i for i = 1, . . . , n e . Since there are nµ d check nodes of node-type d for d ≥ 0, the number of active edge constellations to satisfy all the paritycheck constraints is given by coef(

d≥0 f d (u) nµ d , u e ). (3) 
Secondly, we will count the active edge constellations which stem from maps of weight ℓ. Count the active edge constellations which stem from a single variable node of weight ℓ = 0, 1 at first. This may be somewhat confusing since it is too trivial. Consider a variable node v of channel-type b and node-type d. Assume v is given e i active edges of edge-type i for i = 1, . . . , n e . Let a v (ℓ, b, e) be the number of constellations which stem from the maps of weight ℓ ∈ {0, 1}. From the definition of the active edges, it is easily checked that 

(1 + t b1 s d ) nν b,d , t ℓ s e ). (4) 
In the third place, consider that we are given e i active edges of edge-type i and hence there are E ie i non-active edges of type i for i = 1, . . . , n e . For these active edge and non-active edges, the number of possible ways of permuting active and non-active edges is given as ne i=1 e i !(E i -e i )!.

(

) 5 
Let A e (ℓ) be the average number of graphs which have codewords of weight ℓ for given e i active edges of type i for i = 1, . . . , n e . By multiplying Eq. (3), Eq. ( 4) and Eq. ( 5), and dividing by the number of codes in the ensemble given in Eq. (1), we obtain

A e (ℓ) =coef( d≥0 f d (u) nµ d , u e ) • coef( b,d≥0 (1 + t b1 s d ) nν b,d , t ℓ s e ) ne i=1 E i e i .
The average number of codewords of weight ℓ for the ensemble is obtained by summing up A e (ℓ) over the all possible active edge numbers.

A(ℓ) = e≥0 A e (ℓ) (6) 2 

Asymptotic Analysis

LDPC codes are usually used with large code length. We are interested in the asymptotic average weight distributions in the limit of large code length. The average number of codewords of weight ωn is usually increases or decays exponentially in n. We focus our interest in the asymptotic exponential growth rate of the A(ℓ)

which is simply referred to as the growth rate γ(ω) defined as follows.

γ(ω) := lim n→∞ 1 n log A(ωn),
where ω called is the normalized weight of codewords.

In this section, we derive the growth rate for the MET-LDPC code ensemble. To this end, first introduce the following lemma.

Lemma 1 ( [START_REF] Burshtein | Asymptotic enumeration methods for analyzing LDPC codes[END_REF], III.2): For an m-variable polynomial g(x 1 , . . . , x m ) with non-negative coefficients, it holds that

lim n→∞ 1 n log coef(g(x) n , x αn ) = inf x>0 log g(x)
x α , where x > 0 means x i > 0 for all i = 1, . . . , m. The point x takes the minimum of g(x)

x α is given by a solution of the following equations.

x i g(x) ∂g(x) ∂x i = α i (i = 1, 2, . . . , m)
The number of terms in Eq. ( 2) is upper-bounded by ne i=1 E i . Therefore the largest term alone contributes the growth rate of A(ℓ). Therefore, from Eq. ( 6) we have

max e≥0 A e (ℓ) ≤ A(ℓ) ≤ ne i=1 E i max e≥0 A e (ℓ) (7) 1 n log A(ℓ) = 1 n log max e≥0 A e (ℓ) + o(1). (8) 
Rewriting A e (ℓ) as

A nβ (ωn) = coef((Q(t, s)P (u)) n , (t ω s β≥0 u β ) n ) ne i=1 µi(1)n βin , β = (β 1 , . . . , β ne ),
where e = nβ and using Lemma 1, we obtain that

lim n→∞ 1 n log A(ℓ) = sup β≥0 inf t>0,s>0,u>0 log Q(s, t) + log P (u) - ne i=1 β i log(u i ) - ne i=1 β i log(s i ) -ω log(t) - ne i=1 µ i (1)h β i µ i (1) =: sup β≥0 γ(β) (9) 
A point (u, s, t) that takes inf t,s,u is given as a solution of the following equations.

ω = t ∂Q ∂t Q = b,d≥0 ν b,d b 1 ts d 1 + t b1 s d , ( 10 
)
β i = u i ∂P ∂ui P = u i d≥0 µ d d i (1+u) d 1+ui -(1-u) d 1-ui (1+u) d +(1-u) d , (11) 
β i = s i ∂Q ∂si Q = b,d≥0 ν b,d d i t b1 s d 1 + t b1 s d , for i = 1, . . . , n e . (12) 
A point β = (β 1 , . . . , β ne ) which gives sup β needs to satisfy the stationary condition

β i µ i (1) -β i = u i s i . (13) 
Thus, we obtain the following theorem.

Theorem 2: For a given MET-LDPC code ensemble C(n, ν(r, x), µ(x)), the growth rate of the normalized weight ω is given by

γ(ω) := lim n→∞ 1 n A(ωn) = max β∈B(ω) γ(β),
where B(ω) is a set of β such that ( 10), (

The derivative of γ(β) in terms of ω can be expressed in the following simple expression.

Lemma 2: For β and t such that t = 0 and equations [START_REF] Cheng | Some high-rate near capacity codecs for the gaussian channel[END_REF], [START_REF] Richardson | Multi-edge type LDPC codes[END_REF] and ( 12) hold, we have the following.

d dω γ(β) = -log(t(ω))
Proof : Let x ′ denote the derivation of x with respect to ω. Differentiating γ(ω) defined in (9), we have

d dω γ(β) = Q ′ Q + P ′ P -w t ′ t - ne i=1 log µ i (1) -β i β i β ′ i -log t - ne i=1 (β ′ i log u i + β i u ′ i u i + β ′ i log s i + β i s ′ i s i ),
where s is given by equations ( 10), ( 11) and [START_REF] Burshtein | Asymptotic enumeration methods for analyzing LDPC codes[END_REF]. From ( 13), we see

-β ′ i log u i -β ′ i log s i -β ′ i log µ i (1) -β i β i = 0.
Combining [START_REF] Richardson | Multi-edge type LDPC codes[END_REF] and

P ′ = ne i=1
∂P ∂ui u ′ i , we have

P ′ P - ne i=1 β i u ′ i u i = 0 (14) 
From ( 10), [START_REF] Burshtein | Asymptotic enumeration methods for analyzing LDPC codes[END_REF] and

Q ′ = ∂Q ∂t t ′ + ne i=1 ∂Q ∂si s ′ i , we have Q ′ Q -w t ′ t + ne i=1 β i s ′ i s i = 0
Thus, we can conclude the proof since the remaining term in the right hand side of ( 14) is -log t. 2

Analysis of Small Weight Codeword

In this section we restrict ourselves to considering unpunctured MET-LDPC codes, i. 

Furthermore, we assume that for every edge-type i there exists a check node which has at least 2 edges of edge-type i. In precise, for i = 1, . . . , n e , ∃d such that d i ≥ 2 and µ d = 0.

For the standard irregular LDPC codes [START_REF] Luby | Improved low-density parity-check codes using irregular graphs[END_REF] with a degree distribution pair (λ(x), ρ(x)), this assumption reduces to the condition of the non-existence of check nodes of degree 1, i.e. ρ ′ (1) > 0.

We investigate how the growth rate behaves for codewords of small weight, i.e. for small normalized weight ω. From the linearity of MET-LDPC codes, A(0) = 1 and γ(0) = 0, then from [START_REF] Shokrollahi | Raptor codes[END_REF] and Lemma 2, it follows that for ω → 0,

γ(ω) = γ ′ (0)ω + o(ω) (17) = sup t∈T -log(t)ω + o(ω), ( 18 
)
where T is a set of t such that [START_REF] Cheng | Some high-rate near capacity codecs for the gaussian channel[END_REF], [START_REF] Richardson | Multi-edge type LDPC codes[END_REF], ( 12) and ( 13) hold for ω → 0. From the assumption of nonpuncturing ( 15) and [START_REF] Cheng | Some high-rate near capacity codecs for the gaussian channel[END_REF], for ω → 0, it holds that ts d → 0 for d with ν b,d = 0. Using this, it follows that β i → 0 for i = 1, . . . , n e from [START_REF] Burshtein | Asymptotic enumeration methods for analyzing LDPC codes[END_REF]. Using the assumption of check node-types Eq. ( 16) and Eq. ( 11), it is consequent that u i → 0 for i = 1, . . . , n e . Moreover, from [START_REF] Richardson | Multi-edge type LDPC codes[END_REF] it follows that as u → 0,

β i = d≥0 µ d u i d i ((d i -1)u i + j =i d j u j ) + o(( ne i=1 u i ) 2 ).
Substituting this to (13), we have

s i = µ i,i (1) µ i (1) u i + j =i µ i,j (1) µ i (1) u j + o( ne i=1 u i ), ( 19 
)
µ i,j (x) = ∂ 2 ∂x i ∂x j µ(x).
As s → 0, from [START_REF] Burshtein | Asymptotic enumeration methods for analyzing LDPC codes[END_REF] we have

β i = ts i (ν i,i (1, 0)s i + j =i ν i,j (1, 0)s j ) + o(( ne i=1 s i ) 2 )
Substituting this to [START_REF] Di | Weight distribution of low-density parity-check codes[END_REF], we obtain the following.

u i = t ν i,i (1, 0) ν i (1, 1) s i + j =i ν i,j (1, 0) ν i (1, 1) s j + o( ne i=1 s i ) ( 20 
)
ν i,j (r, x) = ∂ 2 ∂x i ∂x j ν(r, x)
We can represent [START_REF] Ikegaya | Weight and stopping set distributions of two-edge type LDPC code ensembles[END_REF] and ( 20) by matrices as s = Pu and u = tΛ(1)s, respectively, where Λ i,j (r) :=

∂ 2 ν(r,x) ∂xi∂xj x=0 ν i (1, 1) , P i,j := ∂ 2 µ(x) ∂xi∂xj x=1 µ i (1)
.

In summary, for t = 0 we obtain

1 t u = Λ(1)Pu + o( ne i=1 u i ). ( 21 
)
This implies that 1 t is an eigenvalue of Λ(1)P. Therefore sup t∈T of ( 17) is achieved by the largest eigenvalue 1 t of Λ(1)P. Then we have the following theorem.

Theorem 3: For an MET-LDPC code ensemble C(n, ν(r, x), µ(x)), assume the largest eigenvalue 1 t of Λ(1)P is not zero. The growth rate γ(ω) := lim n→∞ 1 n log A(ωn) of the average number A(ωn) of codewords of weight ωn, in the limit of code length, is given by

γ(ω) = log 1 t ω + O(ω 2 ).
Furthermore, there exists δ > 0 such that if 1 t < 1, there are exponentially few codewords of weight ωn for ω < δ.

For a standard irregular LDPC code ensemble [START_REF] Richardson | Modern Coding Theory[END_REF] with a given degree distribution pair (λ(x), ρ(x)), can be viewed as an MET-LDPC code ensemble

C n, ν(r 1 , x) = r 1 i λ i x i /i i λ i /i , µ(x) = i ρ i x i /i i λ i /i .
The eigenvalue is given by λ ′ (0)ρ ′ (1) which is zero if there are no variable nodes of degree 2. The condition 1 t < 1 in Theorem 3 reduces to λ ′ (0)ρ ′ (1) < 1, which coincides with the known result [START_REF] Di | Weight distribution of low-density parity-check codes[END_REF].

Relation with Stability Condition

In this section, we investigate the connection between the growth rate and the stability condition [START_REF] Richardson | Design of capacity-approaching irregular low-density paritycheck codes[END_REF]. For simplicity, we assume the transmission takes place over the binary erasure channels (BEC) with the erasure probability ǫ.

For the standard irregular LDPC code ensemble [START_REF] Richardson | Modern Coding Theory[END_REF] with degree distribution pair (λ(x), ρ(x)), in the limit of the code length, we denote the average decoding erasure probability of messages sent from variable nodes to check nodes at the ℓ-th iteration round by p (ℓ) . From density evolution [START_REF] Richardson | Design of capacity-approaching irregular low-density paritycheck codes[END_REF], p (ℓ) is given by

p (0) = ε, p (ℓ) = ελ(1 -ρ(1 -p (ℓ-1) )).
The following is shown in [START_REF] Richardson | Design of capacity-approaching irregular low-density paritycheck codes[END_REF], if ελ ′ (0)ρ ′ (1) > 1, there exists γ > 0 such that lim ℓ→∞ p ℓ > γ. The inequality

ελ ′ (0)ρ ′ (1) < 1 (22)
is called the stability condition of density evolution. Furthermore, it is shown in [START_REF] Oswald | Capacity-achieving sequences for the erasure channel[END_REF], the capacity-achieving LDPC code ensemble have the degree distribution pair (λ(x), ρ(x)) with ελ ′ (0)ρ ′ (1) = 1. Meanwhile, it is known that the growth rate of the average number of codewords of small linear weight ωn is given by lim Interestingly, the same parameter λ ′ (0)ρ ′ (1) appears in both the stability condition Eq. ( 22) and the growth rate Eq. ( 23). Does this correspondence also hold for the MET-LDPC code ensembles? For the MET-LDPC code ensemble with the degree distribution pair (ν(r, x), µ(x)), in the limit of large code length, let p (ℓ) i denote the erasure probability of the message sent along the edges of edge-type i from variable nodes to check nodes at the ℓ-th interation round.

From the density evolution developed for the MET-LDPC codes [START_REF] Richardson | Multi-edge type LDPC codes[END_REF]Eq. (8)], p (ℓ) i is recursively given by p (ℓ) = λ((1, ε), 1ρ(1p (ℓ-1) )), λ(r, x) : = (λ 1 (r, x), . . . , λ ne (r, x)), ρ(x) : = (ρ 1 (x), . . . , ρ ne (x)), In short, the stability condition for the MET-LDPC code is given as follows.

λ i (r, x) = ν i (r, x) ν i (1, 1) , ρ i (x) = µ i (x) µ i ( 
1 > the spectral radius of Λ(1, ε)P.

Since Λ(1, ε)P is a non-negative matrix, the spectral radius of Λ(1, ε)P is an eigenvalue of Λ(1, ε)P, it follows Λ(1, 1)P coincides with the parameter which appears in Theorem 3.

Conclusion

We present a simple expression of the average weight distributions of MET-LDPC code ensembles which gives us a general framework of LDPC codes. We showed that the correspondence between the growth rate of the weight distributions and the stability condition is also the case with the MET-LDPC codes.

2 .

 2 G has nν b,d variable nodes of channel-type b and node-type d. 3. G has nµ d check nodes of node-type d.

  ne i=1 e i = even. Let a c (e) be the number of active edge constellations which satisfy the check node c with given e i active incident edges of edge-type i for i = 1, . . . , n e . It is easily checked that a c (e) = ne i=1 di ei ne i=1 e i = even 0 ne i=1 e i = odd Let f d (u) the generating function of a c (e) defined as f d (u) := e≥0 a c (e)u e .

  = 0, e = 0), 1 (ℓ = b 1 , e = d), 0 otherwise. Therefore, the generating function of a v (ℓ, b, e) is simply written as ℓ∈{0,1},b≥0,e≥0 a v (ℓ, b, e)t ℓ s e = 1 + t b1 s d . Next, consider all n variable nodes. There are nν b,d variable nodes of channel-type b and of node-type d for b ≥ 0 and d ≥ 0. It is consequent that for given e i active edges of edge-type i, the number of active edge constellations which stem from maps x : v → x v ∈ {0, 1} of weight ℓ is given by coef( b,d≥0

  e. b = (b 0 , b 1 ) = (0, 1) for ν b,d = 0.

n→∞ 1 n

 1 log A(ωn) = log(λ ′ (0)ρ ′ (1))ω + o(ω). (23)

= ε for i = 1 ,

 1 . . . , n e . And it follows that[START_REF] Richardson | Multi-edge type LDPC codes[END_REF] Theorem 7] is given as follows. If the spectral radius of Λ(1, ε)P is less than 1, there exists γ > 0 such that lim