
Top-k Web Service Compositions using Fuzzy Dominance Relationship

Karim Benouaret 1, Djamal Benslimane 1, Allel Hadjali 2, Mahmoud Barhamgi 1

1LIRIS, Claude Bernard Lyon1 University, 69622 , Villeurbanne, France
firstname.lastname@liris.cnrs.fr

2Enssat, University of Rennes 1, Lannion, France
allel.hadjali@enssat.fr

Abstract

Data Web service composition is a powerful means to
answer users’ complex queries. User preferences are a key
aspect that must be taken into account in the composition
scheme. In this paper, we present an approach to automati-
cally compose Data Web services while taking into account
the user preferences. User preferences are modeled thanks
to fuzzy sets. We use an RDF query rewriting algorithm to
determine the relevant services. The fuzzy constraints of the
relevant services are matched to those of the query using a
set of matching methods. We rank-order services using a
fuzzification of Pareto dominance, then compute the top-k
service compositions. We propose also a method to improve
the diversity of returned compositions while maintaining as
possible the compositions with the highest scores. Finally,
we present a thorough experimental study of our approach.

1. Introduction

Recent years have witnessed a growing interest in us-

ing Web services as a reliable means for data publishing

and sharing among enterprises [5]. This type of services is

known as Data Web services, where services correspond to

calls over the business objects (e.g., Customer) in the under-

lying data sources. In this context, Data Web Service Com-
position is a powerful solution to answer the user’s complex

queries by combining primitive simple Data Web services to

realize value-added services on top of existing ones.

Users’ preferences is another key aspect that must be

considered in the composition process. In this respect, the

fuzzy sets theory [4] has been proved to be a viable solution

to model preferences. Fuzzy sets are very well suited to the

interpretation of linguistic terms, which constitute a conve-

nient way for users to express their preferences. For exam-

ple, when expressing preferences about the “price”, users

often employ fuzzy terms like “ cheap”, “affordable”, etc.

As services and providers proliferate, a large number of

candidate compositions that would use different services

may be used to answer the same query. It is thus important

to set up an effective composition framework that would

identify and retrieve the most relevant services and return

the top-k compositions according to the user preferences.

Example: Consider the services from the car e-commerce

in Table-1. The symbols “$” and “?” denote inputs and out-

puts, respectively. Services providing the same functional-

ity belong to the same service class. For instance, S21, S22,

S23 and S24 belong to the same class S2. Each service has

its constraints on the data it manipulates. For instance, the

cars returned by S21 are of cheap price and short warranty.

Table 1. Example of Data Services
Service Functionality Constraints

S11($x, ?y)

Returns the

automakers

y whose

country is x

-

S21($x, ?y, ?z, ?t) Returns the

cars y along

with their

prices z and

warranties t for

a given

automaker x

z is cheap, t is short

S22($x, ?y, ?z, ?t)
z is accessible,
t is [12, 24]

S23($x, ?y, ?z, ?t)
z is expensive,
t is long

S24($x, ?y, ?z, ?t)
z is [9000, 14000],
t is [6, 24]

S31($x, ?y, ?z) Returns the

power y and

the

consumption z
for a given car

x

y is weak, z is small

S32($x, ?y, ?z)
y is ordinary, z is
approximately 4

S33($x, ?y, ?z) y is powerful, z is high

S34($x, ?y, ?z)
y is [60, 110],
z is [3.5, 5.5]

Let us now assume that the user Bob would like to submit

the following query Q1: “return the French cars, preferably
at an affordable price with a warranty around 18 months and

having a normal power with a medium consumption”.

Bob will have to invoke S11 to retrieve the French

automakers, he then invoke one or more of the services

2011 IEEE International Conference on Services Computing

978-0-7695-4462-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SCC.2011.86

144

S21, S22, S23, S24 to retrieve the French cars along with

their prices and warranties, finally he will invoke one or

more of the services S31, S32, S33, S34 to retrieve the power

and the consumption of retrieved cars. This manual process

is painstaking. It raises the following challenges: (i) how to

understand the semantics of the published services to select

the relevant ones that can contribute to answering the query

at hand; (ii) how to retain the most relevant services that

better satisfy the user preferences; and (iii) how to gener-

ate the best compositions that satisfy the whole user query.

Contributions: We already tackled the first challenge by

proposing in [2] an RDF query rewriting approach that gen-

erates automatically the Data service compositions (which

does not include any preference constraints). In this paper,

we focus on the second and third challenges. We select ser-

vices that cover a part of the query even if their constraints

match only partially the user preference constraints. Dif-

ferent methods are investigated to compute the matching

degrees between the services’ constraints and the prefer-

ences involved in the query. In order to select the most rel-

evant services, a multicriteria fuzzy dominance relationship

is proposed to rank-order services. The selected services

are then used to find the top-k compositions that answer

the user query. To avoid returning similar compositions, we

also propose a diversified top-k service composition method

that aims to both improve the diversity of top-k selection

and maintain as possible the services with better scores.

The rest of the paper is organized as follows. Section 2

reviews related work. Section 3 formally defines the stud-

ied problem. Section 4 describes the proposed fuzzy domi-

nance and ranking criteria. Section 5 is devoted to the both

top-k and diversified top-k compositions generation meth-

ods. Section 6 presents the global architecture of our imple-

mented composition system and reports a thorough experi-

mental evaluation. Finally, Section 7 concludes the paper.

2 Related work

Preferences in Web service selection/composition have

received much attention by many researchers. In [12], the

authors use a qualitative graphical representation of prefer-

ence, CP-nets, to deal with services selection in terms of

user preferences. This approach can reason about a user’s

incomplete and constrained preference. In [7], a method to

rank semantic web services is proposed. It is based on com-

puting the matching degree between a set of requested NFPs

(Non-Functional Properties) and a set of NFPs offered by

the discovered Web services. NFPs cover QoS aspects, but

also other business-related properties such as pricing and in-

surance. Semantic annotations are used for describing NFPs

and the ranking process is achieved using some automatic

reasoning techniques that exploit the annotations. However,

the problem of composition is not addressed in these works.

Agarwal and Lamparter [1] proposed an approach for an

automated selection of Web service for composition. Web

service combinations can be compared with each other and

ranked according to the user preferences. Preferences are

modeled as a fuzzy IF-THEN rules. The IF part contains

fuzzy descriptions of the various properties of a service and

the THEN part is one of the fuzzy characterizations of a

special concept called Rank. A fuzzy rule describes which

combination of attribute values a user is willing to accept to

which degree, where attribute values and degree of accep-

tance are fuzzy sets. ServiceRank [13] considers the QoS

aspects as well as the social perspectives of services. Ser-

vices that have good QoSs and are frequently invoked by

others are more trusted by the community and will be as-

signed high ranks. In [11], the authors propose a system for

conducting qualitative Web service selection in the presence

of incomplete or conflicting user preferences. The paradigm

of CP-nets is used to model user preferences. The system

utilizes the history of users to amend the preferences of ac-

tive users, thus improving the results of service selection.

The work the most related to our proposal is [10], where

the authors consider dominance relationships between web

services based on their degrees of match to a given request

in order to rank available services. Distinct scores based on

the notion of dominance are defined for assessing when a

service is objectively interesting. However, that work con-

siders only selection of single services, without dealing with

neither the problem of composition nor the user preferences.

Finally, in [9], the authors propose a method to diversify

Web service search results in order to deal with that have

different, but unknown, preferences. The proposed method

focuses on QoS parameters with non-numeric values, for

which no ordering can be defined. However, this method

provides the same services to all users, also the problem of

composition is not addressed. In our approach the diversi-

fied compositions vary according to the user.

3 Preference-based composition model

3.1 Preference Queries

Users express their preference queries over domain

ontologies using a slight modification of SPARQL. For in-

stance, query Q1 given in Section 1 is expressed as follows:

URL=http://vm.liris.cnrs.fr:36880/MembershipFunctions/

SELECT ?n ?pr ?w ?pw ?co

WHERE{?Au rdf:type AutoMaker ?Au hasCountry ‘France’

?Au makes ?C ?C rdf:type Car ?C hasName ?n ?C hasPrice ?pr

?C hasWarranty ?w ?C hasPower ?pw ?C hasConsumption ?co}

Preferring {?pr is‘URL/AffordablesService’,

?w is ‘URL/around(18)Service’,?pw is‘URL/NormalService’,

?co is ‘URL/MediumService’}

145

Preferences are modeled using fuzzy sets [4]. Formally,

a fuzzy set F on a referential X is characterized by a mem-

bership function μF : X −→ [0, 1], where μF (x) repre-

sents the grade of membership of x in F . Namely having

x, y ∈ F , x is more preferable than y iff μF (x) > μF (y).
In practice, membership functions are often of trapezoidal

form represented by the quadruplet (A,B, a, b) as shown in

Figure 1. A regular interval [A,B] can be seen as a fuzzy

set represented by the quadruplet (A,B, 0, 0).
Membership functions are implemented as Web services

and can be shared by users. They are used in the Preferring

clause of the query by mentioning the URI of the imple-

menting service. More details are provided in section 6.

1

0

μF

A-a A B B+b X

Figure 1. Fuzzy value representation

3.2 Data services

Data services are partitioned into different classes. A

class Sj compromises services providing the same function-

ality. A Data service Sji of class Sj is described as a predi-

cate Sji($Xj , ?Yj) : − < Gj(Xj , Yj , Zj), Cji > where:

Xj and Yj are the sets of input and output variables of Sji,

respectively. Input and output variables are also called dis-

tinguished variables. They are prefixed with the symbols

”$” and ?, respectively. Gj(Xj , Yj , Zj) represents the func-

tionality of the service. This functionality is described as a

semantic relationship between input and output variables.

Zj is the set of existential variables relating Xj and Yj .

Cji = {Cji1 , ..., Cjin} is a set of constraints expressed as

intervals or fuzzy sets on Xj , Yj or Zj variables.

Xj and Yj variables are defined in the WSDL descrip-

tion of services. Functionality Gj and constraints Cji of

a service Sji are added to the WSDL descriptions in the

form of annotations. The annotations are represented in

the form of SPARQL queries. For instance, the following

query illustrates the functionality and constraints of S21:

URL=http://vm.liris.cnrs.fr:36880/MembershipFunctions/

RDFQuery{SELECT ?y ?z ?t

WHERE{?Au rdf:type AutoMaker ?Au name $x

?Au makes ?C ?C rdf:type Car ?C hasName ?y

?C hasPrice ?z ?C hasWarranty ?t}}

CONSTRAINTS{?z is ‘URL/CheapService’

?t is ‘URL/ShortService’}

The SELECT and WHERE clauses define the functionality of

S21. The CONSTRAINTS clause gives the constraints of S21.

3.3 Discovering Relevant Services

Let Q be a preference query. We use our RDF query

rewriting algorithm [2] to discover the parts of Q that are

covered by each service−recall that in the general case ser-

vices may match only parts (referred to by qj) of Q. A part

qj is covered by one or more services that constitute a class

of relevant services Sj . A service Sji ∈ Sj is said to be rel-

evant to Q iff the functionality of Sji completely matches

a part qj and its constraints match completely or partially

the preference constraints of qj . We use a set of methods

M = {m1, ...,mn′} (e.g., constraints inclusion operators)

resulting in different degrees of match for each service. Two

classes of constraints inclusion operator are considered. Let

C ≡ x is E and C ′ ≡ x is F be two constraints.

• Quantitative method (QM). Deg(C ⊆ C ′) = |E∩F |
|E| =

∑
x∈X T (μE(x),μF (x))

∑
x∈X μE(x) where the intersection is inter-

preted by a t-norm operator T [4]. For instances,

T =“min” (M-QM) and T =“product” (P-QM).

• Logic method (LM). Deg(C ⊆ C ′) = minx∈X

(μE(x) →f μF (x)) where →f stands for a fuzzy

implication [4]. For instances, Godel (G-LM), and

Lukasiewicz (L-LM).

Table 2. Services and their matching degrees

Sji qj M-QM P-QM G-LM L-LM

S11 q1 - - - -

S21

q2

(1, 0.57) (0.98, 057) (1, 0) (0.80, 0)
S22 (0.89, 1) (0.77, 1) (0, 1) (0.50, 1)
S23 (0.20, 0.16) (0.13, 0.13) (0, 0) (0, 0)
S24 (0.83, 0.88) (0.83, 0.88) (0.60, 0.50) (0.60, 0.50)

S31

q3

(0.50, 0.36) (0.46, 0.32) (0, 0) (0, 0)
S32 (0.79, 0.75) (0.69, 0.72) (0, 0.25) (0.40, 0.50)
S33 (0.21, 0.64) (0.17, 0.61) (0, 0) (0, 0)
S34 (0.83, 0.85) (0.83, 0.85) (0.50, 0.50) (0.50, 0.50)

Table 2 shows the matching degrees between each ser-

vice Sji from Table 1 and its corresponding part qj of Q1.

The service S11 covering the part q1 does not have a match-

ing degree as there are no constraints imposed by the user on

q1. However, each service covering the part q2 is associated

with four (the number of methods) degrees. Each matching

degree is formulated as a pair of real values within the range

[0, 1], where the first and second values are the matching

degrees of the constraints price and warranty, respectively.

Similarly, for the matching degrees of the services covering

q3, the first and second values represent respectively the in-

clusion degrees of the constraints power and consumption.

146

3.4 Problem statement

Given a preference query Q : − < q1, ..., qn >. Each

part qj is a tuple (qj , Pqj), where qj represents qj without

its preferences Pqj . Given a set of services classes S =
{S1, ...,Sn}, where a class Sj regroups the services that are

relevant to the part qj and given a set M = {m1, ...,mn′}
of matching methods. The problem is how to rank services

in each class Sj to select the most relevant ones and how to

rank generated compositions to select the top-k ones.

4 Fuzzy dominance and fuzzy scores

4.1 Dominances: Pareto vs Fuzzy

Services of the same class Sj have the same functional-

ity, they only differ in terms of constraints, providing thus

different matching degrees. Individual matching degrees

of services could be aggregated. One method is to assign

weights to individual degrees and, for instance, compute

a weighted average of degrees. In doing so, users may

not know enough to make trade-offs between different rel-

evancies using numbers (average degrees). Users thus lose

the flexibility to select their desired answers by themselves.

Computing the skyline [3] is as a natural solution to over-

come this limitation. The skyline consists of the set of

points which are not dominated by any other point.

Definition 1 (Pareto dominance) Let u and v be two d-
dimensional points. We say that u dominates v, denoted
by u � v, iff ∀i ∈ [1, d] , ui ≥ vi ∧ ∃k ∈ [1, d] , uk > vk.

Pareto dominance is not always significant to rank-order

points. To illustrate this situation, let u = (u1, u2) = (1, 0)
and v = (v1, v2) = (0.90, 1) be two matching degrees. In

Pareto order, u and v are incomparable. However, one can

consider that v is better than u since v2 = 1 is too much

higher than u2 = 0, contrariwise v1 = 0.90 is almost close

to u1 = 1. It is thus interesting to fuzzify the dominance re-

lationship to express the extent to which a matching degree

(more or less) dominates another one. We define below a

fuzzy dominance that relies on particular membership func-

tion of a graded inequality of the type strongly larger than.

Definition 2 (fuzzy dominance) Given two d-dimensional
points u and v, we define the fuzzy dominance to express
the extent to which u dominates v such as:

deg(u � v) =

∑d
i=1 μ�(ui, vi)

d

Where μ�(ui, vi) expresses the extent to which ui is more

or less (strongly) greater than vi. μ� is defined as:

μ�(x, y) =

⎧⎪⎨
⎪⎩

0 ifx− y ≤ ε

1 ifx− y ≥ λ+ ε
x−y−ε

λ
otherwise

⎫⎪⎬
⎪⎭

Where λ > 0, i.e., μ� is more demanding than the idea

of “strictly greater” and ε ≥ 0 in order to ensure that μ�
agrees with the idea of “greater” in the usual sense. The

semantics of μ� is as follows: if x − y is less than ε, then

x is not at all strongly greater than y; if x− y is larger than

λ+ ε, then x is all much greater then y; if x− y is between

ε and λ, then x is much greater than y is a matter of degree.

Let us reconsider the previous instances u = (1, 0), v =
(0.90, 1). With ε = 0 and λ = 0.2, we have deg(u � v) =
0.25 and deg(v � u) = 0.5. This is more significant than u
and v are incomparable provided by Pareto dominance. In

the following sections, we use the defined fuzzy dominance

to compute scores of services and compositions.

4.2 Associating score with a service

Under a single matching degree, the dominance rela-

tionship is unambiguous. When multiple methods are ap-

plied, resulting in different matching degrees for the same

constraints, the dominance relationship becomes uncertain.

The model proposed in [8], namely probabilistic skyline

overcomes this problem. Contrariwise, Skoutas et al. show

in [10] the limitations of the probabilistic skyline to rank

services and introduce the Pareto dominating score of in-

dividual services. We generalize this score to fuzzy dom-

inance and propose a fuzzy dominating score (FDS). An

FDS of a service Sji indicates the average extent to which

Sji dominates the whole services of its class Sj .

Definition 3 (Fuzzy dominating score) The fuzzy dominat-
ing score of a service Sji in its class Sj is defined as:

FDS(Sji) =
1

(|Sj | − 1) |M |2
|M|∑
h=1

∑
Sjk∈Sj

k �=i

|M|∑
r=1

deg(Sh
ji � Sr

jk)

where Sh
ji is the matching degree of Sji obtained by apply-

ing the hth method. The term (|Sj |−1) is used to normalize

the FDS in the range [0, 1]. Table 3 shows the fuzzy domi-

nating scores of the services of our example.

4.3 Associating score with a composition

Different compositions can be generated from different

classes. To rank such compositions, we extend the previous

FDS definition to composition and associate each one with

an FDS as an aggregation of different FDSs of its compo-

nent services. Let C = {S1i1 , ..., Snin} be a composition

of n services and d = d1+ ...+dn be the number of prefer-

ences, where dj is the number of constraints involved in the

service Sjij . The FDS of C is then computed as follows:

FDS(C) =
1

d

n∑
j=1

dj · FDS(Sjij)

147

Table 3. Top-k services
Services Class Score Top-k

S11 S1 - S11

��S21

S2

0.527

S22 0.657 S22

��S23 0.027 S24

S24 0.533

��S31

S3

0.083

S32 0.573 S32

��S33 0.187 S34

S34 0.717

5 Top-k service composition

5.1 Efficient generation

A straightforward method to find the top-k compositions

that answer a query is to generate all possible composi-

tions, compute their scores, and return the top-k ones. How-

ever, this approach results in a high computational cost, as it

needs to generate all possible compositions, whereas, most

of them are not in the top-k. The following theorem1 pro-

vides an optimization technique to find quickly the top-k
compositions : the top-k services of the different service
classes are sufficient to compute the top-k compositions.

Theorem 1 Let C = {S1i1 , ..., Snin} be a composition and
top-k.Sj (resp. top-k.C) be the top-k services of the class
Sj (resp. the top-k compositions). Then, ∃Sjij ∈ C;Sjij /∈
top-k.Sj =⇒ C /∈ top-k.C.

Table 3 shows the top-k (k = 2) services in each service

class using the FDS. Thus, relevant services that are not in

the top-k of their classes are eliminated. They are crossed

out in Table 3. The other services are retained. The top-

k compositions are generated from the different top-k.Sj
classes. Table 4 shows the possible compositions along with

their scores and the top-k compositions of our example.

Table 4. Top-k composition
Compositions Score Top-k

C1 = {S11, S22, S32} 0.615

C2 = {S11, S22, S34} 0.687 C2

C3 = {S11, S24, S32} 0.553 C4

C4 = {S11, S24, S34} 0.625

5.2 Top-k compositions algorithm

The algorithm, hereafter referred to as T KSC, computes

the top-k compositions according to the fuzzy scores. It

proceeds as follows.

1Proof excluded due to lack of space

Algorithm 1: T KSC
Input: Q preference query; S set of service classes; k ∈ N;

M = {m1, ...,mn′} set of methods, ε ≥ 0;λ > 0;

1 foreach Sj in S do
2 S ← random(Sj , 1);
3 if ∃qj ∈ Q; cover(S, qj) then
4 R ← R∪ Sj ;

5 if Pqj 	= ∅ then
6 foreach Sji in Sj do
7 foreach m in M do
8 ComputeDegree(Cji, Pqj ,m);

9 foreach Sj inR do
10 if Pqj = ∅ then
11 top-k.Sj ← random(Sj , k);
12 else
13 foreach Sji in Sj do
14 ComputeSScore(Sji);

15 top-k.Sj ← top(k,Sj);

16 C ← ComposeServices(top-k.Sj1 , ..., top-k.Sjm);

17 foreach C in C do
18 ComputeCScore(C);

19 return top(k, C);

Step.1 compute the matching degrees (lines 1-8). Each

class whose services cover a query part is added into the list

of relevant classes. If its services touch the user preferences,

we compute its different matching degrees according to the

number of methods.

Step.2 eliminating less relevant services (lines 9-15).
For each class whose services do not touch the user prefer-

ences, we select randomly k services since they are all equal

with respect to user preferences. Otherwise, i.e., its services

touch the user preferences, we first compute the score of its

services and then retain only the top-k ones.

Step.3 returning top-k compositions (lines 16-19). We

first compose the retained services, i.e., the top-k of each

class, we then compute the score of generated compositions.

Finally we provide the user with the top-k ones.

5.3 Diversity-aware top-k compositions

Similar services could exist in each class Si leading to

similar top-k compositions. A little variety in the top-k
compositions list will probably lead to the user frustration.

Diversification is then needed to improve the quality of the

top-k compositions. We tackle this issue by proposing a

method for maximizing the diversity of compositions while

maintaining an acceptable accuracy (expressed in terms of

FDS) of compositions. We propose to diversify the top-

k compositions by firstly diversifying the top-k services of

148

each class Sj , by diversifying the compositions themselves.

The diversity of the top-k of a class Sj means that the

services it includes should be dissimilar amongst each other.

A principled way to improving diversity while maintaining

accuracy, is to explicitly use both diversity and accuracy of

during the top-k services selection. We use the following

quality metric that combines diversity and accuracy:

Quality(Sji) = FDS(Sji)×RelDiv(Sji, dtopkSj)

The quality of a service Sji in its class Sj is proportional to

its accuracy w.r.t. FDS and to its relative diversity to those

diversified top-k services so far selected dtopkSj . Initially,

dtopkSj is an empty set, and its first element will be nec-

essary one of the services with higher FDS. The relative

diversity of a service Sji to the current set dtopkSj is de-

fined as the average dissimilarity between Sji and the so far

selected service [6] as described in the following equation:

RelDiv(Sji, dtopkSj) =

∑
Sjr∈dtopkSj

Dist(Sji, Sjr)

|dkSj |
The relative diversity of a service Sji to an initial empty set,

i.e., |dtopkSj | = 0, is set to 1. The quantity Dist(Sji, Sjr)
represents the distance (i.e., dissimilarity) between the ser-

vices Sji and Sjr. Recall that Data services of the same

class have the same functionality and only differ in their

constraints, therefore the distance can be then reduced to

the distance between their constraints.

Given two services Sji and Sjr in Sj having the

constraints Cji ≡ x1 is E1, ..., xdj
is Edj

and Cjr ≡
x1 is F1, ..., xdj

is Fdj
, respectively, where dj is the num-

ber of constraints involved in the services Sji and Sjr.

The distance between Sji and Sjr can be measured by

Dist(Sji, Sjr) = maxh∈{1,...,dj}Dist(Eh, Fh), where

Dist(Eh, Fh) = maxx∈X |μE(x)− μF (x)| is the distance

between the fuzzy sets Eh and Fh.

Algorithm 2: DT KS
Input: k ∈ N; s ∈ N; Sj a service class;

1 S ′j ← top(k · s,Sj);

2 dtopk.Sj ← ∅;

3 for i=1 to k do
4 ComputeQuality(S ′j);

5 dtopk.Sj ← dtopk.Sj∪ {MaxQuality(S ′j)};

6 S ′j ← S ′j−{MaxQuality(S ′j)};

7 return dtopkSj;

Diversified top-k services computing strategy: The

above quality measure guides the construction of the diver-

sified top-k services of a class Sj in an incremental way

as described in Algorithm 2 (DT KS). During each step the

remaining services of Sj are rank-ordered according to their

quality and the highest quality service is added to dtopkSj .

The first service of the diversified top-k of Sj to be selected

is always the one with the highest FDS. The initial service

class Sj can be bounded to a smaller size equivalent to k · s
to decrease the search space especially when Sj is too large.

Diversified top-k service compositions computing: The

top-k compositions set is diversified by diversifying its

component compositions and maintaining acceptable com-

positions scores. The Quality of a composition C is an ag-

gregation of different Qualities of its component services.

Let C = {S1i1 , ..., Snin} be a composition of n services

and d = d1 + ...+ dn be the number of preferences, where

dj is the number of constraints involved in the service Sjij .

The Quality of C is then computed as follows:

Quality(C) =
1

d

n∑
j=1

dj ·Quality(Sjij)

The diversified top-k compositions (DT KSC) is obtained

from T KSC by applying the following modifications:

line 15: instead of taking the top-k services in each class

based on their scores, we take them based on their qualities,

i.e., we take the diversified top-k ones, by applying Algo-

rithm 2. Line 15 becomes: top-k.Sj ← DTKS(k, s,Sj);

line 18: we compute the quality of compositions, instead of

their scores. This line becomes: computeCQuality(C);

line 19: instead of returning the top-k compositions, i.e.,

the top-k with the highest scores, we return the diversified

top-k ones, i.e., the ones having the best Qualities. So the

line 19 becomes: return Dtop(k, C);

6 Architecture and experimental evaluation

6.1 System Architecture

In this section we outline the basic components of our

system, their roles and how they interact with each other.

A high-level architecture of our system is illustrated in Fig-

ure 2. The system consists of the following components:

The Fuzzy Membership Functions Manager is useful to

manage fuzzy linguistic terms. It enables users and ser-

vice providers to define their desired fuzzy terms along with

their membership functions. The defined terms are stored in

a local fuzzy terms knowledge base which can be shared by

users, and are linked to their implementing Web services.

This link2 describes a set of fuzzy terms and their imple-

menting Web services. Users and providers can directly test

the proposed membership functions and use the associated

fuzzy terms. For each fuzzy term we provide a shape that

gives a graphical representation of the associated member-

ship function, a form that helps users to compute the degree

2http://vm.liris.cnrs.fr:36880/FuzzyTerms/

149

to which a given value is in the fuzzy set of the considered

fuzzy term, and a WSDL description of the Web service that

implements the membership function.

Onto ogy

RDF Query
Rewriter

Top-k Service Composition Module

Service Locator Execution
Engine

SPARQL
Query

Composite
Service

Service
Registry

WSDL-S

Users

Q

WSWS WSWS

WSDL-SWSDL-S

Service
Providers

SOAP Messages

Ontology
Manager

Fuzzy Constraints
Matcher

System Interface

Service Ranker

Fuzzy Terms
(KB)

Implementation
(Web Services)

Preference Query
Formulator

Service
Annotator

Fuzzy Membership
Functions Manager

Top-K
Composition

Diversification
Aware Top-K
Composition

Composition Plan
Generator

Figure 2. System Architecture

The Service Annotator allows providers to annotate WSDL

description files of services with fuzzy terms to repre-

sent the services constraints and with SPARQL queries ex-

pressed over a domain ontology to represent the semantic

definition of the service functionality in the form of RDF

graph. This annotation is implemented by adding a new el-

ement called “rdfQuery” to the XML Schema of WSDL as

in WSDL-S approach. The WSDL files are then published

on a service registry. The ontology manager uses Jena API

to manage domain ontology (i.e., to add/delete concepts).

The Preference Query Formulator provides users with a

GUI implemented with Java Swing to interactively formu-

late their queries over a domain ontology. Users are not

required to know any specific ontology query languages to

express their queries.

The Top-k Service Compositions consists of five compo-

nents. The RDF Query Rewriter implements an RDF query

rewriting algorithm [2] to identify the relevant services that

match (some parts of) a user query. For that purpose, it

exploits the service annotation. The Service Locator feeds

the Query Rewriter with services that most likely match a

given query. The Top-K Compositions component com-

putes (i) the matching degrees of relevant services, (ii) the

fuzzy dominating scores of relevant services, (iii) the top-

k services of each relevant service class and (iv) the fuzzy

compositions scores to return the top-k compositions. The

diversification-aware Top-k Compositions component im-

plements the proposed quality metric to compute a diversi-

fied top-k service composition. The (diversified) top-k ser-

vice compositions are then translated by the composition
plan generator into execution plans expressed in the XPDL

language. They are executed by a workflow execution en-

gine; we use the Sarasvati execution engine from Google.

6.2 Experimental evaluation

This section presents an extensive experimental study

of our approach. Our objective is to prove the efficiency

and the scalability of our proposed Top-k service compo-

sition algorithms as the number of the considered services

increases. For this purpose, we implemented a Web ser-

vice generator. The generator takes as input a set of (real-

life) model services (each representing a class of services)

and their associated fuzzy constraints and produces for each

model service a set of synthetic Web services and their as-

sociated synthetic fuzzy constraints. In the experiments we

evaluated the effects of the following parameters: (i) the

number of services per class, (ii) the service classes num-

ber, (iii) the number of fuzzy constraints per class, (iv) the

number of matching methods and (v) the effects of ε and λ.

The algorithms T KSC and DT KSC were implemented

in Java and the experiments were conducted on a Pentium

D 2:4GHz with 2GB of RAM, running Windows XP.

0

5000

10000

15000

20000

200 400 600 800 1000

TKSC
DTKSC,s=s1
DTKSC,s=s2

0

1000

2000

3000

4000

5000

6000

2 3 4 5 6

TKSC
DTKSC,s=s1
DTKSC,s=s2

0

2000

4000

6000

8000

10000

2 4 6 8 10

TKSC
DTKSC,s=s1
DTKSC,s=s2

0

5000

10000

15000

20000

2 4 6 8 10

TKSC
DTKSC,s=s1
DTKSC,s=s2

Ti
m
e(
m
se
c)

Ti
m
e(
m
se
c)

Ti
m
e(
m
se
c)

Ti
m
e(
m
se
c)

Services per class Service classes (query parts)
(a) (b)

Max preferences involved in a class Mathing methods
(c) (d)

Figure 3. Performance results3 (k = 5)

Performance vs number of services per class: we var-

ied the number of services per class from 100 to 1000. Fig-

ure 3-(a) show that our framework can handle hundreds of

services in a reasonable time. The results show also that

computing the diversified top-k composition introduces an

insignificant cost when the factor s is small (e.g., s = s1).

Performance vs number of classes: We varied the

classes number from 1 to 6. Figure 3-(b) show that the exe-

cution time is proportional to the classes number.

Performance vs number of constraints per service:
We varied the fuzzy constraints number from 1 to 10. Fig-

ure 3-(c) shows that when the factor s is small (e.g., s = s1)

3s1 =

⌊√
|Sj |
k

⌋
and s2 =

⌊ |Sj |
k

⌋
where �x� is the integer part of x

150

Table 5. Effects of (ε, λ)

(ε, λ)
Top-k Compositions Diversified Top-k Compositions

Component Services Score Diversity Component Services Quality Score Diversity

(0.002, 0.05)
{S1318, S2292, S3154, S4154} 0.74703556

0.6121456

{S1318, S2292, S3154, S4154} 0.74703556 0.74703556

0.6995363{S1318, S259, S3154, S4154} 0.7441032 {S1318, S2292, S3154, S4134} 0.6972428 0.7426259

{S1318, S2152, S3154, S4154} 0.7441032 {S1318, S2134, S3154, S4154} 0.6972428 0.7426259

(0.02, 0.2)
{S1318, S2292, S3154, S4154} 0.6563174

0.59373885

{S1318, S2292, S3154, S4154} 0.6563174 0.6563174

0.6995363{S1318, S2132, S3154, S4154} 0.655371 {S1318, S2292, S3154, S4134} 0.612067 0.6519956

{S1318, S259, S3154, S4154} 0.65328693 {S1318, S2134, S3154, S4154} 0.6098658 0.6515922

(0.1, 0.3)
{S1318, S2292, S3154, S4154} 0.53315574

0.62760955

{S1318, S2292, S3154, S4154} 0.53315574 0.53315574

0.71135545{S1318, S2132, S3154, S4134} 0.5312762 {S1318, S2292, S3154, S4134} 0.49845165 0.5312762

{S1318, S2292, S3154, S4154} 0.53008974 {S1318, S2134, S3154, S4154} 0.49460968 0.5256555

the cost incurred in computing the diversified top-k compo-

sitions is insignificant as the constraints number increases.

Performance vs number of matching methods: we

varied the number of matching methods from 1 to 10. The

results of this experiment are shown in Figure 3-(d). Once

again the cost incurred in computing the diversified top-k
compositions remains insignificant as the methods number

increases if the factor s has a reasonable value (e.g., s = s1).

The effects of ε and λ: varying ε and λ change

the scores/qualities for the top-k/diversified-top-k compo-

sitions. This may consequently lead to the inclusion or to

the exclusion of a composition from top-k/diversified top-

k compositions. Table 5 shows the top-k/diversified-top-k
compositions for different values of ε and λ; the higher the

values of these parameters are the higher the global diver-

sity of the diversified top-k compositions is. The global di-

versity of the diversified top-k compositions set described

in the following equation is the average of the diversi-

ties between each couple of compositions in the composi-

tions set: div(top − k) =
∑k

i=1

∑k
j=i+1 div(Ci,Cj)

(k2−k)/2 , where

div(Ci, Cj) = Dist(Ci, Cj). Note that the global diversity

of the diversified top-k compositions is always higher than

that of the top-k compositions.

7 Conclusions

In this paper, we proposed an approach to compute the

top-k Data service compositions for answering fuzzy pref-

erence queries. We introduced the concept of fuzzy domi-
nance relationship to measure to what extent a service (rep-

resented by its vector of matching degrees) dominates an-

other one. This new concept allowed us to rank-order can-

didate services in their respective classes and compositions

to compute the top-k ones. We propose also a method to

improve the diversity of returned compositions while main-

taining as possible the compositions with the highest scores.

Further, we developed and evaluated suitable algorithms for

computing the top-k/diversified-top-k compositions. As a

future work, we intend to apply the proposed fuzzy ap-

proach to top-k QoS-based service composition.

References

[1] S. Agarwal and S. Lamparter. User preference based auto-

mated selection of web service compositions. In K. V. A. S.

M. Z. C. Bussler, editor, ICSOC Workshop on Dynamic Web
Processes, pages 1–12, Amsterdam, Netherlands, Dezember

2005. IBM.
[2] M. Barhamgi, D. Benslimane, and B. Medjahed. A query

rewriting approach for web service composition. IEEE T.
Services Computing, 3(3):206–222, 2010.

[3] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline

operator. In ICDE, pages 421–430, 2001.
[4] D. Dubois and H. Prade. Fundamentals of fuzzy sets.

Kluwer, Netherlands, 2000.
[5] A. Jhingran. Enterprise information mashups: Integrating

information, simply. In VLDB, pages 3–4, 2006.
[6] D. McSherry. Diversity-conscious retrieval. In ECCBR,

pages 219–233, 2002.
[7] M. Palmonari, M. Comerio, and F. D. Paoli. Effective

and flexible nfp-based ranking of web services. In IC-
SOC/ServiceWave, pages 546–560, 2009.

[8] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines

on uncertain data. In VLDB, pages 15–26, 2007.
[9] D. Skoutas, M. Alrifai, and W. Nejdl. Re-ranking web ser-

vice search results under diverse user preferences. In VLDB,
Workshop on Personalized Access, Profile Management, and
Context Awareness in Databases, pages 898–909, 2010.

[10] D. Skoutas, D. Sacharidis, A. Simitsis, V. Kantere, and T. K.

Sellis. Top- dominant web services under multi-criteria

matching. In EDBT, pages 898–909, 2009.
[11] H. Wang, S. Shao, X. Zhou, C. Wan, and A. Bouguettaya.

Web service selection with incomplete or inconsistent user

preferences. In ICSOC/ServiceWave, pages 83–98, 2009.
[12] H. Wang, J. Xu, and P. Li. Incomplete preference-driven

web service selection. In IEEE SCC (1), pages 75–82, 2008.
[13] Q. Wu, A. Iyengar, R. Subramanian, I. Rouvellou, I. Silva-

Lepe, and T. A. Mikalsen. Combining quality of ser-

vice and social information for ranking services. In IC-
SOC/ServiceWave, pages 561–575, 2009.

151

