
HAL Id: hal-00670704
https://hal.science/hal-00670704

Submitted on 15 Feb 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Top-k web services compositions: A fuzzy-set-based
approach

Karim Benouaret, Djamal Benslimane, Allel Hadjali

To cite this version:
Karim Benouaret, Djamal Benslimane, Allel Hadjali. Top-k web services compositions: A fuzzy-set-
based approach. ACM - Symp. on Applied Computing (SAC), Mar 2011, Taiwan. pp.1038-1043.
�hal-00670704�

https://hal.science/hal-00670704
https://hal.archives-ouvertes.fr

Top-k Service Compositions: A Fuzzy Set-Based Approach

Karim Benouaret
Lyon 1 University

69622, Villeurbanne, France
karim.benouaret@liris

.cnrs.fr

Djamal Benslimane
Lyon 1 University

69622, Villeurbanne, France
djamal.benslimane@liris

.cnrs.fr

Allel Hadjali
Enssat-University of Rennes 1

22305, Lannion, France
allel.hadjali@enssat.fr

ABSTRACT
Data as a Service (DaaS) is a flexible way that allows enter-
prises to expose their data. Composition of DaaS services
provides bridges to answer queries. User preferences are
becoming increasingly important to personalizing the com-
position process. In this paper, we propose an approach to
compose DaaS services in the context of preference queries
where preferences are modeled by means of fuzzy sets that
allow for a large variety of flexible terms such as ’cheap’, ’af-
fordable’ and ’fairly expensive’. The proposed approach is
based on RDF-based query rewritings to take into account
the partial matching between individual DaaS services and
parts of the user query. Matching degrees between DaaS
services and fuzzy preference constraints are computed by
means of different constraints inclusion methods. Such de-
grees express to which extent a service is relevant to the
resolution of the query. A fuzzification of Pareto dominance
is also proposed to better rank composite services by com-
puting the score of services. The resulting scores are then
used to compute the top-k DaaS service compositions that
cover the user query.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query for-
mulation, Search process, Selection process; H.3.5 [Online
Information Services]: Web-based services

General Terms
Measurement, Theory, Performance

Keywords
Fuzzy dominance, Web service, Top-k compositions, fuzzy
preferences queries.

1. INTRODUCTION
Nowadays, companies are increasingly moving towards a

service-oriented architecture for data sharing on the Web

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

by putting their data sources behind Web services, thereby
providing a well-documented and interoperable method of
interacting with their data [4, 5, 7]. In particular, if no sin-
gle Web service can satisfy the functionality required by the
user, there should be a possibility to combine existing ser-
vices together in order to fulfill the request. In this context,
we talk about DaaS (Data as a Service) Service Composi-
tion, where services correspond to calls, i.e. queries, over
the data sources.

When searching for items to purchase over the Web, cus-
tomer preferences are critical in the search. A more general
and suitable approach to model preferences is based on fuzzy
sets theory [6]. Fuzzy sets are very well suited to the inter-
pretation of linguistic terms, which constitute a convenient
way for a user to express her/his preferences. For example,
when expressing preferences about the ’price’ of a car, users
often employ fuzzy terms like ’rather cheap’, ’affordable’ and
’not expensive’.

However as DaaS services and providers proliferate, a large
number of candidate compositions that would use different
-most likely competing- services may be used to answer the
same query. Hence, it is important to set up an effective ser-
vice composition framework that would identify and retrieve
the most relevant services and return the top-k compositions
according to the user preferences.

The following example illustrates a typical scenario related
to our previous discussion, showing the challenges in finding
the top-k service compositions.
Running example. Let us consider an e-commerce sys-

tem supporting users to buy cars. The system has access to
the set of services described in Table 1. The symbols ’$’ and
’?’ denote inputs and outputs of DaaS services, respectively.
Services providing the same functionality belong to the same
service class. For instance, {S21, S22, S23, S24} belong to
the same class S2. Each service has its (fuzzy) constraints
on the data it manipulates. For instance, the cars returned
by S21 are of cheap price and short warranty.

Assume that a user Bob wants to buy a car. He sets his
preferences and submits the following query Q1: ’return the
French cars, preferably at an affordable price with a war-
ranty around 18 months and having a normal power with
a medium consumption’. Bob will have to invoke S11 to
retrieve the French automakers, he can then invoke one or
more of the services S21, S22, S23, S24 to retrieve the French
cars along with their prices and warranties, finally he will
invoke one or more of the services S31, S32, S33, S34 to re-
trieve the power and the consumption of retrieved cars. This
manual process is painful and tedious. It raises the follow-

Table 1: Example of DaaS Services
Service Functionality Constraints

S11($x, ?y)

Returns the
automakers y
whose country
is x

-

S21($x, ?y, ?z, ?t) Returns the
cars y along
with their
prices z and
warranties t
for a given
automaker x

z is cheap, t is short

S22($x, ?y, ?z, ?t)
z is accessible,
t is [12, 24]

S23($x, ?y, ?z, ?t)
z is expensive,
t is long

S24($x, ?y, ?z, ?t)
z is [9000, 14000],
t is [6, 24]

S31($x, ?y, ?z) Returns the
power y and
the
consumption z
for a given car
x

y is weak, z is small

S32($x, ?y, ?z)
y is ordinary, z is
approximately 4

S33($x, ?y, ?z)
y is powerful,
z is high

S34($x, ?y, ?z)
y is [60, 110],
z is [3.5, 5.5]

ing challenges: (i) how to understand the semantics of the
published DaaS services to select the relevant ones that can
contribute to answering the query at hand; (ii) how to re-
tain the most relevant services (several similar DaaS services
offer the same functionality but are associated with different
constraints) that better satisfy the user’s fuzzy preferences
(preferences based on fuzzy terms); and (iii) how to gen-
erate the best k DaaS service compositions that satisfy the
whole user query.

Contributions. We tackled the first challenge by propos-
ing a semantic annotation of DaaS services and an efficient
RDF-based query rewriting approach that generates auto-
matically the DaaS compositions that cover a user query
(which does not include any preference constraints) [2]. In
this paper, we focus on the second and third challenges.
We allow approximate query containment by selecting DaaS
services that cover a part of the query even if their con-
straints match only partially the user preference constraints.
Different constraints inclusion methods are investigated to
compute the matching degrees between the services’ fuzzy
constraints and the fuzzy preferences involved in the query.
In order to select the most relevant services, a multicriteria
fuzzy dominance relationship is proposed to rank-order ser-
vices. The scores computed are then leveraged to find the
top-k DaaS service compositions that answer the user query.

The rest of the paper is organized as follows. In Sec-
tion 2, we formally describe the studied problem. Section 3
describes the ranking approach of DaaS services which is
mainly based on the fuzzy dominance relationship. Section 4
is devoted to the top-k DaaS service compositions genera-
tion method for answering queries. Section 5 presents the
global architecture of our service composition-based prefer-
ence query answering and shows some experimental results.
We review related work in Section 6. Section 7 concludes
the paper.

2. SERVICE COMPOSITION-BASED PREF-
ERENCE QUERIES ANSWERING

2.1 Preference Queries
Users express their conjunctive preference queries over do-

main ontologies using a slightly modified version of SPARQL
query language. For instance, query Q1 given in Section 1
is expressed as follows:
SELECT ?n ?pr ?w ?pw ?co

WHERE ?Au rdf:type AutoMaker ?Au hasNationality ’French’

?Au makes ?C ?C rdf:type Car ?C hasName ?n

?C hasPrice ?pr ?C hasWarranty ?w

?C hasPower ?pw ?C hasConsumption ?co

Preferring {?pr is’affordable’, ?w is ’around 18’,

?pw is ’normal’, ?co is ’medium’ }

In our approach, user preferences are modeled using fuzzy
sets [6]. Formally, a fuzzy set F on a referential X is charac-
terized by a membership function µF : X −→ [0, 1], where
µF (x) represents the grade of membership of x in F . In
particular, µF (x) = 1 reflects full membership of x in F ,
µF (x) = 0 absolute non-membership and 0 < µF (x) < 1
partial membership. Namely having x, y ∈ F , x is more
preferable than y iff µF (x) > µF (y). If µF (x) = µF (y),
x and y are equally preferred. In practice, membership
functions are often of trapezoidal form represented by the
quadruplet (A,B, a, b). A regular interval [A, B] can be seen
as a fuzzy set represented by the quadruplet (A,B, 0, 0). The
semantics of all fuzzy terms of Table 1 are available in the
URL: http://vm.liris.cnrs.fr:36880/FuzzyTerms/.

2.2 DaaS services
Let us assume that DaaS services are partitioned into dif-

ferent classes of services. A class Sj represents services with
the same inputs, outputs, and providing the same function-
ality but different (fuzzy) constraints. A DaaS service Sji
of class Sj is described as a predicate
Sji($Xj , ?Yj) : − < Gj(Xj , Yj , Zj), Cji > where:

• Xj and Yj are the sets of input and output variables of
Sji, respectively. Input and output variables are also
called distinguished variables. They are prefixed with
the symbols ’$’ and ’?’, respectively.

• Gj(Xj , Yj , Zj) represents the functionality of the ser-
vice. This functionality is described as a semantic re-
lationship between input and output variables. Zj is
the set of existential variables relating Xj and Yj .

• Cji = {Cji1 , ..., Cjin} is a set of constraints expressed
as intervals or fuzzy sets on Xj , Yj or Zj variables.

Xj and Yj variables are defined in the WSDL description
of DaaS services. Functionality Gj and constraints Cji of a
DaaS service Sji are added to the standard WSDL descrip-
tions in the form of annotations. The annotations are rep-
resented in the form of SPARQL queries. For instance, the
following SPARQL query illustrates the functionality and
service constraints of the DaaS service S21:
SELECT ?y ?z ?t

WHERE {?Au rdf:type AutoMaker ?Au name ?x ?Au makes ?C

?C rdf:type Car ?C hasName ?y ?C hasPrice ?z

?C hasWarranty ?t ?z is ’cheap’ ?t is ’short’}

2.3 Discovering Relevant Services
Let Q be a conjunctive preference query. We use an effi-

cient RDF query rewriting algorithm to discover the parts

of Q that are covered by each service −recall that in the
general case services may match only parts (referred to by
qj) of Q. The same part qj is in general covered by one or
more services that constitute a class of relevant services and
is designated as class Sj . A service Sji ∈ Sj is said to be
relevant to a query Q iff the functionality of Sji completely
matches the part query qj and its constraints match com-
pletely or partially the preference constraints of qj (i.e., the
matching degree is strictly higher than 0).

As preference constraints of a query are expressed in the
rich fuzzy sets framework, their matching degrees with DaaS
services constraints may differ from one constraints inclusion
method (CIM) to another. Each relevant service is then as-
sociated with |M | matching degrees (if M = {m1, ...,m|M|}
is the set of the used methods). For instance, Table 2 shows
the matching degrees between each service Sji from Table 1
and its corresponding component qj (of the query Q1). The
degrees are computed by applying the following CIMs:

• Cardinality-based method (CBM) [15]. Let C and C′

be two fuzzy constraints, Deg(C ⊆ C′) = |C∩C′|
|C| .

• Implication-based method (IBM) [1]. Deg(C ⊆ C′) =
minx(µC(x)→f µC′(x)) where →f stands for a fuzzy
implication. The following IBMs are used for our run-
ning example: Godel (G-IBM), Lukasiewicz (L-IBM)
and Kleene-Diennes (K-IBM).

Due to lack of space, we do not present these methods.
The service S11 covering the component q1 does not have
a matching degree because there are no constraints imposed
by the user on q1. However, each service covering the com-
ponent q2 is associated with four (the number of methods)
degrees. Each matching degree is formulated as a pair of
real values within the range [0, 1], where the first and second
values are the matching degrees of the constraints price and
warranty, respectively. Similarly, for the matching degrees
of the services covering the component q3, the first and sec-
ond values represent the inclusion degrees of the constraints
power and consumption, respectively.

Table 2: Matching Degrees between services and
fuzzy preference constraints of Q1

Sji qj CBM G-IBM L-IBM K-IBM
S11 q1 - - - -
S21

q2

(1, 0.57) (1, 0) (1, 0) (0.80, 0)
S22 (0.89, 1) (0, 1) (0.90, 1) (0.50, 1)
S23 (0.20, 0.16) (0, 0) (0, 0) (0, 0)
S24 (0.83, 0.88) (0.60, 0.50) (0.60, 0.50) (0.60, 0.50)
S31

q3

(0.50, 0.36) (0, 0) (0, 0) (0, 0)
S32 (0.79, 0.75) (0, 0.25) (0.60, 0.50) (0.40, 0.50)
S33 (0.21, 0.64) (0, 0) (0, 0) (0, 0)
S34 (0.83, 0.85) (0.50, 0.50) (0.50, 0.50) (0.50, 0.50)

2.4 Problem Statement
Given a query Q : − < q1, ..., qn > where each qj is a

subquery (query component). qj is a tuple (qj , Pqj), where
qj represents qj without its preferences Pqj . Given a set
of services classes {S1, ...,Sn} where a class Sj regroups the
services that are relevant to a query part qj . Given |M | CIMs
to compute the matching degrees between the constraints of
relevant services and the user’s preference. The problem

we are interested in is how to rank DaaS services in each
class Sj to select the most relevant services and how to rank
generated DaaS service compositions to select the top-k ones
that answer the fuzzy query Q.

3. FUZZY DOMINANCE AND FUZZY SCORES

3.1 Fuzzy dominance v.s. Pareto dominance
Services of the same class Sj have the same functionality,

they only differ in terms of constraints, providing thus dif-
ferent matching degrees. Individual matching degrees of ser-
vices could be aggregated. One method is to assign weights
to individual degrees and, for instance, compute a weighted
average of degrees. In so doing, users may not know enough
to make trade-offs between different relevancies using num-
bers (average degrees). Users thus lose the flexibility to se-
lect their desired answers by themselves. Computing the
skyline [3] is as a natural solution to overcome this limita-
tion. The skyline consists of the set of points which are not
dominated by any other point.

Definition 1. (Pareto dominance) Let u and v be two d-
dimensional points. We say that u dominates v, denoted by
u � v, iff ∀i ∈ [1, d] , ui ≥ vi ∧ ∃k ∈ [1, d] , uk > vk.

Pareto dominance is not always significant to rank-order
points that, however, seem comparable from a user point of
view. To illustrate this situation, let u = (u1, u2) = (1, 0)
and v = (v1, v2) = (0.90, 1) be two matching degrees. In
Pareto order, we have neither u � v nor v � u, i.e. the
instances u and v are incomparable. However, one can con-
sider that v is better than u since v2 = 1 is too much higher
than u2 = 0, contrariwise v1 = 0.90 is almost close to u1 = 1.
This is why it is interesting to fuzzify the dominance rela-
tionship to express the extent to which a matching degree
(more or less) dominates another one. In line with the gen-
eral fuzzification dominance approach discussed in [8], we
define below a fuzzy dominance relationship that relies on
particular membership function of a graded inequality of the
type strongly larger than.

Definition 2. (Fuzzy dominance) Given two d-dimensional
points u and v, we define the fuzzy dominance to express the
extent to which u dominates v such as:

deg(u � v) =

∑d
i=1 µ�(ui, vi)

d
(1)

Where µ�(ui, vi) expresses the extent to which ui is more
or less (strongly) greater than vi. µ� can be seen as a
monotone membership function defined as:

µ�(x, y) =

 1 ifx− y > λ+ ε
0 ifx− y ≤ ε

x−y−ε
λ

otherwise

 (2)

Where λ > 0, i.e. � is more demanding than the idea
of ’strictly greater’. We should also have ε ≥ 0 in order
to ensure that � is a relation that agrees with the idea of
’greater’ in the usual sense.

Let us reconsider the previous instances u = (1, 0), v =
(0.90, 1), with ε = 0 and λ = 0.2. We have deg(u � v) =
0.25 and deg(v � u) = 0.5. This is more significant than
|u � v| = |v � u| = 0 provided by Pareto dominance, where
|u � v| = 1 if u � v, 0 otherwise. In the following sections,
we use the defined fuzzy dominance to compute scores of
services and compositions.

3.2 Associating fuzzy score with a service
It is well known that under a single matching degree method

(mono criteria), the dominance relationship is unambigu-
ous. When multiple CIM are applied (multi-criteria), re-
sulting in different matching degrees for the same couple of
constraints, the dominance relationship becomes uncertain.
The model proposed in [10], namely probabilistic skyline
overcomes this problem. Contrariwise, Skoutas et al. show
in [11] the limitations of the probabilistic skyline to rank
Web services and introduce the Pareto dominating score of
individual services. We generalize this score to fuzzy dom-
inance and propose a fuzzy dominating score (FDS). An
FDS of a service Sji indicates the average extent to which
Sji dominates the whole services of its class Sj .

Definition 3. (Fuzzy dominating score of a service) The
fuzzy dominating score (FDS) of a service Sji in its class
Sj is defined as:

FDS(Sji) =
1

(|Sj | − 1) |M |2

|M|∑
h=1

∑
Sjk∈Sj

k 6=i

|M|∑
r=1

deg(Shji � Srjk) (3)

where Shji is the matching degree of the service Sji obtained

by applying the hth CIM. The term (|Sj |−1) is used to nor-
malize the FDS score and make it in the range [0...1]. Table 3
shows the fuzzy dominating scores of the DaaS services of
our running example.

3.3 Associating fuzzy score with a composi-
tion

Different DaaS service compositions can be generated from
different Sj service classes to answer a user query. To rank
such generated compositions, we extend the previous FDS
definition to service composition and associate each compo-
sition with an FDS. The FDS of a composition C is an
aggregation of different FDSs of its component services.

Let C = {S1i1 , ..., Snin} be a composition of n services.
Let also d = d1 + ... + dn be the number of user preference
constraints where dj is the number of constraints involved
in the service Sjij . The FDS of C is then computed as
follows:

FDS(C) =
1

d

n∑
j=1

dj · FDS(Sjij) (4)

It is important to note that not all compositions are valid.
A composition C of services is valid if (i) it covers the user
query Q, (ii) it contains one and only one service from each
service class Sj , and (iii) it is executable. A composition is
said to be executable if all input parameters necessary for
the invocation of its component services are bound.

4. TOP-K DAAS SERVICE COMPOSITIONS

4.1 An Efficient Generation of Top-k Compo-
sitions

A straightforward method to find the top-k compositions
that answer a query is to generate all possible compositions,
compute their scores, and return the top-k ones. However,
this approach results in a high computational cost, as it
needs to generate all possible compositions, whereas, most
of them are not in the top-k. In the following, we provide an

Table 3: Services’ scores and top-k services
Services Class Score Top-k
S11 S1 - S11

S21

S2

0.487
S22 0.653 S22

S23 0.035 S24

S24 0.538
S31

S3

0.094
S32 0.593 S32

S33 0.130 S34

S34 0.743

optimization technique to find the top-k compositions. This
technique allows eliminating relevant services Sji from their
classes Sj before generating the compositions, i.e. services
that we are sure that if they are composed with other ones,
the obtained compositions are not in the top-k. The idea
is: we first compute the score of each service in its class,
then only the best services in each class are retained, after
that we compose the retained services, finally, we compute
the score of the obtained compositions and return the top-k
ones. To this end, we introduce the following theorem1.

Theorem 1. Let C = {S1i1 , ..., Snin} be a composition.
Let top-k(Sj) (resp. top-k(compositions)) be the top-k ser-
vices of the class Sj (resp. the top-k compositions). Then,
∃Sjij ∈ C;Sjij /∈ top-k(Sj) =⇒ C /∈ top-k(compositions)

This theorem means that the top-k sets of the different
service classes Sj are sufficient to compute the top-k com-
positions that answer the query at hand.

The fourth column of Table 3 shows the top-k (where
k = 2) services in each service class using the FDS scores.
Thus, relevant DaaS services that are not in the top-k of
their classes are eliminated. They are crossed out in Ta-
ble 3. The other DaaS services are retained. The top-k
DaaS service compositions are generated from the different
top-k Sj classes. Table 4 shows the possible compositions
along with their fuzzy scores and the top-k compositions of
our running example.

Table 4: Compositions’ scores and top-k ones
Compositions Score Top-k

C1 = {S11, S22, S32} 0.623
C2 = {S11, S22, S34} 0.698 C2

C3 = {S11, S24, S32} 0.566 C4

C4 = {S11, S24, S34} 0.640

4.2 Top-k DaaS Service Compositions Algo-
rithm

The algorithm, hereafter referred as TKDSC, computes
the top-k DaaS service compositions according to the fuzzy
scores. The algorithm proceeds as following.

Step.1 compute the matching degrees (lines 1-13). Each
class whose services cover a query component is added to
the list of relevant classes. If its services touch the query’s
user preferences, we compute its different matching degrees
according to the number of methods.

1Proofs excluded due to lack of space

Algorithm 1 TKDSC

Require: Q a preference query, S a set of service classes,
M = {m1, ...,m|M|}} a set of methods, k ∈ N, ε, λ

1: for all Sj in S do
2: S ← random(Sj , 1);
3: if ∃qj ∈ Q; cover(S, qj) then
4: R← R∪ Sj ;
5: if Pqj 6= ∅ then
6: for all Sji in Sj do
7: for all m in M do
8: MatchingDegree(Cji, Pqj ,m);
9: end for

10: end for
11: end if
12: end if
13: end for
14: for all Sj in R do
15: if Pqj = ∅ then
16: top-k.Sj ← random(Sj , k);
17: else
18: for all Sij in Si do
19: ServiceScore(Sji);
20: end for
21: top-k.Sj ← top(k,Sj);
22: end if
23: end for
24: C ← ComposeServices(top-k.Sj1 , ..., top-k.Sjm);
25: for all C in C do
26: CompositionScore(C);
27: end for
28: return top(k, C);

Step.2 eliminating less relevant services (lines 14-23). For
each class whose services do not touch the user preferences,
we select randomly k services since they are all equal with
respect to user preferences. Otherwise (i.e. its services
touch the user preferences), we first compute the score of its
services and then retain only the top-k ones.

Step.3 returning top-k compositions (lines 24-28). First,
we compose services from only the retained ones, i.e. the
top-k in each class. Then we compute the score of generated
compositions and finally we provide the user with the top-k
ones.

Figure 1 depicts some results obtained for queries with 2,
3 and 4 subqueries (query components). These results show
that the number of subqueries adds only a slight increase
in the execution time of the top-k algorithm. However, this
execution time is increased significantly when the number of
relevant services per class is large.

5. SYSTEM ARCHITECTURE
Figure 2 presents our implemented top-k DaaS service

compositions system. The system consists of the three ma-
jor modules: Annotation Module, Interactive Query Formula-

tion Module and Top-k Service Compositions Module.
The Annotation Module allows service providers to anno-

tate WSDL description files of services with fuzzy sets to
represent linguistic terms and with SPARQL queries to rep-
resent the RPV and constraints of services. This annotation
is implemented by adding a new element called ’rdfQuery’
to the XML Schema of WSDL as in WSDL-S approach.

Figure 1: experimental results

Query

formulator

Ontology

RDF Query

Rewriter

Top-k Service Composition Module

Service

Locator

Execution

Engine

SPARQL

Query

Composite

Service

Service

Registry

WSDL-S

Users

Q

Composition

Plan Generator

Interactive Query

Formulation Module

WSWS WSWS

WSDL

Annotator

Annotation Module

WSDL-SWSDL-S

Service

Providers

SOAP Messages

Ontology

Manager

Top-K

Compositions

System Interface

Figure 2: DaaS Service Composition Architecture

The annotated WSDL files are then published on a service
registry. The ontology manager uses Jena API to manage
domain ontology (i.e. to add/delete concepts).

The Interactive Query Formulation Module provides users
with a GUI implemented with Java Swing to interactively
formulate their queries over a domain ontology. Users are
not required to know any specific ontology query languages
to express their queries.

The Top-k Service Compositions Module consists of five com-
ponents. The RDF Query Rewriter implements an efficient
RDF query rewriting algorithm (RDF Query Rewriter) to
identify the relevant services that match (some parts of)
a user query. For that purpose, it exploits the RPVs in
the service description files. The Service Locator feeds the
Query Rewriter with services that most likely match a given
query. The Top-K Compositions component computes (i) the
matching degrees of relevant services, (ii) the fuzzy dominat-
ing scores of relevant services, (iii) the top-k services of each
relevant service class and (iv) the fuzzy compositions scores
to return the top-k compositions. The top-k compositions
are then translated by the composition plan generator into
execution plans expressed in the XPDL language. They are
executed by a workflow execution engine; we use the Saras-
vati execution engine from Google.

6. RELATED WORK
Preferences in Web service selection/composition have re-

ceived much attention in the service computing community
during the last years. Taking user preferences into account
allows to rank candidate services/ compositions and return
only the best k ones to the user. Hereafter, we review some
works for ranking and selecting Web services. Authors in
[9] propose a method to rank semantic web services. It is
based on computing the matching degree between a set of
requested NFPs (Non-Functional Properties) and a set of
NFPs offered by the discovered Web services. NFPs cover
QoS aspects, but also other business-related properties such
as pricing and insurance. Semantic annotations are used
for describing NFPs and the ranking process is achieved us-
ing some automatic reasoning techniques that exploit the
annotations. Wang et al.[12] propose a system for conduct-
ing qualitative Web service selection in the presence of in-
complete or conflicting user preferences. The paradigm of
CP-nets is used to model user preferences. The system uti-
lizes the history information (stored in the system) of users
to amend the preferences of active users, thus improving the
results of service selection. In [13], the authors present a new
ranking method, called ServiceRank. It considers the QoS
aspects as well as the social perspectives of services (such as
how they invoke each other via service composition). A ser-
vice that provides good QoS and is invoked more frequently
by others is more trusted by the community and will be
assigned a higher rank.

The works the most related to our proposal are those
proposed in [11, 14]. In [11], Skoutas et al. address rank-
ing and clustering Web services and propose methods based
on the notion of dominance; these methods apply multiple
matching criteria without aggregating the match scores of
individual services parameters. The notion of Web service
dominance introduced relies on the one of uncertain domi-
nance discussed in [10]. Two distinct scores are defined for
assessing when a service is objectively interesting: (i) the
dominated score of a service to indicate the average num-
ber of services by which it is dominated (ii) the dominating
score of a service to indicate the average number of services
that it dominates. Algorithms for computing the top-k Web
services according to each score are provided. To achieve a
balance between dominated and dominating scores, a third
ranking score for a service that combines both, is introduced.

In [14], Yu and Bougettaya address the problem of un-
certainty inherent in the Quality of Web Service (QoWS)
and compute the skylines from service providers (referred
to as service skylines). A service skyline can be regarded
as a set of service providers that are not dominated by oth-
ers in terms of QoWS attributes that interest all users. To
this end, a concept called p-dominant service skyline is de-
fined. A provider S belongs to the p-dominant skyline if
the probability that S is dominated by any other provider
is less than p. The authors provide also a discussion about
the interest of p-dominant skyline w.r.t. the notion of p-
skyline proposed in [10]. They show also that the former,
on one hand, avoids requiring from users to transform per-
sonal preferences into numerical weights and, on the other
hand, will not miss any ’really good’ providers (i.e., the ones
that provide consistently high QoWS).

7. CONCLUSIONS
In this paper, we addressed the top-k service compositions

problem to answer fuzzy preference queries. The key notion
of our approach is the fuzzy dominance relationship intro-

duced to measure the extent to which a vector of matching
degrees more or less dominates another one. This kind of
fuzzy dominance is then used to both rank DaaS services
in their classes and DaaS compositions in order to compute
the top-k service compositions. Although we have focused on
the DaaS services to answer a query, the proposed approach
could be applied in other cases to compute, for instance, the
top-k QoS-based service compositions.

8. REFERENCES
[1] W. Bandler and L. kohout. Fuzzy power and fuzzy

implication operators. Fuzzy Sets and Systems,
4:13–30, 1980.

[2] M. Barhamgi, D. Benslimane, and B. Medjahed. A
query rewriting approach for web service composition.
IEEE Transactions on Services Computing (TSC),
15(5):795–825, jan 2010.

[3] S. Borzsonyi, D. Kossmann, and K. Stocker. The
skyline operator. In IEEE International Conference on
Data Engineering, ICDE 2001, pages 421–430, 2001.

[4] D. Butler. Mashups mix data into global service.
Nature, 2006.

[5] M. Carey. This is your data on soa. In In IEEE Int.
Conference on Services-Oriented Computing and
Applications, 2007.

[6] D. Dubois and H. Prade. Fundamentals of fuzzy sets,
volume 7 of The Handbooks of Fuzzy Sets. Kluwer
Academic Pub, Netherlands, 2000.

[7] A. Jhingran. Enterprise information mashups:
integrating information, simply. In In Proccedings of
the 2006 VLDB, pages 3–4, 2006.

[8] M. Koppen and R. Vicente Garcia. A fuzzy scheme for
teh ranking of multivariate data and its application. In
In Proccedings of the 2004 Annual Meeting of the
NAFIPS, pages 140–145, 2004.

[9] M. Palmonari, M. Comerio, and F. De Paoli. Effective
and flexible nfp-based ranking of web services. In
ICSOC-ServiceWave ’09, pages 546–560, Berlin,
Heidelberg, 2009. Springer-Verlag.

[10] J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic
skylines on uncertain data. In In Proccedings of the
2007 VLDB Conference, pages 20–27, 2007.

[11] D. Skoutas, D. Sacharidis, A. Simitsis, V. Kantere,
and T. K. Sellis. Top-k dominant web services under
multi-criteria matching. In EDBT, pages 898–909,
2009.

[12] H. Wang, J. Xu, and P. Li. Incomplete
preference-driven web service selection. In SCC ’08:
Proceedings of the 2008 IEEE International
Conference on Services Computing, pages 75–82,
Washington, DC, USA, 2008. IEEE Computer Society.

[13] Q. Wu, A. Iyengar, R. Subramanian, I. Rouvellou,
I. Silva-Lepe, and T. Mikalsen. Combining quality of
service and social information for ranking services. In
ICSOC-ServiceWave ’09, pages 561–575, Berlin,
Heidelberg, 2009.

[14] Q. Yu and A. Bouguettaya. Computing service skyline
from uncertain qows. IEEE T. Services Computing,
3(1):16–29, 2010.

[15] L. Zadeh. A computational approach to fuzzy
quantifiers in natural languages. Computer
Mathematics with Applications, 9:149–183, 1983.

