Camille Leroux
email: camille.leroux@mcgill.ca

Ido Tal
email: ital@mail.ucsd.edu

Alexander Vardy
email: avardy@ucsd.edu

Warren J Gross
email: warren.gross@mcgill.ca

Architectures matérielles pour le décodage des codes polaires

Les codes polaires sont une famille de codes qui permettent, sous certaines conditions, d'atteindre la capacité d'un canal de transmission. De plus en plus de travaux traitent d'aspects théoriques liés à la définition de ces codes pour différents problèmes de la théorie de l'information. Cette étude porte sur la définition d'architectures de décodeurs à annulation successive pour le décodage des codes polaires. Nous montrons qu'un décodeur à annulation successive peut être implementé avec O(n) noeuds de calculs et O(n) éléments mémoires (au lieu de O(n log 2 n)) tout en garantissant un débit constant. Enfin nous montrons que les noeuds de calculs peuvent être simplifiés en effectuant les calculs dans le domaine logarithmique et nous proposons une architecture en format signe et magnitude.

Abstract -Polar codes are recently-discovered capacity-achieving codes. Many recent works adress theoretical issues on the definition of codes for various information theory problems. This study focus on the practical aspect of hardware implementation of the associated decoders. We show that a successive cancellation decoder can be implemented with O(n) processing nodes and O(n) memory elements (instead of O(n log n)) while maintaining the same throughput. We also show how processing nodes can be simplified in logarithmic domain and we propose an architecture in sign and magnitude format.

Introduction

Inventés par Arıkan en 2009, les codes polaires [START_REF] Arıkan | Channel Polarization : A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels[END_REF] sont des codes correcteurs d'erreurs qui atteignent asymptotiquement la capacité du canal de transmission si celui-ci est symétrique, sans-mémoire et à entrée binaire. De plus, leur construction est explicite et il est possible de les encoder et décoder avec une complexité O(n log 2 n) 1 , n étant la longueur du code. Enfin, les codes polaires sont optimaux pour le codage de source [START_REF] Hussami | Performance of polar codes for channel and source coding[END_REF] ou bien encore le codage sécurisé [START_REF] Mahdavifar | Achieving the secrecy capacity of wiretap channels using Polar codes[END_REF]. Etant les seuls codes à réunir toutes ces propriétés à la fois, les codes polaires sont perçus comme une avancée majeure en théorie de l'information. D'un point de vue pratique, les performances de ces codes ne sont intéressantes que pour une grande taille de bloc : n > 2 20 . Pour des valeurs de n plus faibles, les performances des codes polaires sont inférieures à celles des codes LDPC [START_REF] Gallager | Low-Density Parity-Check Codes[END_REF] ou des turbo codes [START_REF] Berrou | Near Shannon limit error-correcting coding and decoding : Turbo-codes[END_REF]. Il est néanmoins vraisemblable que l'on puisse améliorer les performances des codes polaires en les associant à des techniques existantes telles que la concaténation [START_REF] Bakshi | Concatenated Polar codes[END_REF], le décodage par liste [START_REF] Tal | List decoding of polar codes[END_REF], ou bien encore le turbo-décodage [START_REF] Pyndiah | Near-optimum decoding of product codes : block turbo codes[END_REF]. Du point de vue architectural, leur structure récursive régulière et l'absence de propriété pseudo-aléatoire confèrent aux codes polaires une bonne prédisposition à l'implémentation matérielle.

Les codes polaires

Les codes polaires sont des codes en blocs linéaires construits à partir de la m ième puissance de Kronecker de la matrice F = [1 0

1 1]. La matrice génératrice G n est obtenue en appliquant un adressage bit-reversed aux lignes de F ⊗m . La figure 1 représente G 8 sous forme graphique. Le mot de code résultant c est envoyé sur le canal de transmission. A la réception, en supposant que les bits u i sont estimés en utilisant un décodage à annulation successive (AS), il est démontré dans [START_REF] Arıkan | Channel Polarization : A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels[END_REF] que chaque bit u i est caractérisé par une probabilité d'erreur qui tend soit vers 0 (sans erreur) soit vers 0.5 (bruit pur) lorsque n -→ ∞. De plus la proportion de bits u i ayant une faible probabilité d'erreur tend vers la capacité du canal de transmission. Les codes polaires tirent avantage de ce phénomène de polarisation du canal en envoyant k bits d'information sur les positions u i les plus fiables et en fixant les n -k bits restant à une valeur prédeterminée. Les codes polaires atteignent asymptotiquement la capacité du canal à la condition que le récépteur utilise un décodeur à annulation successive. Celui-ci estime la valeur des bits non-encodé ûi (successivement de û0 à ûn-1) :

ûi = 0, if Pr(y,û i-1 0 |ui=0) Pr(y,û i-1 0 |ui=1) > 1, 1, otherwise, (1)
y représente l'observation du canal. L'estimation d'un bit ûi est ensuite réutilisé pour l'estimation des bits suivants ûn-1 i+1 .

Du papillon à l'arbre

Dans [START_REF] Arıkan | Channel Polarization : A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels[END_REF] Arıkan a montré qu'il était possible de concevoir un décodeur AS en utilisant une structure similaire à une transformée de Fourier rapide (TFR). Cependant, bien que le décodeur utilise effectivement une topologie à base de papillons, les noeuds de calculs ainsi que le séquencement des opérations sont différents d'une TFR. Un décodeur-papillon pour un code des bits précédemments décodés. L'estimation d'un bit ûi s'effectue en activant n -1 noeuds de calcul suivant une structure en arbre (l'arbre utilisé pour l'estimation de û3 est indiqué en gras sur la Figure 2). Ainsi, à chaque instant du décodage, et dans chaque étage S l , seulement 2 l noeuds sont actifs. Ceci suggère qu'il est possible d'effectuer le même traitement en implémentant un arbre de noeuds de calculs configurables 2 (NCC). De plus le décodeur-papillon peut être vu comme un ensemble d'arbres de calcul dont les noeuds se chevauchent. Par example l'estimation de û2 et û3 ne diffère que par un seul noeud. Il est par conséquent possible de réutiliser certains calculs à condition d'ajouter des resources mémoires entre les étages du décodeur. En analysant le séquencement des opérations on peut montrer qu'un seul élément mémoire par noeud de calcul est suffisant. Le décodeur en arbre résultant est ainsi constitué de n -1 NCC et n -1 éléments de mémoire. Dans les deux cas (décodeur-papillon ou en arbre), le schéma de séquencement est identique comme montré sur la Figure 3. Nous supposons ici qu'un seul étage est activé par cycle d'horloge. En supposant que la fréquence d'horloge est limitée par le temps de traversée d'un noeud de calcul t nc , on peut montrer que le débit estimé résultant est

D = n (2n -2)t nc ≈ 1 2t nc . (2)

L'arbre entrelacé

Le décodeur AS en ligne tire profit des étages inactivés du décodeur en arbre pour réduire la complexité. Une alternative est d'utiliser ces étages inactivés pour décoder d'autres mots de code en parallèle en ainsi augmenter le débit global de traitement. L'entrelacement n'est possible qu'à condition de dupliquer une partie des resources de calcul. Un décodeur entrelacé est donc un décodeur en arbre dans lequel on duplique un ou plusieurs étages de NCC. La table 1 donne un exemple de séquencement pour un décodeur dans lequel seul S 0 est dupliqué pour n = 8. On constate que P = 3 mots de codes sont traités en même temps alors qu'un seul NCC est ajouté. Les resources mémoires doivent néanmoins être dupliquées de manières à fournir les données intermédiaires pour chaque mot de code. On peut montrer que

Approximation dans le domaine algorithmique

Dans le décodage AS proposé dans [START_REF] Arıkan | Channel Polarization : A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels[END_REF] les données sont représentées sous forme de rapports de vraisemblance. Les fonctions f et g nécessitent des multiplications et des divisions qui sont complexes à implémenter sur du silicium. De manière similaire à ce qui se fait dans le décodage des codes LDPC et des turbo codes, nous proposons de transposer les calculs dans le domaine des logarithmes de rapport de vraisemblance (LRV) :

f (λ a , λ b) = 2 tanh -1 tanh λa 2 tanh λ b 2 g ûs (λ a , λ b) = λ a (-1) ûs + λ b , (3)
λ a en λ b sont les LRVs. Bien que le passage dans le domaine logarithmique permette de réduire le calcul de la fonction g à une simple addition/soustraction, la fonction f reste complexe à estimer (produit de tanh). Il a été montré dans [START_REF] Fossorier | Reduced complexity iterative decoding of low-density parity check codes based on belief propagation[END_REF] qu'un simple calcul de minimum permettait d'obtenir une bonne approximation de f . Les calculs effectués au sein du décodeur deviennent alors :

f (λ a , λ b) ≈ sign(λ a) sign(λ b) min(|λ a |, |λ b |). g ûs (λ a , λ b) = λ a (-1) ûs + λ b , (4)
La figure 6 compare les performances de décodage pour deux codes avec et sans approximation. La dégradation des performances induite est négligeable pour n = 1024 et se limite à 0.1dB pour n = 16384. Un NCC comporte seulement un additionneur et un comparateur qui est par ailleurs utilisé dans le calcul de f et g.

Conclusion

Nous proposons de tirer profit du séquencement particulier du décodage à annulation successive pour réduire la complexité des resources de calcul. Dans le tableau 2, pour chaque architecture mentionnée ici, nous comparons les complexités en termes de resources de calcul et de resources mémoires. Nous donnons également le débit estimé de fonctionnement. Nous proposons enfin une architecture de noeud de calcul qui fonctionne dans le domaine logarithmique avec un format signe et magnitude.

Arch.

Nb de NCC Nb d'éléments mém. Débit Papillon [START_REF] Arıkan | Channel Polarization : A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels[END_REF] n

FIGURE 3 -

 3 FIGURE 3 -Séquencement du décodeur papillon et en arbre pour n = 8.polaire de taille n = 8 est décrit sur la Figure2. Ce décodeur estime les bits non-encodés u i à partir des rapports de vraisemblance (RV) reçus du canal. Ce décodeur est composé de log n étages S l comportants chacun n noeuds de calcul. Chacun des noeuds calcule f (a, b) = 1+ab a+b ou g ûs (a, b) = a 1-2ûs b, a et b étant les RV d'entrée et ûs une somme partielle modulo-2 des bits précédemments décodés. L'estimation d'un bit ûi s'effectue en activant n -1 noeuds de calcul suivant une structure en arbre (l'arbre utilisé pour l'estimation de û3 est indiqué en gras sur la Figure2). Ainsi, à chaque instant du décodage, et dans chaque étage S l , seulement 2 l noeuds sont actifs. Ceci suggère qu'il est possible d'effectuer le même traitement en implémentant un arbre de noeuds de calculs configurables 2 (NCC). De plus le décodeur-papillon peut être vu comme un ensemble d'arbres de calcul dont les noeuds se chevauchent. Par example l'estimation de û2 et û3 ne diffère que par un seul noeud. Il est par conséquent possible de réutiliser certains calculs à condition d'ajouter des resources mémoires entre les étages du décodeur. En analysant le séquencement des opérations on peut montrer qu'un seul élément mémoire par noeud de calcul est suffisant. Le décodeur en arbre résultant est ainsi constitué de n -1 NCC et n -1 éléments de mémoire. Dans les deux cas (décodeur-papillon ou en arbre), le schéma de séquencement est identique comme montré sur la Figure3. Nous supposons ici qu'un seul étage est activé par cycle d'horloge. En supposant que la fréquence d'horloge est limitée par le temps de traversée d'un noeud de calcul t nc , on peut montrer que le débit estimé résultant est

FIGURE 4 -

 4 FIGURE 4 -Architecture du décodeur en ligne 4 La simple ligne Il est possible d'aller encore plus loin dans la réduction de la complexité en notant qu'à chaque cycle d'horloge, un seul étage du décodeur en arbre est réellement activé comme montré sur la Figure 3. Dans le pire des cas n 2 calculs doivent être effectués en parallèle. n -1 éléments mémoires sont cependant toujours nécessaires pour les calculs intermédiaires. En d'autres termes, une ligne de n 2 NCC connectée à un arbre de n -1 éléments mémoire permet d'effectuer le même traitement que le décodeur en arbre tout en conservant le même débit puisque le schéma de séquencement reste le même. Un exemple de décodeur-ligne est détaillé sur la Figure 4. Des bancs mémoires sont accessibles par une ligne de NCC via un générateur d'adresse. Il est possible de réduire encore plus le nombre de NCC avec une faible perte de débit. Dans la figure 3, on constate que chaque étage l est activé 2 fois. Par conséquent, n 2 NCC du décodeur en sont tous activés simultanéement à seulement deux reprises durant le décodage d'un vecteur. Ainsi, un décodeur semi-parallèle constitué de n 4 NCC ne nécessiterait que 2 cycles d'horloge supplémentaire pour décoder un vecteur. Un tel décodeur est en cours d'étude.

FIGURE 5 -

 5 FIGURE 5 -Décodeur en arbre entrelacé pour n = 8 et P = 3 le nombre de NCC croît en O(n + log(P)), P étant le nombre de mots de code traités en parallèle. Pour sa part, la complexité mémoire croît de manière linéaire avec le parallélisme : O(nP). Cette architecture augmente le débit de traitement qui croît également linéairement avec P .

FIGURE 6 -7

 6 FIGURE 6 -Performance de décodage AS avec et sans approximation.7 Architecture d'un noeud de calcul configurable

 Dans[START_REF] Arıkan | Channel Polarization : A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels[END_REF], Arıkan propose une structure de codage et de décodage dont la complexité croît en O(n log n). Nous proposons de tirer profit du séquencement particulier des opérations dans le décodage des codes polaires pour définir une famille d'architectures dont la complexité matérielle est réduite à O(n) sans perte de débit. Enfin nous proposons une approximation des calculs dans le domaine logarithmique qui permet de rem-

	FIGURE 2 -Architecture d'un décodeur papillon pour n = 8.	
	u 0	c 0
	u 4	c 1
	u 2	c 2
	u 6	c 3
	u 1	c 4
	u 5	c 5
	u 3	c 6
	u 7	c 7
	FIGURE 1 -Structure de l'encodeur pour n = 8
	placer multiplieurs et diviseurs par de simples additionneurs et
	comparateurs.	

1. Dans la suite, même si cela n'est pas spécifié tous les logarithmes sont en base 2

TABLE 1 -

 1 Séquencement du décodage de P = 3 mots de codes dans le décodeur en arbre entrelacé pour n = 8.

	P 2,0

TABLE 2 -

 2 Comparaison des architectures de décodeurs AS. FIGURE 7 -Architecture d'un NCC.

		log n	n log n	1/2t nc
	Arbre	n -1	n -1	1/2t nc
	Ligne	n 2	n -1	1/2t nc