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Stochastic Chase Decoding of Reed-Solomon Codes
Camille Leroux, Member, IEEE, Saied Hemati, Senior Member, IEEE, Shie Mannor, Senior Member, IEEE,

and Warren J. Gross, Senior Member, IEEE

Abstract—In this letter, we propose a probabilistic approach
to the generation of test patterns in the Chase Algorithm (CA)
denoted as the Stochastic Chase Algorithm (SCA). We compare
the performance of SCA with the regular CA for different Reed-
Solomon codes. Simulation results show that the probabilistic
nature of the SCA helps in providing a more efficient test pattern
generation. SCA avoids the use of least reliable bits selection and
reduces the number of candidate codewords up to 60% for the
same decoding performance.

Index Terms—Stochastic decoding, Chase algorithm, soft de-
cision decoding, Reed-Solomon codes.

I. INTRODUCTION

THE Chase Algorithm (CA) [1] and Generalized Mini-
mum Distance (GMD) decoding [2] are soft-decoding

methods satisfying the property that a Hard Decision Decoder
(HDD) is used to generate a set of candidate codewords that
are compared by a likelihood measure. GMD and CA provide
near-Maximum-Likelihood (ML) performance for high SNR
values. It is important to efficiently generate a set of candidate
codewords in such a way that the ML-codeword is included
in the set. This set becomes rapidly large as the minimum
distance of the code increases. We propose a probabilistic
approach, denoted by Stochastic Chase Algorithm (SCA), to
generate the candidate codewords for soft-decoding of Reed-
Solomon (RS) codes.

II. STOCHASTIC TEST PATTERN GENERATION IN THE

CHASE ALGORITHM

A. Model of the Communication System

Let 𝐶(𝑛, 𝑘, 𝑑) be a linear block code of size 𝑛, with
dimension 𝑘 and minimum distance 𝑑. An information vec-
tor 𝑈 = (𝑢1, 𝑢2, ..., 𝑢𝑘) is encoded to a codeword 𝑋 =
(𝑥1, 𝑥2, ..., 𝑥𝑛) ∈ 𝐶. Each 𝑥𝑖 is transmitted over an Additive
White Gaussian Noise (AWGN) channel using Binary Phase
Shift Keying (BPSK) modulation. At the receiver side, the soft
input of the decoder is computed from the received sequence
𝑌 = (𝑦1, 𝑦2, ..., 𝑦𝑛). The soft input can either be represented
in the probability domain 𝑃 = (𝑝1, 𝑝2, ..., 𝑝𝑛) with:

𝑝𝑖 = Pr(𝑦𝑖∣𝑥𝑖 = 1) =
1

1 + 𝑒
2𝑦𝑖
𝜎2
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or in log-likelihood ratio domain 𝑅 = (𝑟1, 𝑟2, ..., 𝑟𝑛) where

𝑟𝑖 =
2𝑦𝑖
𝜎2
, 𝑖 = 1, ..., 𝑛.

Let 𝑌 𝐻 = (𝑦𝐻1 , 𝑦
𝐻
2 , ..., 𝑦

𝐻
𝑛 ) be the bit-wise hard decision

sequence such that:

𝑦𝐻𝑖 =

{
0, if 𝑟𝑖 ≥ 0 or 𝑝𝑖 ≤ 0.5,
1, otherwise.

The reliability of the hard decision 𝑦𝐻𝑖 is measured by the
magnitude ∣𝑟𝑖∣ in log-likelihood ratio domain or equivalently
by ∣𝑝𝑖 − 0.5∣ in probability domain.

B. The Chase Algorithm

The CA [1] performs a hard decision decoding on a set of
test patterns 𝑌 𝑚. A test pattern is devised by inverting at most
𝜆 least reliable bits in the received sequence 𝑌 . The decoded
codeword is selected using the soft distance between 𝑌 and
the corrected test pattern𝑋𝑚 (candidate codeword). Reference
[1] proposed three different versions of this algorithm. They
differ in the least reliable bit selection and in the test pattern
generation method. The performance and the complexity of the
algorithm increase with 𝜆. In this work, we consider 𝜆 ≥ 𝑑.
The CA can be described using the following steps:

1) For 1 ≤ 𝑖 ≤ 𝑛, compute 𝑟𝑖 =
2𝑦𝑖

𝜎2 .
2) Select the 𝜆 least reliable bits in 𝑅.
3) For 1 < 𝑚 < 2𝜆,

∙ Form the test pattern 𝑌 𝑚 by inverting some of the
least reliable bits,

∙ Perform Berlekamp-Massey (BM) HDD on 𝑌 𝑚 to
get 𝑋𝑚,

∙ Compute the soft weight of 𝑌 𝐻 ⊕𝑋𝑚 :

𝑊 (𝑌 𝐻 ⊕𝑋𝑚) =

𝑛∑
𝑖=1

∣𝑟𝑖∣(𝑦𝐻𝑖 ⊕ 𝑥𝑚𝑖 ).

4) Select the decided word 𝐷 such that:

𝐷 = 𝑋𝑗, 𝑊 (𝑌 𝐻 ⊕𝑋𝑗) =
2𝜆

min
𝑚=1

𝑊 (𝑌 𝐻 ⊕𝑋𝑚).

For high-rate medium-size codes, the CA provides near-ML
performance while having low complexity. But at lower rates
(𝑖.𝑒., larger 𝑑), the number of required test patterns grows
exponentially with 𝑑.

C. The Stochastic Chase Algorithm

In the proposed Stochastic Chase Algorithm, the test pat-
tern selection is modeled as a bit-wise stochastic experiment
directed by the observation of the channel output. Each test
pattern bit 𝑦𝑚𝑖 is generated according to the reliability of the
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received bit ∣𝑝𝑖 − 0.5∣. The SCA consists of the following
steps:

1) For 1 ≤ 𝑖 ≤ 𝑛,
∙ If 𝑝𝑖 ≤ 0.5− 𝜃 then 𝑝𝑖 = 0, where 0 < 𝜃 < 0.5,
∙ Else If 𝑝𝑖 ≥ 0.5 + 𝜃 then 𝑝𝑖 = 1,
∙ Else 𝑝𝑖 = 1

1+𝑒𝛽𝑦𝑖
, where 𝛽 > 0.

2) For 1 < 𝑚 < 𝜏

∙ For 1 < 𝑖 < 𝑛

– Generate a uniformly distributed random value:
𝑠𝑖 ∈ [0, 1].

– Generate 𝑦𝑚𝑖 =

{
0, if 𝑠𝑖 ≤ 𝑝𝑖,
1, otherwise.

∙ Perform BM-HDD on 𝑌 𝑚 to get 𝑋𝑚.
∙ Compute the soft weight of 𝑌 𝐻 ⊕𝑋𝑚:

𝑊 (𝑌 𝐻 ⊕𝑋𝑚) =

𝑛∑
𝑖=1

∣𝑝𝑖 − 0.5∣(𝑦𝐻𝑖 ⊕ 𝑥𝑚𝑖 ).

3) Select the decided word 𝐷 such that:

𝐷 = 𝑋𝑗,𝑊 (𝑌 𝐻 ⊕𝑋𝑗) =
𝜏

min
𝑚=1

𝑊 (𝑌 𝐻 ⊕𝑋𝑚).

Step 1 saturates the most reliable input according to some
threshold 𝜃. It prevents the most reliable bits from being
flipped. The parameter 𝛽 is a positive constant that has to be
optimized for the code. This factor is equivalent to the Noise
Dependent Scaling (NDS) used in stochastic decoding of
LDPC codes [3], which improves the decoding performance.
This parameter reduces the average value of ∣𝑝𝑖 − 0.5∣, and
consequently the number of identical test patterns decreases.
Furthermore, similar to the NDS, the soft input is independent
from the noise power 𝜎2. Therefore, the noise power estima-
tion is not required.

In step 2, 𝜏 test patterns are generated bit-wise in such a
way that unreliable bits are more likely to be flipped. This
probabilistic generation of test patterns is similar to stochastic
computation used in LDPC decoding [4]. As opposed to the
CA, the SCA does not limit the search to the subset defined by
the least reliable bits. For instance, if the error pattern contains
an error on the (𝜆 + 1)𝑡ℎ least reliable bit, the CA will not
be able to correct it because the erroneous bit is out of the
searched space. However, this particular bit may be flipped by
the SCA and the correct codeword would be considered.
Furthermore, in the CA, in order to get close to ML-
performance, the number of considered Least Reliable Bits
(LRB) 𝜆 should be proportionnal to 𝑑 and the LRB search
complexity is 𝑂(𝜆𝑛). It means that the LRB search becomes
rapidly complex for low rate codes (i.e., large minimum
distance). However, in the SCA, the LRB search is replaced
by a stochastic generation of test patterns. This probabilistic
process is a bit-wise operation and has a complexity 𝑂(𝑛).
The SCA is then well adapted to large block length and
low rate codes. In terms of hardware implementation, a high
parallelism level can be reached by implementing 𝑛 inde-
pendent random generators. It is also possible to use several
instanciations of the same SCA decoder (simply with different
seeds) in order to reduce the latency. If we assume an infinite
number of trials 𝜏 , 0 < 𝑝𝑖 < 1, and 𝜃 = 0.5, then all the
possible codewords will be generated which means that the
SCA is an asymptotically ML-decoder.

III. SOFT DECODING OF RS CODES

An (𝑛, 𝑘, 𝑑) RS code is defined over the Galois field
𝐺𝐹 (2𝑀 ) with length 𝑛 = 2𝑀 −1, dimension 𝑘 and minimum
distance 𝑑 at a symbol level. Each symbol in 𝐺𝐹 (2𝑀 ) can
be mapped to a binary image according to a basis in 𝐺𝐹 (2):
𝐵 = (𝑏1, 𝑏2, ..., 𝑏𝑀 ). The resulting binary linear block code
has a length 𝑛𝑏 = 𝑛 ×𝑀 , a dimension 𝑘𝑏 = 𝑘 ×𝑀 and a
binary minimum distance 𝑑𝑏 ≥ 𝑑.

Recently, several solutions have been proposed for soft
decision decoding of RS codes. Some of these are based on
polynomial interpolation [5], which provide good performance
but require complex computation structures. Adaptive Belief
Propagation (ABP) algorithm was proposed in [6], it provides
even better performance but requires Gaussian eliminations
on the parity check matrix which leads to a prohibitive
complexity. In [7], it was shown that the association of ABP
and the Koetter Vardy (KV) algorithm can achieve the ML
lower bound for the RS(31,25). However, this solution also
suffers from high complexity. In [8], a Stochastic Shifting
based Iterative Decoding (SSID) provides reasonable coding
gain but requires more than 10000 BP iterations for the
RS(31,25) code and it only applies to cyclic codes. In [9]
Gaussian noise is added to the received sequence in order
to generate candidate codewords. After each iteration, the
parameters of the Gaussian noise are updated according to
the best candidate codeword, which requires a large amount
of memory and complex computations. This method is called
Stochastic Erasure-Only List Decoding (SEOLD). In [10],
an Iterative Box and Match (IT-BMA) approach is used
which provides good performance but requires complex com-
putations. Finally, minimum distance based (Chase, GMD)
algorithms are efficient solutions when a few test patterns
have to be generated (i.e., for high rate codes). However, they
become complex when the minimum distance increases.

IV. SIMULATION RESULTS

In this section, we simulate the performance of different RS
codes on an AWGN with BPSK modulation scheme, such that
soft inputs are computed bit-wise (see Section II.A.). We use
the Berlekamp-Massey (BM) algorithm [11], [12] for HDD.
SCA performance is compared with CA and also with different
reported soft decoding algorithms. We refer to Adaptive Belief
Propagation algorithm [6] as ABP(𝐴×𝐴′) where 𝐴 represents
the number of BP iterations per outer round and 𝐴′ refers
to the number of outer rounds (Gaussian elimination on the
parity check matrix). We refer to the Koetter-Vardy algorithm
[5] as KV(𝜇) where 𝜇 represents the maximum multiplicity.
SSID [8] with 𝐴 BP-iterations per outer round and 𝐴′ outer
rounds (stochastic shift) is labeled SSID(𝐴×𝐴′). SEOLD [9]
with 𝐴 iterations is labeled SEOLD(𝐴). SCA(𝜏 ) and CA(𝑚)
refer to SCA with 𝜏 trials and CA with 𝑚 = 2𝜆 test patterns,
respectively.

We first present results for the RS(31,25) code which has
a binary minimum distance 𝑑𝑏 = 7. In order to have a fair
comparison between the CA and the SCA, we set the number
of trials of the SCA and the number of test patterns in the CA
to the same value: 𝜏 = 2𝜆 = 1024. As shown in Fig. 1, SCA
provides a 0.15dB coding gain over CA, and approaches the
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Fig. 1. RS(31,25) code on AWGN, 𝛽 = 6, 𝜃 = 0.45.

TABLE I
NUMBER OF TEST PATTERNS

Code CA SCA SNR (dB) @ FER=10−4

RS(31,25) 1024 402 5.2

RS(63,55) 1024 538 5.65

RS(255,239) 1024 549 6.4

ML lower bound within 0.5dB at a Frame Error Rate (FER)
of 10−4. It is also close to the ABP(20 × 3) performance
which requires 60 BP iterations and 3 Gaussian eliminations
on the parity check matrix. The SCA provides 0.4dB gain at
FER= 10−4 compared to existing stochastic methods (SEOLD
and SSID) that also have higher computational complexity.
Performance of the widely used RS(255,239) code is con-
sidered in Fig. 2. SCA(1024) provides 0.15dB coding gain
compared to KV(100). The performance can be traded off with
complexity by increasing 𝜏 , the performance of SCA(65K) is
0.4dB away from IT-BMA [10]. It is also 0.6dB away from
the ABP(80 × 50) which requires 50 Gaussian eliminations
and 4K BP iterations. The ML lower bound in this figure is
based on [13].

Table I compares the number of required test patterns in
SCA with CA for different RS codes, at identical decoding
performance. Results show that SCA reduces the number of
test patterns by 46% to 60%.

V. CONCLUSION

In this letter, we proposed a modification of the Chase
Algorithm in which a stochastic generation of test patterns is
used. Simulations show that our modification provides a low
cost solution for soft-decoding of RS codes. In the CA, the
least reliable bits selection process requires at least (𝑛 × 𝜆)
comparisons, which becomes complex for large codes. The
test pattern generation can be seen as an exhaustive search
in a predetermined subset of the code 𝐶. On the contrary,
in the SCA no least reliable bits selection is required. It is
replaced by a simple stochastic generator which consists of a
random number generator and a comparator. The complexity
of SCA is tractable even for large-size and low-rate codes.
It is possible to further improve the performance of SCA by
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CA(1024)
SCA(1024)
CA(65K)
SCA(65K)
ABP−ASD(20 × 50)
ABP(80×50)
ML Lower Bound

Fig. 2. RS(255,239) code on AWGN, 𝛽 = 22, 𝜃 = 0.5.

preventing the generation of identical test patterns but it would
increase the complexity. Just like the CA, our modification
can be applied to decoding of any linear block code that has
an HDD algorithm. It could, for example, be used for soft
decoding of BCH codes. It is also possible to add a soft output
computation stage in order to perform iterative decoding of
product codes [14].
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