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Abstract—In this brief, we introduce a new iterative decoder im-
plementation called pulsewidth-modulated min-sum (PWM-MS),
in which messages are exchanged in a pulsewidth-encoded format.
The advantages of this method are low switching activity, very
low complexity check nodes, low routing congestion, and excellent
energy efficiency. We implement a fully parallel PWM offset MS
decoder for a (660, 484) regular (4, 15) low-density parity-check
code with 4-bit quantization in 0.13-µm CMOS, with a core
area of 5.76 mm2 (4.24-mm2 cell area or 556K equivalent AND
gates). In postlayout simulations, this decoder achieves an average
information throughput of 5.71 Gb/s and an energy consumption
of 65.8 pJ per information bit at a signal-to-noise ratio of 5.5 dB.
Our results show a 21% reduction in area, a 0.6-dB improvement
in coding gain, and an energy efficiency improvement of 19%
over the comparable bit-serial MS decoder architecture. We also
demonstrate 3-bit implementations, in which the coding gain is
traded off for further improvements in throughput, area, and
energy efficiency.

Index Terms—Low-density parity-check (LDPC) codes, low
power, low switching activity, min-sum (MS) iterative decoding,
pulsewidth modulation (PWM).

I. INTRODUCTION

I TERATIVE decoding techniques play a prominent role
in modern forward-error-correction applications. Originally

proposed for low-density parity-check (LDPC) codes [1], the
interest in iterative decoding was renewed with the introduction
of Turbo codes [2], where it was shown that these methods
could achieve near-capacity error-correction performance for
reasonable complexity. It was later discovered that LDPC codes
offered similar near-capacity performance [3]. Other notable
examples of iteratively decoded codes include serially concate-
nated codes and product codes [4]. Today, Turbo and LDPC
codes remain the most eminent examples of iteratively decoded
codes, as evidenced by their inclusion in numerous current and
upcoming communications standards.

Since an iterative decoder can account for a large portion of
the silicon area and consumed power in a receiver, they are
a prime target for power reduction efforts. Several different
approaches to low-power iterative decoding have been taken.
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Among these are bit-serial (BS) architectures such as [5] and
[6], in which probability updates are exchanged bit serially
over single wires. This has the effect of reducing computational
complexity and routing congestion.

Another way to reduce power consumption is to reduce
switching activity. In [7], differential density evolution is used
to analyze the switching activity of various message exchange
formats in an LDPC decoder. Differential BS message passing
is found to significantly reduce interleaver switching activity
compared with conventional BS message passing.

Various analog iterative decoders have also been proposed
and built [8], [9]. Such analog decoders have been tested to have
much better energy efficiency than digital decoders. However,
due to process variations and imprecision, it is not practical
to scale analog decoders to large codeword lengths, whereas
the current LDPC code standards specify codeword lengths of
hundreds or thousands of bits. Analog decoders also have much
lower throughput compared with digital decoders.

In this brief, we propose a new approach to low-power iter-
ative decoding called pulsewidth-modulated min-sum (PWM-
MS). In PWM-MS, messages are exchanged over single wires,
with their magnitudes encoded using a digital pulse of variable
width. This technique has a number of advantages in the power
domain: Single-wire messages reduce overall wire lengths and
parasitic capacitance, it has a lower average switching activity
in the interleaver compared with BS-MS, and it has very simple
computational units.

The remainder of this brief is structured as follows. Section II
provides a brief background of the algorithmic notions neces-
sary to understand this brief and the complexity problems faced
in MS decoding. Section III introduces pulsewidth message
encoding and shows the advantages it has over other mes-
sage exchange techniques. Section IV details how pulsewidth
message encoding gives rise to low-complexity MS decoder
architectures. Section V contains the implementation results for
PWM-MS LDPC decoders. Finally, concluding remarks and a
summary are presented in Section VI.

II. MS ITERATIVE DECODING

Many algorithms for iterative decoding have been formu-
lated, but of those, many can be described as instances of a
general algorithm known as belief propagation (BP) over a
graphical model of the code [10]. The basic principle of this
algorithm is the exchange of messages, or “beliefs,” between
processing nodes associated with each vertex of this graph.
More specifically, it has been noted that these algorithms fall
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under two general subcategories of BP: the sum–product algo-
rithm and the MS algorithm (MSA) [11].

Let us consider the conventional form of the MSA, which is
applied to a Tanner graph representation of a code. The decoder
is initialized based on the information received at the channel
output. Decoding is performed by iteratively passing messages
through the edges of the Tanner graph between the variable
nodes and the check nodes. In the kth iteration (k > 0), in
the log-likelihood ratio (LLR) domain, the messages that are
passed between a variable node v and a check node c are defined
as follows:

m(k)
v→c = Lv +

∑
c′∈Ci\c

m
(k−1)
c′→v (1)

m(k)
c→v =

∏
v′∈Vj\v

sgn
(
m

(k)
v′→c

)
· min

v′∈Vj\v

(∣∣∣m(k)
v′→c

∣∣∣
)

(2)

where Ci and Vj are the sets of the check and variable nodes in-
cident to the variable node v and the check node c, respectively.
The message m

(k)
a→b is the message sent from node a to node

b at iteration k. The initial round of messages m
(0)
a→b are set to

zero. Lv is the initial weight of the variable node v in the LLR
domain, which is based on the received value from the channel.

The estimation of the transmitted bit in each variable node
is computed by taking the sum of all incoming messages from
the check nodes, plus the initial channel information Lv . The
decoding process continues until a stopping criterion is reached;
this could be once the estimated bits from all the variable
nodes form a valid codeword or when an iteration limit kmax

is reached.
While the variable node processing consists of simple ad-

dition, the check-node processors represent a large part of the
complexity in an MS iterative decoder. The reason for this is
that each check node must compute the minima of all incoming
extrinsic messages for each of its outputs. It is also possible
to apply heuristics to the check-node computation, reducing
complexity at the cost of some error-correction performance.
Split-row MS [12] and the single minimum with correction
technique for BS-MS in [5] are examples of this. Pulsewidth-
encoded messages, on the other hand, are naturally suited to
MS decoding, as finding the minima of these messages is very
simple, eliminating this source of complexity.

III. PULSEWIDTH MESSAGE ENCODING

In digital CMOS circuits, the causes of power dissipation can
be classified as either static or dynamic. Dynamic power refers
to power dissipated when circuit nodes switch from one voltage
level to another. Static power refers to constant leakage currents
that are present even when the circuit is inactive.

Although static power consumption has been observed to
increase as a share of total power at smaller manufacturing
process sizes, dynamic power is generally the dominant factor
in iterative decoder integrated circuits. For instance, in [12],
in a fully parallel iterative decoder in 65-nm CMOS, static
power accounts for only 0.5% to 1% of the total power.
Furthermore, recent developments in manufacturing processes
have shown that gate leakage currents can be greatly reduced.

Fig. 1. Some examples of pulsewidth-encoded messages. The message y is
the check-node result produced from the inputs a, b, and c.

Auth et al. [13] demonstrate 45-nm transistors with gate
leakage currents reduced by two to three orders of magnitude
compared with 65-nm transistors. Subthreshold currents,
which are another source of static power consumption, can be
reduced by using transistors with high threshold voltages. For
these reasons, in this work, we exclusively focus on reducing
dynamic power consumption.

In an iterative decoder, the switching activity generated by
message passing has a particularly high priority for reduction.
One reason for this is that message passing represents a great
volume of exchanged information, so representing these mes-
sages in a power-efficient format can have a large impact on the
circuit’s overall power consumption [7]. In addition, the routing
networks required to support message passing can necessitate
very long wires with multistage buffer chains, particularly in
large codes, leading to a high effective parasitic capacitance for
these signals.

In our proposed pulsewidth message encoding, the mes-
sages between the variable and check nodes are exchanged in
sign–magnitude format, with the magnitude determined by the
width of a digital pulse, and transferred over single wires. Fig. 1
shows some examples of one possible pulsewidth encoding
scheme, in which the first bit of each message is a sign bit. The
subsequent bits indicate the magnitude, with the signal held at
logic 1 for a number of clock cycles equal to the magnitude.
The length of a decoding iteration in clock cycles is thus equal
to the maximum message magnitude, plus 1 for the sign bit.
Since this number can be set arbitrarily, it is possible to have a
nonpower-of-2 number of quantization levels.

One of the key motivations for using such a message en-
coding scheme is the very low switching activity. Using the
encoding scheme shown in Fig. 1, for instance, each message
has a maximum of one 0-to-1 transition per decoding cycle.
This low activity translates directly to low dynamic power
consumption. The switching activity could be reduced even
further using a transition-based encoding scheme, in which the
signal holds the same state as the sign bit and then transitions
to indicate the magnitude. However, this would result in a more
complex CMOS circuit implementation as it requires transition-
sensitive circuitry. For the remainder of this brief, we consider
only the level-based scheme, as indicated in Fig. 1.

Since the activity factor varies as the decoding process pro-
ceeds, it is more relevant to characterize the switching activity
using the total transition count observed during decoding [7].
Fig. 2 plots the simulated average number of transitions per
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Fig. 2. Average number of transitions per edge per decoded codeword for the
(660, 484) LDPC code used in this work.

Fig. 3. PWM-MS check node of degree dc = 4.

edge in the Tanner graph per decoded codeword for PWM-
MS, PWM offset MS (PWM-OMS), and BS-MS to serve as
comparison. This result shows that PWM has a lower switch-
ing activity than BS-MS for all given values of the number
of quantization bits q and SNR. The difference is relatively
minor at q = 4 (about 5%); however, at q = 6, this advantage
increases to over 25%. This is because the switching activity
for PWM-MS remains roughly constant with q. In BS-MS, the
average transition count increases with the number of bits. The
results for OMS (PWM-OMS and BS-OMS) are also plotted,
with PWM-OMS showing a similar advantage.

IV. LOW-COMPLEXITY ARCHITECTURE

OF PWM-MS DECODERS

In addition to low switching activity, another major advan-
tage of PWM-MS is that it results in a very low complexity
check node. As shown in the check-node schematic in Fig. 3,
the minimum of a group of messages can be computed with
a single AND gate. The check node is fully combinatorial;
thus, the CMOS implementation is very compact, and power
is further saved by the lack of sequential elements. The XOR

gate network is used to determine the signs of the outgoing
messages on each edge, whereas the AND gates determine

Fig. 4. PWM-MS variable node of degree dv = 3.

the magnitudes in accordance with (2). A control signal ctrl
selects the appropriate output during the sign and magnitude
computation phases. A parity output is used for convergence
detection and early termination logic.

Not only is this check-node architecture very compact, but
it also offers an exact implementation of the MS check-node
function. There is no performance loss resulting from the
application of heuristics.

The PWM-MS variable node is shown in Fig. 4. It consists of
an up/down counter on each incoming edge, which converts the
incoming PWM message to 2’s complement binary. An adder
network computes the hard-decision bit estimation, as well as
the outgoing messages on each edge. Down counters on each
outgoing edge take the binary messages as input and encode
them in a PWM format. In the variable node, the ctrl input
signals the start of a new iteration, which resets the up/down
counters to zero and loads the down counters.

One notable property of this variable node design is that it
can be used to implement OMS for a negligible increase in
complexity, as opposed to other decoder architectures includ-
ing BS. This is because the sign–magnitude format of PWM
allows the offset to be efficiently applied in the variable node.
The offset is implemented by setting the output counters to
transition when their internal count reaches a number equal
to or less than a predetermined offset value, rather than zero.
Furthermore, applying an offset reduces the maximum message
magnitude. With pulsewidth message encoding, this reduces the
number of clock cycles per iteration and increases throughput
accordingly. For instance, with 4-bit quantization and an offset
of 1, the maximum message magnitude decreases from 7 to 6,
and the number of clock cycles per iteration decreases from
8 to 7, increasing throughput by 12.5%. It is therefore very
advantageous to use PWM-OMS over PWM-MS.

V. IMPLEMENTATION RESULTS

We implemented PWM-OMS decoders in three differ-
ent configurations in IBM CMRF8SF standard-Vt 0.13-µm
CMOS to obtain estimates for silicon area, throughput, and
power consumption. We also implemented PWM-OMS and
PWM-MS decoder prototypes on a Xilinx Virtex-5 LX330
field-programmable gate array (FPGA) for verification and
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Fig. 5. Block diagram of the implemented decoder.

Fig. 6. Decoding performance (a) for different quantization levels of OMS
with an offset of 1 and (b) for 4-bit PWM-MS and PWM-OMS decoders
implemented on the FPGA.

bit-error-rate (BER)/frame-error-rate (FER) measurements. In
all cases, the LDPC code used is a (660, 484) regular (4, 15)
progressive-edge-growth-based LDPC code. This code has also
been used in [5] for verifying the BS approach. This section
contains discussion of these results, as well as comparisons with
other decoders.

Fig. 5 shows a top-level block diagram of the implemented
decoder. It is a fully node-parallel architecture, and the inter-
connections between the nodes are each a single wire. Early
termination logic uses parity checks from the check nodes
to detect convergence. A state machine ctrl generates control
signals and acts as the off-chip interface.

The impact of the number of quantization bits on the BER
performance of PWM-OMS is shown in Fig. 6(a). In terms
of the number of quantization bits, q = 4 results in a very
small performance loss compared with q = 6, whereas q = 3
incurs another loss of 0.4–0.5 dB. Fig. 6(b) shows the BER
and FER performance of the FPGA decoder prototypes. For
this code, OMS gives a performance gain of 0.4–0.5 dB over
conventional MS. All BER tests use a maximum of 15 decoding
iterations. These FPGA prototype results exactly match the
results obtained with a software model. These performance tests
used an emulated Gaussian channel [14].

Table I shows the application-specific integrated circuit
implementation results for our decoder in 0.13-µm CMOS,
alongside the BS approximate MS decoder in [5]. Comparisons

TABLE I
IMPLEMENTATION RESULTS AND COMPARISON WITH [5]

between our decoder and this one are particularly relevant
as they both use the same process size, supply voltage, and
LDPC code. They also have architectural similarities—both
are fully node parallel with single-wire node interconnections,
and both were primarily designed for low-power applications.
Throughput and power for our designs were calculated using
postlayout simulations, with back-annotated delays and wiring
parasitics, and includes the clock trees.

We implemented three configurations of PWM-OMS de-
coders. Configuration A is optimized for decoding perfor-
mance. Configuration B is optimized for energy efficiency,
whereas configuration C is optimized for throughput.

Since our decoder architecture uses OMS and no heuristics
in the check node, configuration A achieves a coding gain
of approximately 0.5 dB over conventional 4-bit MS with a
maximum of 15 iterations, as shown in Fig. 6(b). On the
other hand, [5] incurs a loss of 0.1 dB due to a check-node
approximation. We note that, with q = 3, PWM-OMS can
achieve approximately the same BER performance as the 4-bit
approximate MS used in [5]. Hence, in configurations B and C,
we trade off this 0.6-dB coding gain for reduced area, higher
throughput, and better energy efficiency.

Configuration A has seven clock cycles per decoding iter-
ation. In standard MS, eight cycles would be required—one
for the message sign, plus seven for the 3 bits of magnitude.
However, since we implement OMS, we apply an offset of 1, re-
ducing the maximum magnitude to 6. Likewise, configuration B
takes only three cycles per decoding iteration (one for the sign
and two for the magnitude). Pipelining adds a cycle of latency;
thus, configuration C requires four cycles.



CUSHON et al.: MIN-SUM ITERATIVE DECODER BASED ON PULSEWIDTH MESSAGE ENCODING 897

Fig. 7. (a) Average power consumption and (b) energy efficiency for a PWM-
OMS decoder with q = 4.

Area is reduced relative to BS-MS due to the simpler check
node. We define average throughput as the throughput achieved
by immediately beginning decoding of a new codeword once
the current one has converged. Average throughput is there-
fore determined by the average number of iterations required
for convergence and varies for different values of SNR. Raw
throughput is lower, due to both the lower clock frequencies and
(in the case of configuration A) higher number of clock cycles
per iteration. In terms of throughput per unit area, however,
configuration C is 15% higher than [5]. We also define another
metric that takes power consumption into account: throughput
per unit area per unit power. In these terms, all three PWM-
OMS implementations are superior to [5]. Energy efficiency,
which is defined in terms of energy consumed per decoded
bit, is also better in PWM-OMS. Plots of average power
consumption and energy efficiency for the A decoder over a
range of SNR values are shown in Fig. 7. Energy efficiency
was determined by dividing the average power by the average
throughput at each given value of SNR.

The complexity and energy efficiency of PWM-OMS also
favorably compare with other recent LDPC decoders, although
differences in the process size and LDPC code make direct
comparisons difficult. One example is the partially parallel
OMS decoder in [15], which implements a (2048, 1723)
Reed–Solomon-based code in 65-nm CMOS. It achieves an
average information throughput of 40 Gb/s at 5.5-dB SNR, with
power of 2800 mW and energy of 69.8 pJ/bit.

Another recent architecture is the 90-nm fully node- and bit-
parallel MS decoder in [16], which achieves an information
throughput of 13.21 Gb/s, with average power of 1323 mW and
energy of 98 pJ/bit at 5-dB SNR. It should be noted that these
figures are without early termination, which was used to greatly
increase throughput and decrease energy in [5], [15], and this
work. However, since [16] partitions long internode wires with
registers, early termination would be less effective due to added
complexity and increased latency. In addition, this architecture
requires parallel check nodes, which become very complex at
high degrees, whereas in this work, the check-node complexity
is extremely low, even at high degrees.

If we assume energy consumption per information bit scales
quadratically with feature size, the scaled energy values of [15]
and [16] are 279 and 204 pJ/bit, respectively, giving this work
respective improvements of 76% and 68%.

VI. CONCLUSION

In this brief, we have presented a new iterative decoding
technique called PWM-MS and implemented it for a (660, 484)
regular (4, 15) LDPC code. The advantages of this architecture
include very low complexity check nodes and low message
exchange switching activity. Our implementation of an OMS
decoder with 4 bits of message quantization achieved a core
area of 5.76 mm2 and an average information throughput of
5.71 Gb/s at 5.5-dB SNR. It also achieved an energy efficiency
value of 65.9 pJ/bit at this SNR and a coding gain of 0.5 dB
over conventional MS, which can be traded off for additional
improvements in area, throughput, and energy by reducing
the number of quantization levels. These results for area and
energy represent respective improvements of 21% and 19%
compared with the similar BS-MS decoder architecture. These
results also favorably compare with other recent LDPC decoder
architectures.
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