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Une Approche Skyline pour l'Interrogation de Bases de Données de Graphes

La recherche de graphes similaires à une requête à graphe est l'un des problèmes fondamentaux des bases de données de graphes. Les approches existantes traitant ce problème s'appuient, généralement, sur une seule mesure de similarité entre les structures de graphes. Dans cet article, nous proposons une approche permettant de rechercher les graphes similaires au graphe d'une requête où la similarité entre graphes n'est plus un scalaire unique mais un vecteur de scalaires. Pour cela, nous introduisons le concept de skyline par similarité d'une requête à graphe défini par un sous-ensemble de graphes, de la base de données interrogée, qui sont les plus similaires à la requête au sens de Pareto. Une méthode pour raffiner le résultat de la recherche est aussi proposée en s'appuyant sur le critère de diversité entre les graphes.

Introduction

Les graphes sont devenus de plus en plus importants dans la modélisation des données structurées et complexes dans différentes domaines d'applications récentes : la bio-informatique [START_REF] Hu | Mining coherent dense subgraphs across massive biological network for fonctional discovery[END_REF], la reconnaissance de formes [START_REF] Conte | Thirty years of graph matching in pattern recognition[END_REF], les documents XML [START_REF] Zhang | Fix: Feature-based indexing technique for xml documents[END_REF], la chimie [START_REF] Klinger | Chemical similarity searching using a neural graph matcher[END_REF], les réseaux sociaux [START_REF] Cai | Community mining from multirelational networks[END_REF], etc. Toutes ces applications indiquent l'importance et la large utilisation du paradigme des Bases de Données de Graphes (BDGs). D'une manière générale, on peut classer les requêtes adressées à une BDG en deux catégories [START_REF] Zeng | Comparing stars: On approximating graph edit distance[END_REF] : (1) la recherche de graphes fondée sur une relation d'inclusion et (2) la recherche de graphes par similarité. La première catégorie se compose en deux sous-problèmes suivants : (i) la recherche de sous-graphes : soit une BDG D = {g 1 , g 2 , • • • , g n } et une requête à graphe q (dite requête sous-graphe), il s'agit de rechercher tous les graphes g i ∈ D tel que q est un sous-graphe de g i (i.e., q ⊆ g i ) ; (ii) la recherche de super-graphes : soit une BDG D = {g 1 , g 2 , • • • , g n } et une requête à graphe q (dite requête super-graphe), il s'agit de rechercher tous les graphes g i ∈ D tel que q est un super-graphe de g i (i.e., q ⊇ g i ). Les deux sous-problèmes font appel à la procédure de vérification d'isomorphisme de sous-graphes, qui est NP-Complet. Ainsi, plusieurs approches de traitement de requêtes à graphe, utilisant des techniques d'indexation, ont été développées pour réduire l'espace de recherche et résoudre efficacement ces deux sous-problèmes [START_REF] Chen | Towards Graph Containment Search and Indexing[END_REF][START_REF] Zhang | Treepi: A novel graph indexing method[END_REF][START_REF] Zhang | A novel approach for efficient supergraph query processing on graph databases[END_REF].

Quant à la deuxième catégorie (i.e., recherche de graphes par similarité), qui consiste à rechercher tous les graphes d'une BDG structurellement similaires au graphe de la requête, est apparue comme une nouvelle tendance pour les raisons suivantes. Premièrement, de nombreuses et réelles BDGs sont de nature bruitée et incomplète, d'où la nécessité d'un appariement approximatif de graphes. Deuxièmement, plusieurs applications modernes préfèrent les résultats d'un appariement approximatif plutôt que ceux d'un appariement exact car ils véhiculent davantage d'informations, comme ce qui pourrait être manquant ou superflu dans un graphe de requête ou dans une BDG. Ainsi, plusieurs approches ont été proposées pour répondre aux requêtes de recherche de graphes par similarité (ou simplement, requêtes par similarité). Voir [START_REF] Yan | Substructure similarity search in graph databases[END_REF][START_REF] He | Closure-tree: An index structure for graph queries[END_REF][START_REF] Tian | Tale : A tool for approximate large graph matching[END_REF][START_REF] Shang | Similarity search on supergraph containment[END_REF].

Le point commun entre toutes ces approches est l'utilisation d'une seule mesure pour évaluer la similarité entre graphes. Toutefois, un graphe est une structure complexe et comprend une multitude de caractéristiques de base. Il est alors difficile de donner une définition significative de la similarité entre graphes en utilisant un seul scalaire.

Dans cet article, nous préconisons que plusieurs indices sont nécessaires pour évaluer d'une manière significative et efficace la similarité entre graphes. Chaque indice est dédié à mesurer une distance (ou similarité) locale afférent à un aspect donné dans la structure du graphe. Ainsi, la similarité entre graphes est caractérisée par un vecteur de mesures de distances locales au lieu d'une seule mesure. De cette façon, on peut préserver l'information concernant la similarité sur différentes caractéristiques, lorsque l'on compare deux graphes.

Nous proposons une nouvelle approche de traitement de requêtes par similarité en utilisant la notion de skyline par similarité. D'une manière générale, le skyline par similarité d'une requête à graphe est défini par le sous-ensemble des graphes de la BDG interrogée les plus similaires à la requête au sens de Pareto. L'idée est d'effectuer une comparaison multidimensionnelle entre graphes en termes de d mesures de distances locales et d'identifier les graphes qui sont maximalement similaires au sens d'une relation de dominance par similarité. Les principales contributions de l'article sont :

1. Nous introduisons la notion de similarité composée entre graphes (SCG) et définissons ensuite la relation de dominance par similarité entre graphes.

2. En se basant sur cette relation de dominance, nous proposons une définition formelle du skyline par similarité entre graphes, i.e., les graphes de la base interrogée maximalement similaires au graphe de la requête au sens de Pareto.

3. Pour réduire la taille du skyline, qui est souvent très importante, nous proposons une méthode permettant d'extraire un sous-ensemble de graphes qui est aussi divers que possible, mais dont la taille est raisonnable.

L'article est structuré comme suit. La section 2 introduit quelques notions préliminaires. La section 3 discute quelques travaux apparentés. La section 4 décrit des mesures de calcul de similarité entre graphes déjà existantes et leur interprétations. Dans la section 5, nous introduisons la notion de skyline par similarité dédiée aux requêtes à graphe. La section 6 présente un exemple détaillé. Dans la section 7, nous proposons une méthode pour raffiner les résultats retournés dans le skyline. La section 8 conclut l'article.

2 Notions préliminaires 2.1 Rappel sur les requêtes skyline Les requêtes skyline [START_REF] Borzsonyi | The skyline operator[END_REF] représentent un paradigme très populaire et puissant pour extraire des objets d'un ensemble de données multidimensionnel. Elles s'appuient sur le principe de dominance de Pareto qui peut être défini comme suit :

Définition 1. Soit r un ensemble de points multidimensionnels et p = (p 1 , p 2 , . . ., p d ) et q = (q 1 , q 2 , . . ., q d ) deux points de r. On dit que p domine (au sens de Pareto) q ssi sur chaque dimension p i ≤ q i (pour 1 ≤ i ≤ d) et sur au moins une dimension p j < q j .

Par souci de simplicité et sans perte de généralité, nous supposons que plus la valeur p i est petite, meilleure elle est. On dit alors que p domine (est préféré à) q et on note p q.

Définition 2. Le skyline de r est le sous-ensemble des points non-dominés par aucun autre point.

Les requêtes skyline calculent donc l'ensemble des tuples optimaux au sens de Pareto dans une relation, i.e., les tuples qui sont dominés par aucun autre tuple dans la même relation.

Exemple 1. Considérons une base de données contenant des informations sur des hôtels comme indiqué dans le tableau 1 (où la dimension d = 2).

Hôtel

Prix(e) Distance (Km)

H 1 4.0 150 H 2 3.0 110 H 3 2.5 240 TAB. 1 -Exemple d'hôtels.
Considérons une personne qui cherche un hôtel aussi proche que possible de la plage et ayant un prix faible. On peut vérifier que le skyline résultant S contient les hôtels H 2 et H 3 , car H 1 est dominé par H 2 .

Quelques définitions de base

Définition 3 (Graphe). Un graphe g est défini par un quadruplet (V, E, L, l) où V est l'ensemble des noeuds, E est l'ensemble des arêtes, L est l'ensemble des étiquettes et l est la fonction d'étiquetage qui met en correspondance chaque noeud ou arête avec une étiquette de L.

Par souci de clarité, les graphes considérés sont étiquetés et non-orientés (différents noeuds peuvent avoir la même étiquette). La taille d'un graphe g est définie comme suit : |g| = |E(g)| (i.e., la taille d'un graphe est le nombre de ses arêtes).

Définition 4 (Isomorphisme de graphes). Soit deux graphes g

= (V, E, L, l) et g' = (V', E', L', l'), g est isomorphe à g' (dénoté par g ≈ g ) s'il existe une bijection f : V → V', telle que 1. ∀ v ∈ V, f(v) ∈ V' et l(v) = l'(f(v)) ; 2. ∀ (u, v) ∈ E, (f(u), f(v)) ∈ E' et l(u, v) = l'(f(u), f(v)).
Définition 5 (Isomorphisme de sous-graphes). Soit deux graphes g = (V, E, L, l) et g' = (V', E', L', l'), g est isomorphe de sous-graphes à g' s'il existe une injection f : V → V', telle que

1. ∀ v ∈ V, f(v) ∈ V' et l(v) = l'(f(v)) ; 2. ∀ (u, v) ∈ E, (f(u), f(v)) ∈ E' et l(u, v) = l'(f(u), f(v)).
Définition 6 (Sous-graphe v.s. super-graphe). Soit deux graphe g = (V, E, L, l) et g' = (V', E', L', l'), g est dit sous-graphe de g' (ou g' est un super-graphe de g), dénoté par g ⊆ g' (ou g' ⊇ g), s'il existe un isomorphisme de sous-graphes de g à g'.

Définition 7 (Sous-graphe commun maximal, SCM). Soit deux graphes g 1 et g 2 , le sousgraphe commun maximal de g 1 et g 2 est le plus grand sous-graphe connecté de g 1 qui est isomorphe de sous-graphe à g 2 , dénoté par g'= SCM(g 1 , g 2 ).

3 Travaux apparentés L'étude présentée dans cet article peut être apparentée avec les travaux effectués dans les domaines des requêtes skyline et des requêtes de recherche de graphes par similarité.

Requêtes skylines. Elles ont reçu l'attention de nombreux chercheurs. Plusieurs études ont été menées pour développer des algorithmes efficaces et introduire des variantes pour les requêtes skyline [START_REF] Pei | Probabilistic skylines on uncertain data[END_REF][START_REF] Yiu | Efficient processing of top-k dominating queries on multidimensional data[END_REF][START_REF] Khalefa | Skyline query processing for incomplete data[END_REF][START_REF] Hadjali | Possibilistic contextual skylines with incomplete preferences[END_REF]. Pour autant que nous le sachions, il n'existe pas de travaux portant sur les requêtes skyline dans un contexte d'interrogation de BDGs, excepté, le travail de Zou et al. (2010) qui étudie les requêtes skyline dynamique dans le cadre d'un graphe de grande taille. Dans notre cas, c'est un autre type de skyline (i.e. skyline par similarité) sur un ensemble de graphes qui est étudié.

Requêtes par similarité. Plusieurs approches ont été développées pour traiter les requêtes par similarité. Grafil [START_REF] Yan | Substructure similarity search in graph databases[END_REF] applique une recherche par similarité de sous-structures dans une BDG à large échelle. Il retourne tous les graphes de la base de données qui contiennent approximativement le graphe de la requête. C-Tree [START_REF] He | Closure-tree: An index structure for graph queries[END_REF] est un autre outil pour la recherche par similarité de sous-graphes. Il est basé sur la distance d'édition entre la requête et les graphes candidats. Tale [START_REF] Tian | Tale : A tool for approximate large graph matching[END_REF] propose une technique d'appariement innovante qui distingue les noeuds par leur importance dans la structure du graphe. Cette technique met d'abord en correspondance les noeuds importants d'une requête à graphe, ensuite, elle étend progressivement ces correspondances. Récemment, [START_REF] Shang | Similarity search on supergraph containment[END_REF] ont proposé une technique répondant aux requêtes super-graphes où le problème de recherche par similarité de super-graphes est converti en un problème de détection de σ-sous-graphes manquants, où σ est un seuil de tolérance d'erreurs. Les deux approches C-Tree et Tale utilisent la distance d'édition pour mesurer la similarité entre graphes, tandis que les travaux réalisés par [START_REF] Yan | Substructure similarity search in graph databases[END_REF] et [START_REF] Shang | Similarity search on supergraph containment[END_REF] utilisent la notion de sous-graphe commun maximal.

Comme on peut le constater, toutes les approches proposées et dédiées aux requêtes par similarité utilisent un seul indice pour mesurer la similarité entre deux graphes. En procédant ainsi, la similarité entre deux graphes n'est pas entièrement capturée car des similitudes relatives à certaines caractéristiques du graphe pourraient être ignorées. Ceci est principalement dû au fait que chaque indice de similarité entre graphes peut être vu comme une mesure locale qui exprime seulement une ressemblance au regard d'un seul aspect dans la structure des graphes (voir la section 4). Par comparaison avec les travaux ci-dessus, notre approche, d'une part, repose sur une mesure de similarité composée entre graphes, et d'autre part, retourne un ensemble de graphes dominants par similarité au sens de Pareto pour répondre à une requête.

4 Similarité de graphes : une vue sémantiques Plusieurs modèles ont été proposés [START_REF] Bunke | On a relation between graph edit distance and maximum common subgraph[END_REF][START_REF] Bunke | A graph distance metric based on the maximal common subgraph[END_REF][START_REF] Wallis | Graph distances using graph union[END_REF] pour mesurer la similarité (ou la distance) entre deux graphes. Ci-après, nous présentons les mesures les plus utilisées pour déterminer les similarités entre graphes1 .

La distance d'édition de graphes

La distance d'édition de graphes [START_REF] Bunke | On a relation between graph edit distance and maximum common subgraph[END_REF][START_REF] He | Closure-tree: An index structure for graph queries[END_REF] i.e., l'arête (a, f) avec l'étiquette 1. En utilisant des mesures de distance uniformes, on peut vérifier que cette séquence est la meilleure (i.e., la minimale). Ainsi, Dist Ed (g 1 , g 2 ) = 4.

Dans le contexte d'interrogation de BDGs, cette mesure de distance nous renseigne sur les caractéristiques non partagées par un graphe cible de la BDG et le graphe de la requête.

La distance basée sur le SCM

Bunke et Shearer (1998) ont développé un autre type de mesures de similarité entre graphes qui est basée sur le sous-graphe commun maximal (SCM).

Définition 9 (Similarité basée sur le SCM). Soit deux graphes g 1 et g 2 , la similarité entre graphes basée sur le SCM est définie comme suit,

Sim SCM (g 1 , g 2 ) = |SCM (g1,g2)| max(|g1|,|g2|) , où |SCM (g 1 , g 2 )| dénote le nombre d'arêtes dans SCM (g 1 , g 2 ).
Plus le SCM de deux graphes est large, plus leur similarité est élevée. La mesure Sim SCM est normalisée (i.e., 0 ≤ Sim SCM (g 1 , g 2 ) ≤ 1) car |SCM(g 1 , g 2 )| ≤ |max(g 1 , g 2 )|. Ainsi, la mesure de distance entre graphes, Dist SCM , dérivée de Sim SCM peut s'écrire :

Dist SCM (g 1 , g 2 ) = 1 -Sim SCM (g 1 , g 2 ) (2) 
L'avantage principal de l'approche basée sur le SCM est la non utilisation de fonctions de coût, palliant ainsi l'inconvénient principal de l'approche basée sur la distance d'édition.

Example 3. Reprenons l'exemple 2. La distance basée sur le SCM entre g 1 et g 2 est calculée comme suit. Premièrement, le SCM (g 1 , g 2 ) est identifié, voir la figure 2. Ensuite, par application de (2), nous obtenons

Dist SCM (g 1 , g 2 ) = 1 -|SCM (g1,g2)| max(|g1|,|g2|) = 0.33, où |SCM (g 1 , g 2 )| = 4 et max(|g 1 | , |g 2 |) = 6. FIG. 2 -SCM de g 1 et g 2 .
Dans le contexte d'interrogation de BDGs, le SCM de deux graphes véhicule de l'information sur les caractéristiques partagées par un graphe de la base interrogée et la requête.

La distance basée sur l'UG

La mesure de distance basée sur l'union de graphes (UG), proposée par [START_REF] Wallis | Graph distances using graph union[END_REF], est basée sur le principe de l'union de graphes.

Définition 10 (Similarité basée sur l'UG). Soit deux graphes g 1 et g 2 , la similarité entre graphes basée sur l'union de graphes est définie comme suit,

Sim U G (g 1 , g 2 ) = |SCM (g1,g2)| |g1|+|g2|-|SCM (g1,g2)| ,
où le dénominateur représente la taille de l'union des deux graphes selon une vue ensembliste2 .

Cette mesure de similarité est aussi normalisée et son comportement est assez proche de celui de Sim SCM . Il est facile de voir que Sim U G (g 1 , g 2 ) ≤ Sim SCM (g 1 , g 2 ) (ce qui signifie que Sim U G est une mesure plus exigeante que Sim SCM ). L'utilisation de l'union de graphes [START_REF] Wallis | Graph distances using graph union[END_REF] est motivée par le fait que les changements dans la taille du plus petit graphe qui préservent le SCM(g 1 , g 2 ) constant ne sont pas pris en compte dans Sim SCM (g 1 , g 2 ), tandis que la mesure Sim U G (g 1 , g 2 ) prend en compte cette variante.

La mesure de distance de graphes dérivée de Sim U G s'écrit :

Dist U G (g 1 , g 2 ) = 1 -Sim U G (g 1 , g 2 ) (3)
Exemple 4. Reprenons encore une fois les graphes de l'exemple 2. Par application de (3), la distance basée sur l'UG entre g 1 et g 2 est

Dist U G (g 1 , g 2 ) = 1 - |SCM (g1,g2)| |g1|+|g2|-|SCM (g1,g2)| = 0.50, où |SCM (g 1 , g 2 )| = 4 (voir l'example 3) et |g 1 | = |g 2 | = 6.
Dans le cadre d'interrogation de BDGs, cette similarité donne également des informations sur les aspects communs entre un graphe de la base interrogée et le graphe de la requête.

Skyline par similarité entre graphes

Dans ce qui suit, nous supposons que la similarité entre graphes est une notion composée, i.e., un vecteur de mesures de distance.

Définition 11 (Similarité composée entre graphes, SCG). Soit g et g' deux graphes, une similarité composée entre g et g' est un vecteur de mesures de distance locales, dénotée par SCG(g, g ) = (Dist 1 (g, g ), Dist 2 (g, g ), . . . , Dist d (g, g )),

où Dist i (g, g ), pour i = 1, . . ., d, représente une mesure de distance locale entre g et g'.

Soit D = {g 1 , g 2 , . . . , g n } une BDG et q une requête par similarité. Pour répondre à q, l'idée est de procéder à une comparaison multidimensionnelle entre graphes en termes de d mesures de distance (locales) pour rechercher les graphes qui sont maximalement similaires à q au sens de la relation de dominance par similarité définie ci-dessous.

Définition 12 (Relation de dominance par similarité). Soit une requête à graphe q et deux graphes g et g', on dit que g' est dominé par similarité par g dans le contexte de q, dénoté par g q g', ssi les deux conditions suivantes sont vérifiées :

1. ∀i ∈ {1, . . . , d}, Dist i (g, q) ≤ Dist i (g , q), 2. ∃k ∈ {1, . . . , d}, Dist k (g, q) < Dist k (g , q). Plus simplement, la relation g q g est vérifiée si g n'est pas moins similaire à q que g' dans toutes les dimensions et (strictement) plus similaire à q que g' dans au moins une dimension. On peut observer que g est potentiellement plus intéressant que g' comme graphe réponse. Par conséquent, l'ensemble des graphes les plus similaires à q sont ceux qui ne sont pas dominés (au sens de la définition 13). De tels graphes, appelés graphes optimaux au sens de Pareto, représentent ce que nous dénotons par le skyline de graphes par similarité (SGS) :

SGS(D, q) = {g ∈ D| ∃g ∈ D, g q g} (4)
où g q g signifie que g est dominé par similarité par g'.

Pour illustrer notre approche, nous présentons dans la section suivante un exemple où d = 3. SCG(g, q) est alors vecteur de trois composantes exprimées en termes de mesures de distance locales décrites dans la section 4, i.e., SCG(g, q) = (Dist Ed (g, q), Dist SCM (g, q), Dist U G (g, q)). 6 Un exemple illustratif Soit D = {g 1 , g 2 , g 3 , g 4 , g 5 , g 6 } une BDG et q un requête par similarité (voir la figure 3). Afin de retourner les réponses les plus intéressantes par rapport à q, on calcule le skyline de graphes par similarité SGS(D, q). Les valeurs de |SCM (g i , q)|, pour i =1, . . .,6, sont données dans le tableau 2 et les vecteurs de similarité entre graphes SCG(g i , q), pour i=1, . . .,6, sont résumés dans le tableau 3. Par application de (4), l'ensemble des graphes optimaux au sens de Pareto, i.e. le skyline de graphes par similarité, est donné par SGS(D, q) = {g 1 , g 3 , g 4 , g 6 }.

Il est aisé de voir que g 2 / ∈ SGS(D, q) car il est dominé par g 4 et g 5 / ∈ SGS(D, q) car il est dominé par g 1 . Les graphes de D maximalement similaires à q sont g 1 , g 3 , g 4 et g 6 . En effet, Paire de graphes |SCM (g i , q)| (g 1 , q) 4 (g 2 , q) 4 (g 3 , q) 3 (g 4 , q) 5 (g 5 , q) 5 (g 6 , q) 6 TAB. 2 -Informations sur |SCM(g i , q)|.

Dist Ed (g i , q) Dist SCM (g i , q) Dist U G (g i , q) (g 1 , q) 4 0.33 0.50 (g 2 , q) 3 0.43 0.56 (g 3 , q) 2 0.50 0.67 (g 4 , q) 3 0.38 0.44 (g 5 , q) 4 0.44 0.50 (g 6 , q) 4 0.40 0.40 TAB. 3 -Mesures de distance.

-Le graphe g 1 est le plus intéressant au regard de la mesure Dist SCM . Cela est dû aux raisons suivantes : i) g 1 satisfait un maximum de caractéristiques requises par q que d'autres graphes de même taille ; ii) g 1 et q sont de même taille. Mais, g 1 est le moins intéressant au regard des caractéristiques manquantes et superflues (i.e., Dist Ed ). -Le graphe g 3 est le meilleur au regard de la mesure Dist Ed . Cela signifie, d'une part, qu'il est le plus intéressant au regard du nombre de désaccords avec q. D'autre part, g 3 est beaucoup moins satisfaisant au regard des concordances avec q au sens de SCM. -Le graphe g 6 est le plus intéressant au regard de la mesure Dist U G . Cela est dû au fait que g 6 ⊃ q. Mais, c'est le moins intéressant au regard du critère basé sur les caractéristiques superflues (i.e., Dist Ed ). -Le graphe g 4 peut être considéré comme un bon compromis entre les trois mesures Dist Ed , Dist SCM et Dist U G . Examinons maintenant les résultats obtenus en utilisant seulement une seule mesure de similarité entre graphes. Si on s'intéresse aux k (= 3) meilleures réponses, g 2 est retourné comme graphe candidat en utilisant l'approche basée sur la distance d'édition. Tandis qu'avec l'approche basée sur le skyline, g 2 n'est pas retourné à l'utilisateur car g 4 est meilleur.

Raffinement du Skyline

Un des problèmes qui peut survenir lors du calcul de l'ensemble SGS (et d'un skyline en général) est sa taille qui est souvent très importante. D'un point de vue utilisateur, il est très souhaitable de disposer d'un critère pertinent permettant de sélectionner un sous-ensemble, de taille raisonnable, des graphes les plus intéressants parmi ceux du skyline SGS. Une solution à ce problème est d'utiliser le critère de diversité [START_REF] Mcsherry | Diversity-conscious retrieval[END_REF] pour sélectionner un sousensemble de graphes qui est aussi divers que possible, et ainsi fournir à l'utilisateur une image globale de l'ensemble des éléments de SGS.

Soit S un sous-ensemble de SGS. La diversité de S signifie que les graphes qu'il contient doivent être dissimilaires. L'objectif est d'extraire à partir de SGS un sous-ensemble S de taille k (k est un paramètre défini par l'utilisateur) avec une diversité maximale. En s'inspirant des travaux de Kukkonen et Lampinen (2007), l'approche proposée définit la diversité de S (⊆ SGS) de taille k par un vecteur Div(S) = (v 1 , v 2 , v 3 ) tel que

v i = min{Dist i (g, g )|g, g ∈ S}, où, pour i=1, . . ., 3, Dist 1 = Dist Ed , Dist 2 = Dist SCM et Dist 3 = Dist U G . La valeur v i exprime la diversité sur la i me dimension du sous-ensemble S.
Afin d'identifier le sous-ensemble S, nous considérons tous les sous-ensembles S ⊆ SGS avec |S| = k comme candidats et appliquons les étapes suivantes :

Étape 1. Pour chaque dimension i (i = 1, . . .,3), ordonner d'une manière décroissante tous les sous-ensembles candidats S selon leur diversité v i . Soit rang i (S) le rang de S au regard de la i ème dimension. Rang de valeur 1 signifie la meilleure valeur de diversité et rang de valeur M signifie la plus mauvaise valeur de diversité (M est le nombre de sous-ensembles de taille k de l'ensemble SGS).

Etape 2. Évaluer un candidat S par : val(S) = i=1,...,3 rang i (S). Le sous-ensemble minimisant la somme de ses positions dans tous les rangs est considéré comme le sous-ensemble ayant la diversité maximale. Ainsi, S est caractérisé par val(S) = min S val(S), où S ⊆ SGS et |S| = k. Exemple 5. Reprenons l'exemple donné dans la section 6 où le skyline SGS(D, q) = {g 1 , g 3 , g 4 , g 6 }. Supposons maintenant que l'utilisateur est intéressé par les k (=2) meilleurs graphes au regard du critère de la diversité. On peut facilement vérifier que l'ensemble de tous les candidats contient 6 sous-ensembles de taille k, voir le tableau 4. L'étape 1 et 2 conduisent aux résultats décrits dans le tableau 5 à partir duquel on peut voir que val(S 1 ) est la valeur minimale. Ainsi, S = S 1 = {g 1 , g 3 }.

v 1 v 2 v 3 S 1 =

Conclusion

Dans cet article, nous avons proposé une approche permettant la recherche de graphes par similarité. Le concept clé de cette approche est la notion de skyline de graphes par similarité. Ce type de skyline permet l'extraction de tous les graphes de la base de données interrogée qui ne sont dominés par aucun autre graphe de la base au sens de la relation de dominance par similarité définie. Chaque graphe réponse est retourné à l'utilisateur avec un vecteur de scores montrant les différentes similarités correspondant aux différentes caractéristiques avec le graphe de la requête. Nous avons aussi montré comment sélectionner un sous-ensemble de diversité maximale à partir d'un skyline de graphes par similarité. Nous travaillons actuellement sur l'implémentation de l'approche pour démontrer son efficacité et sa pertinence.

  FIG. 1 -Exemple de graphes étiquetés.

FIG. 3 -

 3 FIG. 3 -La base de données D et le graphe requête q.

  Évaluation des Candidats (r i = rang i ).

  {g 1 , g 3 }

		0.86	0.67	0.80
	S 2 = {g 1 , g 4 }	0.83	0.50	0.60
	S 3 = {g 1 , g 6 }	0.87	0.60	0.67
	S 4 = {g 3 , g 4 }	0.80	0.62	0.73
	S 5 = {g 3 , g 6 }	0.83	0.70	0.77
	S 6 = {g 4 , g 6 }	0.75	0.50	0.61
	TAB. 4 -Candidats avec leur diversité.

Par souci d'espace, l'analyse de la complexité du calcul de chaque mesure n'est pas abordée dans cet article.

Cette mesure de similarité ressemble à l'indice de Jaccard utilisé pour mesurer la similarité entre deux ensembles A et B, i.e., J(A, B) = |A ∩ B| / |A ∪ B|.

Summary

One of the fundamental problems in graph databases is similarity search for graphs of interest. Existing approaches dealing with this problem rely on a single similarity measure between graph structures. In this paper, we suggest an approach allowing for searching similar graphs to a query graph where similarity between graphs is rather modelled by a vector of scalars than a unique scalar. To this end, we introduce the concept of similarity skyline of a query graph defined by the subset of graphs of the target database that are the most similar to the query in a Pareto sense. A diversity-based method for refining the retrieval result is proposed as well.